Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 826
Filtrar
1.
Environ Res ; 259: 119503, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972342

RESUMO

Microbial fuel cells (MFCs) show promise in sewage treatment because they can directly convert organic matter (OM) into electricity. This study aimed to demonstrate MFCs stability over 750 days of operation and efficient removal of OM and nitrogenous compounds from sewage. To enhance contaminant removal, oxygen was provided into the anode chamber via a mini air pump. This pump was powered by the MFCs' output voltage, which was boosted using a DC-DC converter. The experimental system consisted of 12 sets of cylindrical MFCs within a 246L-scale reactor. The boosted voltage reached 4.7 V. This voltage was first collected in capacitors every 5 min and then dispensed intermittently to the air pump for the MFCs reactor in 4 s. This corresponds to receiving average DO concentration reaching 0.34 ± 0.44 mg/L at 10 cm above the air-stone. Consequently, the degradation rate constants (k) for chemical oxygen demand (COD) and biological oxygen demand (BOD) in the presence of oxygen were 0.048 and 0.069, respectively, which surpassed those without oxygen by 0.039 and 0.044, respectively. Aeration also marginally improved the removal of ammonia because of its potential to create a favorable environment for the growth of anammox and ammonia-oxidizing bacteria such as Candidatus brocadia and Nitrospira. The findings of this study offer in-depth insight into the benefits of boosted voltage in MFCs, highlighting its potential to enhance contaminant degradation. This serves as a foundation for future research focused on improving MFCs performance, particularly for the removal of contaminants from wastewater.

2.
J Hazard Mater ; 476: 135141, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38986404

RESUMO

It is well known that aquaculture can alter the microenvironments of lakes at sediment-water interface (SWI). However, the main mechanisms underlying the effects of aquaculture activities on arsenic (As) transformations are still unclear. In this context, the present study aims to investigate the variations in the sediment As contents in Yangcheng Lake, as well as to assess its chemical transformations, release fluxes, and release mechanisms. The results showed substantial spatial differences in the dissolved As concentrations in the sediment pore water. The As release fluxes at the SWI ranged from 1.32 to 112.09 µg/L, with an average value of 33.68 µg/L. In addition, the highest As fluxes were observed in the aquaculture areas. The transformation of crystalline hydrous Fe oxide-bound As to adsorbed-As in the aquaculture lake sediments increased the ability of As release. The Partial least squares path modeling results demonstrated the great contributions of organic matter (OM) to the As transformations by influencing the sediment microbial communities and Fe/Mn minerals. The changes in the As fractionation and competing adsorption increased the dissolved As concentrations in the 0-10 mm surface sediment. Non-specifically and specifically adsorbed As were the major sources of dissolved As in the sediments. Specifically, microbial reduction of As[V] and dissolution of Fe oxides increased the dissolved As concentrations at the SWI (20 to -20 mm). The results of the current study highlight the positive enhancement effects of aquaculture on As release from sediments.

3.
Ecol Evol ; 14(7): e11722, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38994211

RESUMO

In recent decades, hypoxic areas have rapidly expanded worldwide in estuaries and coastal zones. The Pearl River Estuary (PRE), one of China's largest estuaries, experiences frequent seasonal hypoxia due to intense human activities and eutrophication. However, the ecological effects of hypoxia in the PRE, particularly on fish communities, remain unclear. To explore these effects, we collected fish community and environmental data in July 2021 during the summer hypoxia development period. The results revealed that bottom-layer dissolved oxygen (DO) in the PRE ranged from 0.08 to 5.71 mg/L, with extensive hypoxic zones (DO ≤ 2 mg/L) observed. Hypoxia has varied effects on fish community composition, distribution, species, and functional diversity in the PRE. A total of 104 fish species were collected in this study, with approximately 30 species (28.6%) exclusively found in hypoxic areas. Species responses to hypoxia varied: species such as Sardinella zunasi, Coilia mystus, and Nuchequula nuchalis were sensitive, while Decapterus maruadsi, Siganus fuscescens, and Lagocephalus spadiceus showed higher tolerance. Within the hypoxia area, dissolved oxygen was the main limiting factor for fish community diversity. Functional diversity (FDiv) decreased with higher dissolved oxygen levels, indicating a potential shift in the functional traits and ecological roles of fish species in response to changing oxygen conditions. Further analysis demonstrated that dissolved oxygen had a significantly stronger effect on fish community structure at hypoxic sites than in the whole PRE. Moreover, other environmental variables also had significant effects on the fish community structure and interacted with dissolved oxygen in the hypoxia area. These findings suggest that maintaining sufficient dissolved oxygen levels is essential for sustaining fish communities and ecosystem health in the PRE. This study provides novel insights into the effects of hypoxia on fish communities in estuarine ecosystems and has significant implications for the ecological health and management of the PRE.

4.
Environ Monit Assess ; 196(8): 726, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995468

RESUMO

The feasibility of a simultaneous nitrification, denitrification and fermentation process (SNDF) under electric stirrer agitation conditions was verified in a single reactor. Enhanced activated sludge for phenol degradation and denitrification in pharmaceutical phenol-containing wastewater under low dissolved oxygen conditions, additional inoculation with Comamonas sp. BGH and optimisation of co-metabolites were investigated. At a hydraulic residence time (HRT) of 28 h, 15 mg/L of substrate as strain BGH co-metabolised substrate degraded 650 ± 50 mg/L phenol almost completely and was accompanied by an incremental increase in the quantity of strain BGH. Strain BGH showed enhanced phenol degradation. Under trisodium citrate co-metabolism, strain BGH combined with activated sludge treated phenol wastewater and degraded NO2--N from 50 ± 5 to 0 mg/L in only 7 h. The removal efficiency of this group for phenol, chemical oxygen demand (COD) and TN was 99.67%, 90.25% and 98.71%, respectively, at an HRT of 32 h. The bioaugmentation effect not only promotes the degradation of pollutants, but also increases the abundance of dominant bacteria in activated sludge. Illumina MiSeq sequencing research showed that strain BGH promoted the growth of dominant genera (Acidaminobacter, Raineyella, Pseudarcobacter) and increased their relative abundance in the activated sludge system. These genera are resistant to toxicity and organic matter degradation. This paper provides some reference for the activated sludge to degrade high phenol pharmaceutical wastewater under the action of biological enhancement.


Assuntos
Reatores Biológicos , Desnitrificação , Fermentação , Nitrificação , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Águas Residuárias/química , Fenol/metabolismo , Esgotos/microbiologia , Biodegradação Ambiental
5.
Environ Res ; 259: 119558, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969317

RESUMO

Phosphorus (P) release from sediment poses a severe challenge for eutrophication management in the aquatic environment. The dissolved organic carbon (DOC) concentrations in riverine ecosystems have shown an increasing trend due to intensified climate change and anthropogenic activities, while their impact on sediment P cycling remains unclear. To investigate the effects of different DOC loads on sediment P release and the underlying mechanisms, we conducted a two-month experiment in 15 plexiglass tanks, with five gradient-increasing target DOC concentrations set according to reality: control (S0), 5 mg/L (S5), 10 mg/L (S10), 15 mg/L (S15), and 20 mg/L (S20). The results demonstrated that: i) DOC enrichment promoted the sediment P mobilization and release, with the underlying mechanisms exhibited periodic characteristics. ii) reduced dissolved oxygen (DO) concentration and stimulated alkaline phosphatase activity (APA) were likely the primary and sustained facilitating mechanisms. While after the termination of DOC load, elevated pH level was also considered a contributing factor when chlorophyll a (Chl a) ranged between 5.9 µg/L and 7.7 µg/L iii) ultimate concentration of total P (TP) in the overlying water depended on DOC load. After DOC addition was terminated, decreased TP concentrations were observed when DOC concentration was in the range of 5-15 mg/L, which may be attributed to the direct uptake of P by phytoplankton counteracting the minor promotion of P release induced by anoxic conditions. However, when DOC concentrations exceeded 15-20 mg/L, there were notable increments in TP concentrations. Our findings provide further insight into the response mechanisms of sediment P release to the increasing organic C load in natural ecosystems. The impact of broader C forms or C loads on sediment P cycling needs to be fully elucidated and even quantified in future studies, especially through large-scale field investigations to further clarify the coupled roles between C and P.

6.
PeerJ ; 12: e17322, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903884

RESUMO

Dissolved oxygen is fundamental for chemical and biochemical processes occurring in natural waters and critical for the life of aquatic organisms. Many organisms are responsible for altering organic matter and oxygen transfers across ecosystem or habitat boundaries and, thus, engineering the oxygen balance of the system. Due to such Lemna features as small size, simple structure, vegetative reproduction and rapid growth, as well as frequent mass occurrence in the form of thick mats, they make them very effective in oxygenating water. The research was undertaken to assess the impact of various species of duckweed (L. minor and L. trisulca) on dissolved oxygen content and detritus production in water and the role of ecological factors (light, atmospheric pressure, conductivity, and temperature) in this process. For this purpose, experiments were carried out with combinations of L. minor and L. trisulca. On this basis, the content of oxygen dissolved in water was determined depending on the growth of duckweed. Linear regression models were developed to assess the dynamics of changes in oxygen content and, consequently, organic matter produced by the Lemna. The research showed that the presence of L. trisulca causes an increase in dissolved oxygen content in water. It was also shown that an increase in atmospheric pressure had a positive effect on the ability of duckweed to produce oxygen, regardless of its type. The negative correlation between conductivity and water oxygenation, obtained in conditions of limited light access, allows us to assume that higher water conductivity limits oxygen production by all combinations of duckweeds when the light supply is low. Based on the developed models, it was shown that the highest increase in organic matter would be observed in the case of mixed duckweed and the lowest in the presence of the L. minor species, regardless of light conditions. Moreover, it was shown that pleustophytes have different heat capacities, and L. trisulca has the highest ability to accumulate heat in water for the tested duckweed combinations. The provided knowledge may help determine the good habitat conditions of duckweed, indicating its role in purifying water reservoirs as an effect of producing organic matter and shaping oxygen conditions with the participation of various Lemna species.


Assuntos
Araceae , Oxigênio , Araceae/metabolismo , Araceae/crescimento & desenvolvimento , Oxigênio/metabolismo , Ecossistema , Temperatura , Água/metabolismo , Pressão Atmosférica , Luz
7.
Environ Manage ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907108

RESUMO

We review the negative impacts of vinasse, a byproduct of alcohol distillation, on Brazil's freshwater ecosystems. We found a total of 37 pollution events between the years 1935 and 2023, with this number almost certainly an underestimate due to underreporting and/or unassessed events. Pollution by vinasse occurred both through accidents (e.g., tank failure) and deliberately (i.e., opening of floodgates), although in many cases the causes remain undetermined. All pollution events caused fish kills, with some records reporting negative effects on other organisms as well (i.e., crustaceans and reptiles). Pollution by vinasse, and associated negative effects, was reported for 11 states, with a notable number of cases in São Paulo. Most cases of vinasse pollution and negative impacts on biodiversity were recorded in rivers, followed by streams and reservoirs. Some of the affected river systems harbour threatened freshwater fishes. Hydrological connectivity means that pollution could have propagated along watercourses. Given these consequences of vinasse pollution on biodiversity, ecosystem functioning and services, we recommend a number of remedial actions.

8.
N Biotechnol ; 83: 16-25, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878999

RESUMO

Regulatory authorities in biopharmaceutical industry emphasize process design by process understanding but applicable tools that are easy to implement are still missing. Soft sensors are a promising tool for the implementation of the Quality by Design (QbD) approach and Process Analytical Technology (PAT). In particular, the correlation between viable cell counting and oxygen consumption was investigated, but problems remained: Either the process had to be modified for excluding CO2 in pH control, or complex kLa models had to be set up for specific processes. In this work, a non-invasive soft sensor for simplified on-line cell counting based on dynamic oxygen uptake rate was developed with no need of special equipment. The dynamic oxygen uptake rates were determined by automated and periodic interruptions of gas supply in DASGIP® bioreactor systems, realized by a programmed Visual Basic script in the DASware® control software. With off-line cell counting, the two parameters were correlated based on linear regression and led to a robust model with a correlation coefficient of 0.92. Avoidance of oxygen starvation was achieved by gas flow reactivation at a certain minimum dissolved oxygen concentration. The soft sensor model was established in the exponential growth phase of a Chinese Hamster Ovary fed-batch process. Control studies showed no impact on cell growth by the discontinuous gas supply. This soft sensor is the first to be presented that does not require any specialized additional equipment as the methodology relies solely on the direct measurement of oxygen consumed by the cells in the bioreactor.

9.
Fundam Res ; 4(3): 495-504, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38933184

RESUMO

Extreme precipitation is exacerbating the burden of infectious diarrhea in the context of climate change, it is necessary to identify the critical and easy-to-intervene intermediate factors for public health strategies. Water quality may be the most important mediator, while relevant empirical evidence is limited. This study aimed to examine the role of water quality in the process of infectious diarrhea caused by extreme precipitation. Weekly infectious diarrhea cases, meteorological factors and water quality data in Yangtze River Basin in China between October 29, 2007 to February 19, 2017 were obtained. Two-stage statistical models were used to estimate city-specific extreme precipitation, water quality and infectious diarrhea relationships that were pooled to derive regional estimates. A causal mediation analysis was used to assess the mediation effect of water quality. In Yangtze River Basin, extreme precipitation events had a significant impact on infectious diarrhea (Incidence Rate Ratios [IRR]: 1.027, 95% Confidence Interval [CI]: 1.013∼1.041). After extreme precipitation events, the dissolved oxygen (DO) in surface water decreased (-0.123 mg/L, 95%CI: -0.159 mg/L∼-0.086 mg/L), while the un-ionized ammonia (NH(3)-N) increased (0.004 mg/L, 95%CI: 0.001 mg/L∼0.006 mg/L). The combined overall effect of DO and NH(3)-N on infectious diarrhea showed that both low and high concentrations were associated with an increased risk of infectious diarrhea. The causal mediation analysis showed that the mediation proportion of the two water quality indexes (DO and NH(3)-N) is 70.54% (P < 0.001). To reduce the health effects of extreme precipitation, in contrast to current population-oriented health strategies, those that take into account more direct and easy-to-intervene water quality indicators should be encouraged by future policies.

10.
Biotechnol Prog ; : e3486, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924316

RESUMO

Demand for monoclonal antibodies (mAbs) is rapidly increasing. To achieve higher productivity, there have been improvements to cell lines, operating modes, media, and cultivation conditions. Representative mathematical models are needed to narrow down the growing number of process alternatives. Previous studies have proposed mechanistic models to depict cell metabolic shifts (e.g., lactate production to consumption). However, the impacts of variations of some operating conditions have not yet been fully incorporated in such models. This paper offers a new mechanistic model considering variations in dissolved oxygen and glutamine depletion on cell metabolism applied to a novel Chinese hamster ovary (CHO) cell line. Expressions for the specific rates of lactate production, glutamine consumption, and mAb production were formulated for stirred and shaken-tank reactors. A deeper understanding of lactate metabolic shifts was obtained under different combinations of experimental conditions. Lactate consumption was more pronounced in conditions with higher DO and low glutamine concentrations. The model offers mechanistic insights that are useful for designing advanced operation strategies. It can be used in design space generation and process optimization for better productivity and product quality.

11.
Mar Environ Res ; 199: 106578, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38838431

RESUMO

Oceanic dissolved oxygen (DO) is crucial for oceanic material cycles and marine biological activities. However, obtaining subsurface DO values directly from satellite observations is limited due to the restricted observed depth. Therefore, it is essential to develop a connection between surface oceanic parameters and subsurface DO values. Machine learning (ML) methods can effectively grasp the complex relationship between input attributes and target variables, making them a valuable approach for estimating subsurface DO values based on surface oceanic parameters. In this study, the potential of ML methods for subsurface DO retrieval is analyzed. Among the selected ML methods, namely support vector regression (SVR), random forest (RF) regression, and extreme gradient boosting (XGBoosting) regression, the RF method generally demonstrates superior performance. As the depth increases, the accuracy of DO estimates tends to initially decrease, then gradually improve, with the poorest performance occurring at the depth of 600 dbar. The range of determination coefficients (R2) and root mean square error (RMSE) values based on the test dataset at different depths lies between 0.53 and 47.59 µmol/kg to 0.99 and 4.01 µmol/kg. In addition, compared to sea surface salinity (SSS) and sea surface chlorophyll-a (SCHL), sea surface temperature (SST) plays a more significant role in DO retrieval. Finally, compared to the pelagic interactions scheme for carbon and ecosystem studies (PISCES) model, the RF method achieves higher retrieval accuracies at depths above 700 dbar. In the deep ocean, the primary differences in DO values obtained from the RF method and the PISCES model-based method are noticeable in the vicinity of the equatorial region.

12.
Nanomicro Lett ; 16(1): 208, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833205

RESUMO

The structure of liquid water is primarily composed of three-dimensional networks of water clusters formed by hydrogen bonds, and dissolved oxygen is one of the most important indicators for assessing water quality. In this work, distilled water with different concentration of dissolved oxygen were prepared, and a clear negative correlation between the size of water clusters and dissolved oxygen concentration was observed. Besides, a phenomenon of rapid absorption and release of oxygen at the water interfaces was unveiled, suggesting that oxygen molecules predominantly exist at the interfaces of water clusters. Oxygen molecules can move rapidly through the interfaces among water clusters, allowing dissolved oxygen to quickly reach a saturation level at certain partial pressure of oxygen and temperature. Further exploration into the mechanism by molecular dynamics simulations of oxygen and water clusters found that oxygen molecules can only exist stably at the interfaces among water clusters. A semi-empirical formula relating the average number of water molecules in a cluster (n) to 17O NMR half-peak width (W) was summarized: n = 0.1 W + 0.85. These findings provide a foundation for exploring the structure and properties of water.

13.
Sci Total Environ ; 941: 173740, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38839002

RESUMO

Constructed wetlands (CWs) have been used to enhance pollutant removal by filling several types of material as substrates. However, research on substrate filling order remains still limited, particularly regarding the effects of greenhouse gas (GHG) emissions. In this study, six CWs were constructed using zeolite and ferric­carbon micro-electrolysis (Fe-C) fillers to evaluate the effect of changing the filling order and ratio on pollutant removal, GHGs emissions, and associated microbial structure. The results showed that the order of substrate filling significantly impacted pollutant removal performance on CWs. Specifically, CWs filled with zeolite in the top layer exhibited superior NH4+-N removal compared to those filled in the lower layer. Moreover, the highest NH4+-N removal (95.0 % ± 1.9 %) was observed in CWs with a zeolite to Fe-C volume ratio of 8:2 (CWZe-1). Moreover, zeolite-filled at the top had lower GHGs emissions, with the lowest CH4 (0.22 ± 0.10 mg m-2 h-1) and N2O (167.03 ± 61.40 µg m-2 h-1) fluxes in the CWZe-1. In addition, it is worth noting that N2O is the major contributor to integrated global warming potential (GWP) in the six CWs, accounting for 81.7 %-90.8 %. The upper layer of CWs filled with zeolite exhibited higher abundances of nirK, nirS and nosZ genes. The order in which the substrate was filled affected the microbial community structure and the upper layer of CWs filled with zeolite had higher relative abundance of nitrifying genera (Nitrobacter, Nitrosomonas) and denitrifying genera (Zoogloea, Denitratisoma). Additionally, N2O emission was reduced by approximately 41.2 %-64.4 % when the location of the aeration of the CWs was changed from the bottom to the middle. This study showed that both the order of filling the substrate and the aeration position significantly affected the GHGs emissions from CWs, and that CWs had lower GHGs emissions when zeolites were filled in the upper layer and the aeration position was in the middle.


Assuntos
Poluentes Atmosféricos , Metano , Óxido Nitroso , Eliminação de Resíduos Líquidos , Áreas Alagadas , Metano/análise , Óxido Nitroso/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Atmosféricos/análise , Zeolitas/química , Gases de Efeito Estufa/análise
14.
Mol Ecol ; 33(13): e17419, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38808559

RESUMO

The role of phenotypic plasticity during colonization remains unclear due to the shifting importance of plasticity across timescales. In the early stages of colonization, plasticity can facilitate persistence in a novel environment; but over evolutionary time, processes such as genetic assimilation may reduce variation in plastic traits such that species with a longer evolutionary history in an environment can show lower levels of plasticity than recent invaders. Therefore, comparing species in the early stages of colonization to long-established species provides a powerful approach for uncovering the role of phenotypic plasticity during different stages of colonization. We compared gene expression between low-dissolved oxygen (DO) and high-DO populations of two cyprinid fish: Enteromius apleurogramma, a species that has undergone a recent range expansion, and E. neumayeri, a long-established native species in the same region. We sampled tissue either immediately after capture from the field or after a 2-week acclimation under high-DO conditions, allowing us to test for both evolved and plastic differences in low-DO vs high-DO populations of each species. We found that most genes showing candidate-evolved differences in gene expression did not overlap with those showing plastic differences in gene expression. However, in the genes that did overlap, there was counter-gradient variation such that plastic and evolved gene expression responses were in opposite directions in both species. Additionally, E. apleurogramma had higher levels of plasticity and evolved divergence in gene expression between field populations. We suggest that the higher level of plasticity and counter-gradient variation may have allowed rapid genetic adaptation in E. apleurogramma and facilitated colonization. This study shows how counter-gradient variation may impact the colonization of divergent oxygen environments.


Assuntos
Cyprinidae , Oxigênio , Animais , Oxigênio/metabolismo , Cyprinidae/genética , Fenótipo , Expressão Gênica/genética , Adaptação Fisiológica/genética , Genética Populacional
15.
Bioresour Technol ; 403: 130891, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788808

RESUMO

To reduce the cost of docosahexaenoic acid (DHA) production from Schizochytrium sp., the waste Pichia pastoris was successfully used as an alternative nitrogen source to achieve high-density cultivation during the cell growth phase. However, due to the high oxygen consumption feature when implementing high-density cultivation, the control of both the nitrogen source and dissolved oxygen concentration (DO) at each sufficient level was impossible; thus, two realistic control strategies, including "DO sufficiency-nitrogen limitation" and "DO limitation-nitrogen sufficiency", were proposed. When using the strategy of "DO sufficiency-nitrogen limitation", the lowest maintenance coefficient of glucose (12.3 mg/g/h vs. 17.0 mg/g/h) and the highest activities of related enzymes in DHA biosynthetic routes were simultaneously obtained; thus, a maximum DHA concentration of 12.8 ± 1.2 g/L was achieved, which was 1.58-fold greater than that of the control group. Overall, two-stage feeding control for alternative nitrogen sources is an efficient strategy to industrial DHA fermentation.


Assuntos
Ácidos Docosa-Hexaenoicos , Nitrogênio , Estramenópilas , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/biossíntese , Nitrogênio/metabolismo , Estramenópilas/metabolismo , Fermentação , Oxigênio/metabolismo , Glucose/metabolismo , Saccharomycetales/metabolismo
16.
J Environ Manage ; 359: 121009, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718600

RESUMO

Nitrification-denitrification process has failed to meet wastewater treatment standards. The completely autotrophic nitrite removal (CANON) process has a huge advantage in the field of low carbon/nitrogen wastewater nitrogen removal. However, slow start-up and system instability limit its applications. In this study, the time of the start-up CANON process was reduced by using bio-rope as loading materials. The establishing of graded dissolved oxygen improved the stability of the CANON process and enhanced the stratification effect between functional microorganisms. Microbial community structure and the abundance of nitrogen removal functional genes are also analyzed. The results showed that the CANON process was initiated within 75 days in the complete absence of anaerobic ammonium oxidizing bacteria (AnAOB) inoculation. The ammonium and nitrogen removal efficiencies of CANON process reached to 94.45% and 80.76% respectively. The results also showed that the relative abundance of nitrogen removal bacterial in the biofilm gradually increases with the dissolved oxygen content in the solution decreases. In contrast, the relative abundance of ammonia oxidizing bacteria was positively correlated with the dissolved oxygen content in the solution. The relative abundance of g__Candidatus_Brocadia in biofilm was 15.56%, and while g__Nitrosomonas was just 0.6613%. Metagenomic analysis showed that g__Candidatus_Brocadia also contributes 66.37% to the partial-nitrification functional gene Hao (K10535). This study presented a new idea for the cooperation between partial-nitrification and anammox, which improved the nitrogen removal system stability.


Assuntos
Processos Autotróficos , Nitritos , Nitrogênio , Águas Residuárias , Nitrogênio/metabolismo , Nitritos/metabolismo , Nitrificação , Desnitrificação , Bactérias/metabolismo , Bactérias/genética , Eliminação de Resíduos Líquidos/métodos , Biofilmes , Reatores Biológicos , Compostos de Amônio/metabolismo
17.
J Environ Manage ; 359: 121075, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38723502

RESUMO

Sequencing batch biofilm reactor (SBBR) has the potential to treat hypersaline high-strength nitrogen wastewater by simultaneous nitrification-denitrification (SND). Dissolved oxygen (DO) and aeration modes are major factors affecting pollutant removal. Low DO (0.35-3.5 mg/L) and alternative anoxic/aerobic (A/O) mode are commonly used for municipal wastewater treatment, however, the appropriate DO concentration and operation mode are still unknown under hypersaline environment because of the restricted oxygen transfer in denser extracellular polymeric substances (EPS) barrier and the decreased carbon source consumption during the anoxic phase. Herein, two SBBRs (R1, fully aerobic mode; R2, A/O mode) were used for the treatment of hypersaline high-strength nitrogen wastewater (200 mg/L NH4+-N, COD/N of 3 and 3% salinity). The results showed that the relatively low DO (2 mg/L) could not realize effective nitrification, while high DO (4.5 mg/L) evidently increased nitrification efficiency by enhancing oxygen transfer in denser biofilm that was stimulated by high salinity. A stable SND was reached 16 days faster with a ∼10% increase of TN removal under A/O mode. Mechanism analysis found that denser biofilm with coccus and bacillus were present in A/O mode instead of filamentous microorganisms, with the secretion of more EPS. Corynebacterium and Halomonas were the dominant genera in both SBBRs, and HN-AD process might assist partial nitrification-denitrification (PND) for highly efficient TN removal in biofilm systems. By using the appropriate operation mode and parameters, the average NH4+-N and TN removal efficiency could respectively reach 100% and 70.8% under the NLR of 0.2 kg N·m-3·d-1 (COD/N of 3), which was the highest among the published works using SND-based SBBRs in treatment of saline high-strength ammonia nitrogen (low COD/N) wastewater. This study provided new insights in biofilm under hypersaline stress and provided a solution for the treatment of hypersaline high-strength nitrogen (low COD/N) water.


Assuntos
Biofilmes , Reatores Biológicos , Desnitrificação , Nitrificação , Nitrogênio , Águas Residuárias , Nitrogênio/metabolismo , Eliminação de Resíduos Líquidos/métodos , Salinidade , Oxigênio/metabolismo
18.
Sci Total Environ ; 932: 173090, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729360

RESUMO

The understanding of the essential environmental factors affecting the spatiotemporal variation in methylmercury (MeHg) in river water is limited to date, despite its importance for predicting the effect of ongoing climate change on MeHg accumulation in freshwater ecosystems. This study aimed to explore the variation in MeHg concentration and related environmental factors in the downstream zone of the Yeongsan River under highly dynamic hydrologic conditions by using water quality and hydrologic data collected from 1997 to 2022, and Hg and MeHg data collected from 2017 to 2022. The mean concentration of unfiltered MeHg was 35.7 ± 13.7 pg L-1 (n = 24) in summer and 26.7 ± 7.43 pg L-1 (n = 24) in fall. Dissolved oxygen (DO), conductivity, nitrate, and dissolved organic carbon (DOC) were determined to be the most influential variables in terms of MeHg variation based on the partial least squares regression model, and their effects on the MeHg concentration were negative, except for DOC. Heatmaps representing the similarity distances between temporal trends of hydrologic and water quality variables were constructed to determine fundamental factors related to the time-based variations in DO, conductivity, nitrate, and DOC using a dynamic time warping algorithm. The heatmap cluster analysis showed that the temporal trends of these variables were closely related to rainfall variation rather than irradiance or water temperature. Overall, biogeochemical factors directly related to in situ methylation rate of Hg(II)-rather than transport of Hg(II) and MeHg from external sources-mainly control the spatiotemporal variation of MeHg in the downstream zone of the Yeongsan River.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38794895

RESUMO

To clarify the growth mechanisms of Rhodococcus in the alkane phase, we measured oxygen utilization in the alkane phase. The results showed that dissolved oxygen decreased significantly when viable cells were present in the alkane phase. The findings suggested that Rhodococcus strains can grow in alkanes and utilize the resident dissolved oxygen.

20.
J Environ Manage ; 359: 120974, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701584

RESUMO

This study has carried out a systematic review of 36 scientific papers (reporting 63 case studies) published in the last 15 years about the treatment of industrial, agri-food and municipal wastewater in lagoons. A concentration of studies from a few countries (Italy, Algeria and Iran) and about municipal wastewater (70% of papers) was revealed by the bibliographic analysis. Aeration was supplied in more than 50% of case studies; the storage capacity of lagoons (adopted as a measure of size) was extremely variable (over seven orders of magnitude), while their depth was generally lower than a few metres. The efficiency of lagoon treatments at removing COD was in a wide range (25-98%). Very few studies analysed the energy intensity of treatments in lagoons. The meta-analysis applied to a further selection of 10 papers with 29 case studies revealed significant differences in pH and dissolved oxygen concentration, due to aeration or type of treated wastewater. Treatment efficiency was higher in aerated lagoons compared to non-aerated systems, and did not depend on the type of treated wastewater. Based on the analysis of the reviewed papers, an urgent research need on this topic arises, mainly due to the oldness of most analysed studies. Practical suggestions are given to optimise the depuration performances of lagoons: (i) application of intermittent and night aeration; (ii) reduced air flow rates; (iii) adaptation of microbial biomass to high contents of inhibiting compounds in wastewater; (iv) construction of baffles to keep the planned hydraulic retention time avoiding short-circuit; (v) integration of lagoons with other treatments (e.g., constructed wetlands); (vi) ferti-irrigation of crops with lagoon effluents rather than disposal into water bodies.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...