Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Molecules ; 29(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338390

RESUMO

Diacylhydrazine bridged anthranilic acids with aryl and heteroaryl domains have been synthesized as the open flexible scaffold of arylamide quinazolinones in order to investigate flexibility versus rigidity towards DNA photocleavage and sensitivity. Most of the compounds have been synthesized via the in situ formation of their anthraniloyl chloride and subsequent reaction with the desired hydrazide and were obtained as precipitates, in moderate yields. All compounds showed high UV-A light absorption and are eligible for DNA photocleavage studies under this "harmless" irradiation. Despite their reduced UV-B light absorption, a first screening indicated the necessity of a halogen at the p-position in relation to the amine group and the lack of an electron-withdrawing group on the aryl group. These characteristics, in general, remained under UV-A light, rendering these compounds as a novel class of UV-A-triggered DNA photocleavers. The best photocleaver, the compound 9, was active at concentrations as low as 2 µΜ. The 5-Nitro-anthranilic derivatives were inactive, giving the opposite results to their related rigid quinazolinones. Molecular docking studies with DNA showed possible interaction sites, whereas cytotoxicity experiments indicated the iodo derivative 17 as a potent cytotoxic agent and the compound 9 as a slight phototoxic compound.


Assuntos
Antineoplásicos , Melanoma , Humanos , Simulação de Acoplamento Molecular , Melanoma/tratamento farmacológico , DNA/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Quinazolinonas , Relação Estrutura-Atividade , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais
2.
J Biomol Struct Dyn ; : 1-15, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37811769

RESUMO

Alzheimer's disease, an intricate neurological disorder, is impacting an ever-increasing number of individuals globally, particularly among the aging population. For several decades phytochemicals were used as Ayurveda to treat both communicable and non-communicable diseases. Acetylcholinesterase (AChE) is a widely chosen therapeutic target for the development of early prevention and effective management of neurodegenerative diseases. The primary objective of the present study was to investigate the binding potential between Rutin Thymoquinone, Hesperidin and the FDA-approved drug Donepezil with AChE. Additionally, a comparative analysis was conducted. These phytochemicals were docked with the binding site of the AChE experimental complex. The molecular dockings demonstrated that the Hesperidinh showed a better binding affinity of -22.0631 kcal/mol. The ADME/T investigations revealed that the selected phytochemicals are non-toxic and drug-like candidates. Molecular dynamics simulations were implemented to determine the conformational changes of Rutin, hesperidin, Thymoquinone, and Donepezil complexed with AChE. Hesperidin and Donepezil were more stable than Rutin, Thymoquinone complexed with AChE. Next, essential dynamics and defining the secondary structure of protein were to determine the conformational changes in AChE complexed with selected phytochemicals during simulations. Overall, the MD Simulations demonstrated that all complexes in this study achieved stability until 100 ns of the simulation period was performed thrice. The structural analysis of AChE was done using multiple search engines to explore the molecular functions, biological processes, and pathways in which AChE proteins are involved and to identify potential drug targets for various diseases. This present study concludes that Hesperidin was found to be a more potent AChE inhibitors than Rutin, and further experiments are required to determine the effectivity of Hesperidin against neurodegenerative diseases.Communicated by Ramaswamy H. Sarma.

3.
Heliyon ; 8(12): e11990, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36531635

RESUMO

An efficient five steps, the protection-deprotection synthetic a novel synthetic routes to(±) noruleine (±)-uleine, are reported starting from tetrahydrocarbazole fused monoalkyl nitrile at C-2 position that is prepared on multigram scale from 2-(3-ethyl-1-oxo-2,3,4,9-tetrahydro-1H-carbazol-2-yl)acetonitrile (1) as well as the key azocino[4,3-b]indole skeleton is constructed via the tetrafluoro-1,4-benzoquinone (TFB)-mediated cyclization of a tetrahydrocarbazole derivative possessing direct amide synthesis from nitrile. As a result, Total synthesis of noruleine and uleine has been developed, which is accomplished in 4 and 5- steps synthesis of the ABCD tetracyclic of the strychnos alkaloids with an overall yield of 44% and 39%, respectively. The DFT computations were performed with B3LYP/6-311g(d,p) level to determine inter and intramolecular interactions and reactivity features of the compound 3-6. Also, TD-DFT computations were performed to characterize the electronic absorption spectra of all compounds. Last, the interactions of compounds 3-6 with selected targets AChE, BuChE, and HSA were evaluated in light of the molecular dockings. The bioactivity and drug-likeness scores revealed that compound 6 3-6 can be proper candidate for future drug-design studies more than the other compounds.

4.
J Biomol Struct Dyn ; 39(15): 5486-5497, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32779528

RESUMO

Hydroxytyrosol oligomer from bioenzymatic catalysis indicates a pleiotropic wellness improving (e.g. antioxidation, anti-inflammatory and anti-carcinogenesis) than its monomer. However, the processing parameters and the insightful mechanism of hydroxytyrosol polymerization are still lacking. To explore in detail the process of hydroxytyrosol polymerization, the effects of different reaction factors (solvent type, pH value of reaction solution, reaction temperature and time) on the polymerization yield were investigated, and molecular docking was executed to reveal the relevant structural variations of these enzymes. The results showed hydroxytyrosol polymerization implemented by laccase performed the best at 50 °C for 20 min in the aqueous buffer solution of pH 5.0. The docking results demonstrated PRO4, TYR7, ASP8, PRO12, LEU121 and VAL14 in site 9 of laccase interacted with hydroxytyrosol in hydrogen bonding, pi-sigma, pi-alkyl and van der Waals' force. Moreover, the molecular dynamic results implied their interaction-energy variation reaching balance within 175 ps, which confirmed the enzymes' structural changes. Meanwhile, structural analysis in torsion and bond lengths showed that the C-O of phenolic bonds from hydroxytyrosol evidently rotated and its length of the relevant O-H became longer when binding to laccase compared with free hydroxytyrosol. All the findings are helpful to strengthen the understanding for the enzymatic polymerization of catechol-based structures and the resulting o-dihydroxy-grafting oligomers could be potentially used in the field of functional foods, cosmetics and pharmaceuticals, even or an innovative bioenzyme design such as biosensor for measuring phenols in industrial effluent or preparing the singular oligomer oriented is worth being explored in future.Communicated by Ramaswamy H. Sarma.


Assuntos
Lacase , Monofenol Mono-Oxigenase , Catálise , Peroxidase do Rábano Silvestre/metabolismo , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/metabolismo , Estresse Oxidativo , Álcool Feniletílico/análogos & derivados , Polimerização
5.
J Enzyme Inhib Med Chem ; 35(1): 1964-1989, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33164573

RESUMO

Although trehalose has recently gained interest because of its pharmaceutical potential, its clinical use is hampered due to its low bioavailability. Hence, hydrolysis-resistant trehalose analogues retaining biological activity could be of interest. In this study, 34 4- and 6-O-substituted trehalose derivatives were synthesised using an ether- or carbamate-type linkage. Their hydrolysis susceptibility and inhibitory properties were determined against two trehalases, i.e. porcine kidney and Mycobacterium smegmatis. With the exception of three weakly hydrolysable 6-O-alkyl derivatives, the compounds generally showed to be completely resistant. Moreover, a number of derivatives was shown to be an inhibitor of one or both of these trehalases. For the strongest inhibitors of porcine kidney trehalase IC50 values of around 10 mM could be determined, whereas several compounds displayed sub-mM IC50 against M. smegmatis trehalase. Dockings studies were performed to explain the observed influence of the substitution pattern on the inhibitory activity towards porcine kidney trehalase.


Assuntos
Inibidores Enzimáticos/síntese química , Trealase/antagonistas & inibidores , Trealose/síntese química , Alquilação , Animais , Carbamatos/química , Inibidores Enzimáticos/metabolismo , Éter/química , Hidrólise , Rim/enzimologia , Simulação de Acoplamento Molecular , Mycobacterium smegmatis/enzimologia , Ligação Proteica , Relação Estrutura-Atividade , Suínos , Trealose/metabolismo
6.
Talanta ; 196: 572-578, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30683407

RESUMO

In this research, microwave assisted magnetic solid phase extraction (MAE-MSPE) coupled with GC-ECD have been successfully used for the determination of eight organochlorine pesticides in soil samples. Specially, the novel Fe3O4-NH2@MIL-101(Cr) composites as the MSPE sorbent played a role of selective enrichment and purification towards the targets. The MAE-MSPE procedure was optimized focusing on microwave extraction temperature and time, solution pH, the amount of sorbent, ultrasonic extraction time, ionic strength, elution solvent type, elution solvent volume, and elution time. The parameters of the analytical method were evaluated. Under the optimal condition, the detection limits of α-HCH, ß-HCH, γ-HCH, δ-HCH, p,p'-DDE, p,p'-DDD, o,p'-DDT, and p,p'-DDT were in the range of 0.15-0.28 ng g-1. Satisfactory recoveries were obtained in the range of 71.2-102.4% with the RSDs less than 10.0%. The obtained results demonstrated that the method was suitable for the trace analysis of OCPs. Additionally, molecular docking was employed to calculate the molecular interactions and free binding energies between MIL-101(Cr) and the organochlorines.

7.
Phytomedicine ; 38: 35-44, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29425653

RESUMO

BACKGROUND: Halophytes are considered as valuable sources of traditional drugs in different countries. PURPOSE: The present study aimed to evaluate biological and chemical fingerprints of three halophytes (Arthrocnemum macrostachyum (Moric.) C, Koch, Halimione portulacoides (L.) Aellen and Salicornia europaea L.). MATERIALS AND METHODS: The antioxidant and enzymatic inhibitory potential (acetylcholinesterase, butyrylcholinesterase, α-amylase, α-glucosidase, and tyrosinase) were assessed. The total phenolic, flavonoid contents, and the chemical profiles were appraised using the ultra-high performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Molecular docking was conducted to provide additional insights of molecular interactions of the enzymes/phytochemicals. RESULTS: Ethyl acetate extract was the most efficient extract, with A. macrostachyum being the most potent towards DPPH and ABTS radicals and phosphomolybdenum assay. Ethyl acetate extract of A. macrostachyum was also the best reducing agent (CUPRAC and FRAP assays). Methanol and ethyl acetate extract of A. macrostachyum, H. portulacoides, and S. europaea showed significant enzyme inhibition potential. Ethyl acetate extract of A. macrostachyum showed the highest total phenolic (29.54 ±â€¯0.78 mgGAEs/g extract) while the ethyl acetate extract of S. europaea was more abundant in flavonoids (18.26 ±â€¯0.11 mgREs/g extract). Phytochemical profiling allowed the identification of several components in the methanolic extracts (16 in A. macrostachyum, 14 in H. portulacoides, and 11 in S. europaea), with quinic acid, p-coumaric acid, and rhamnetin being most abundant. Docking studies revealed that the above compounds showed scores for the enzymes tested. CONCLUSION: The three halophytes studies could be considered as potential sources of biologically-active compounds for novel phytopharmaceuticals development.


Assuntos
Antioxidantes/farmacologia , Inibidores Enzimáticos/farmacologia , Compostos Fitoquímicos/farmacologia , Plantas Tolerantes a Sal/química , Inibidores da Colinesterase/farmacologia , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Flavonoides/análise , Inibidores de Glicosídeo Hidrolases , Metanol/química , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/antagonistas & inibidores , Fenóis/análise , Compostos Fitoquímicos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , alfa-Amilases/antagonistas & inibidores
8.
Braz. arch. biol. technol ; 59: e16160068, 2016. tab, graf
Artigo em Inglês | LILACS | ID: biblio-951379

RESUMO

ABSTRACT Cancerous cells develop resistance to cell death by over expression of anti-apoptotic proteins, which are specific to interact with pro-apoptotic and BH3-only proteins of Bcl-2 family. Delineating crucial residues mediating the heterodimer complexes (anti-apoptotic proteins - pro-apoptotic/BH3-only proteins) is indispensable to develop specific antagonists to anti-apoptotic proteins. In these backgrounds, we have herein reported crucial residues of hBaxBH3 and hBcl-B (an anti-apoptotic protein specifically interacts with human Bax but does not interact with human Bak) for hetero dimerization of the polypeptides and as well validated the structural determinants of the polypeptides through variety of virtual 'alanine mutants' and 'switch mutants' by using an array of computational methods. Residues such as D53, S60, E61, K64, E69 and D71 of hBaxBH3 and R45, H50, F53, F54, Y57, M71, S74, V75, R86, V88, T89, F93 and F159 of hBcl-B were found to be crucial residues of the polypeptides for intermolecular interaction leading hetero dimerization. Moreover, 'pharmacophoric residues' for the hBaxBH3 and hBcl-B have also been figured out and rationalized.

9.
J Comput Chem ; 35(3): 192-8, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24375319

RESUMO

Organometallic compounds are increasingly used as molecular scaffolds in drug development projects; their structural and electronic properties offering novel opportunities in protein-ligand complementarities. Interestingly, while protein-ligand dockings have long become a spearhead in computer assisted drug design, no benchmarking nor optimization have been done for their use with organometallic compounds. Pursuing our efforts to model metal mediated recognition processes, we herein present a systematic study of the capabilities of the program GOLD to predict the interactions of protein with organometallic compounds. The study focuses on inert systems for which no alteration of the first coordination sphere of the metal occurs upon binding. Several scaffolds are used as test systems with different docking schemes and scoring functions. We conclude that ChemScore is the most robust scoring function with ASP and ChemPLP providing with good results too and GoldScore slightly underperforming. This study shows that current state-of-the-art protein-ligand docking techniques are reliable for the docking of inert organometallic compounds binding to protein.


Assuntos
Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Compostos Organometálicos/química , Proteínas Quinases/química , Software , Tripsina/química , Algoritmos , Sítios de Ligação , Simulação por Computador , Desenho Assistido por Computador , Cristalografia por Raios X , Bases de Dados de Proteínas , Desenho de Fármacos , Humanos , Cinética , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...