Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.374
Filtrar
1.
Pest Manag Sci ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087755

RESUMO

BACKGROUND: The invasive freshwater snail Pomacea canaliculata is an agricultural pest with a certain level of tolerance to abiotic stress. After the harvest of late rice, the snails usually burrow themselves into the soil surface layers to overwinter and pose a renewed threat to rice production in the following year. Revealing the response of snails to environmental stresses is crucial for developing countermeasures to control their damage and spread. RESULTS: In this study, we conducted a 120-day in situ experiment during the winter to investigate the survival and physiological changes of hibernating snails in 0-5 and 5-10 cm soil depths, aiming to explore their overwintering strategies. Our results showed that 73.61%, 87.50%, and 90.28% of male, female, and juvenile snails survived after hibernation for 120 days in 0-10 cm soil depth, respectively. The differences in survival rates based on sex and size of snails potentially reflect the countermeasures of snails to rapidly reproduce after hibernation. Simultaneously, the hibernating snails exhibited the ability to maintain a certain level of body weight. During this period, the snails increased their antioxidant enzyme activities to cope with oxidative stress, and enhanced their lipid storage. The hibernation survival of snails was not significantly affected by different soil depths, indicating that they have the potential to hibernate into deeper soils. Furthermore, snails were capable of increasing their contents of bound water and glycerol to cope with sudden cold spells during hibernation. CONCLUSION: Our findings emphasize the adaptive changes of P. canaliculata snails overwintering in paddy soils. In future studies, the vulnerabilities of P. canaliculata during hibernation (e.g. shell characteristics, nutrient reserves, and dehydration tolerance, etc.,) should be investigated to develop effective control methods for this period. © 2024 Society of Chemical Industry.

2.
Cell Rep ; 43(8): 114582, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39096488

RESUMO

Male infertility is a recognized side effect of chemoradiotherapy. Extant spermatogonial stem cells (SSCs) may act as originators for any subsequent recovery. However, which type of SSCs, the mechanism by which they survive and resist toxicity, and how they act to restart spermatogenesis remain largely unknown. Here, we identify a small population of Set domain-containing protein 4 (Setd4)-expressing SSCs that occur in a relatively dormant state in the mouse seminiferous tubule. Extant beyond high-dose chemoradiotherapy, these cells then activate to recover spermatogenesis. Recovery fails when Setd4+ SSCs are deleted. Confirmed to be of fetal origin, these Setd4+ SSCs are shown to facilitate early testicular development and also contribute to steady-state spermatogenesis in adulthood. Upon activation, chromatin remodeling increases their genome-wide accessibility, enabling Notch1 and Aurora activation with corresponding silencing of p21 and p53. Here, Setd4+ SSCs are presented as the originators of both testicular development and spermatogenesis recovery in chemoradiotherapy-induced infertility.

3.
Int J Biol Macromol ; : 133245, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977045

RESUMO

Late embryogenesis abundant (LEA) proteins play a crucial role in protecting cells from stress, making them potential contributors to abiotic stress tolerance. This study focuses on apricot (P. armeniaca L. × P. sibirica L.), where a comprehensive genome-wide analysis identified 54 LEA genes, categorized into eight subgroups based on phylogenetic relationships. Synteny analysis revealed 14 collinear blocks containing LEA genes between P. armeniaca × P. sibirica and Arabidopsis thaliana, with an additional 9 collinear blocks identified between P. armeniaca × P. sibirica and poplar. Examination of gene structure and conserved motifs indicated that these subgroups exhibit consistent exon-intron patterns and shared motifs. The expansion and duplication of LEA genes in P. armeniaca × P. sibirica were driven by whole-genome duplication (WGD), segmental duplication, and tandem duplication events. Expression analysis, utilizing RNA-seq data and quantitative real-time RT-PCR (qRT-PCR), indicated induction of PasLEA2-20, PasLEA3-2, PasLEA6-1, Pasdehydrin-3, and Pasdehydrin-5 in flower buds during dormancy and sprouting phases. Coexpression network analysis linked LEA genes with 15 cold-resistance genes. Remarkably, during the four developmental stages of flower buds in P. armeniaca × P. sibirica - physiological dormancy, ecological dormancy, sprouting period, and germination stage - the expression patterns of all PasLEAs coexpressed with cold stress-related genes remained consistent. Protein-protein interaction networks, established using Arabidopsis orthologs, emphasized connections between PasLEA proteins and cold resistance pathways. Overexpression of certain LEA genes in yeast and Arabidopsis conferred advantages under cold stress, including increased pod length, reduced bolting time and flowering time, improved survival and seed setting rates, elevated proline accumulation, and enhanced antioxidative enzymatic activities. Furthermore, these overexpressed plants exhibited upregulation of genes related to flower development and cold resistance. The Y1H assay confirmed that PasGBF4 and PasDOF3.5 act as upstream regulatory factors by binding to the promoter region of PasLEA3-2. PasDOF2.4, PasDnaJ2, and PasAP2 were also found to bind to the promoter of Pasdehydrin-3, regulating the expression levels of downstream genes. This comprehensive study explores the evolutionary relationships among PasLEA genes, protein interactions, and functional analyses during various stages of dormancy and sprouting in P. armeniaca × P. sibirica. It offers potential targets for enhancing cold resistance and manipulating flower bud dormancy in this apricot hybrid.

4.
Methods Mol Biol ; 2830: 35-49, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977566

RESUMO

Seed dormancy is an important trait in cereal breeding, as it prevents preharvest sprouting (PHS). Although seed dormancy is a multifactorial trait, seed color has been demonstrated to be a major dormancy-related factor controlled by few genes. The R-1 gene is a seed color regulator that encodes a MYB-type transcription factor in wheat. A set of genetic markers designed against R-1 can provide a powerful tool for swift wheat breeding. Depth of seed dormancy varies not only among lines but also during seed development in each line. In this chapter, we describe how developmental seeds can be collected to perform germination tests, how seed color can be observed after NaOH staining, and how to genotype wheat R-1 genes using multiplex PCR.


Assuntos
Germinação , Reação em Cadeia da Polimerase Multiplex , Dormência de Plantas , Sementes , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Dormência de Plantas/genética , Germinação/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Genótipo , Cor , Melhoramento Vegetal/métodos , Marcadores Genéticos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Methods Mol Biol ; 2830: 27-34, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977565

RESUMO

Germination test is fundamental and commonly used technique for seed dormancy and germination studies, and proper assessment of dormancy level and germination ability of a given set of seeds is prerequisite for most of the studies. However, germination is very sensitive to imbibition conditions, and dormancy development is also sensitive to growth conditions of the mother plants. In this chapter, we describe tips for plant growth and germination test mainly for physiological and molecular genetic studies with Arabidopsis. This protocol can be applied for other plant species with relatively small seeds and for various studies to analyze the effect of light, phytohormones, and other chemicals in seed germination.


Assuntos
Arabidopsis , Germinação , Dormência de Plantas , Reguladores de Crescimento de Plantas , Sementes , Dormência de Plantas/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Luz
6.
Methods Mol Biol ; 2830: 107-120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977572

RESUMO

Seed dormancy is an important agronomic trait in cereal crops. Throughout the domestication of cereals, seed dormancy has been reduced to obtain uniform germination. However, grain crops must retain moderate levels of seed dormancy to prevent problems such as preharvest sprouting in wheat (Triticum aestivum) and barley (Hordeum vulgare). To produce modern cultivars with the appropriate seed dormancy levels, it is important to identify the genes responsible for seed dormancy. With recent advances in sequencing technology, several causal genes for seed dormancy quantitative trait loci (QTLs) have been identified in barley and wheat. Here, we present a method to identify causal genes for seed dormancy QTLs in barley, a method that is also applicable to other cereals.


Assuntos
Mapeamento Cromossômico , Clonagem Molecular , Hordeum , Dormência de Plantas , Locos de Características Quantitativas , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Dormência de Plantas/genética , Mapeamento Cromossômico/métodos , Clonagem Molecular/métodos , Genes de Plantas , Sementes/genética , Sementes/crescimento & desenvolvimento , Cromossomos de Plantas/genética
7.
Methods Mol Biol ; 2830: 121-129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977573

RESUMO

Genome-wide association study (GWAS) is widely used to characterize genes or quantitative trait loci (QTLs) associated with preharvest sprouting and seed dormancy. GWAS can identify both previously discovered and novel QTLs across diverse genetic panels. The high-throughput SNP arrays or next-generation sequencing technologies have facilitated the identification of numerous genetic markers, thereby significantly enhancing the resolution of GWAS. Although various methods have been developed, the fundamental principles underlying these techniques remain constant. Here, we provide a basic technological flow to perform seed dormancy assay, followed by GWAS using population structure control, and compared it with previous identified QTLs and genes.


Assuntos
Estudo de Associação Genômica Ampla , Germinação , Dormência de Plantas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum , Estudo de Associação Genômica Ampla/métodos , Triticum/genética , Triticum/crescimento & desenvolvimento , Germinação/genética , Dormência de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Fenótipo
8.
Methods Mol Biol ; 2830: 175-193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977578

RESUMO

Different methodologies have been applied for the selection of preharvest sprouting resistance in cereal breeding programs. We describe here a series of methods used in practical wheat breeding programs in Japan, including phenotyping based on germination score after artificial rain treatments and genotyping using DNA markers. These methods can be modified and applied to breeding programs in which preharvest sprouting is a problem during cereal cultivation.


Assuntos
Germinação , Fenótipo , Melhoramento Vegetal , Triticum , Marcadores Genéticos , Genótipo , Germinação/genética , Japão , Melhoramento Vegetal/métodos , Triticum/genética , Triticum/crescimento & desenvolvimento
9.
Front Plant Sci ; 15: 1417204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978523

RESUMO

Growth-regulating factors (GRFs) are transcription factors that play a pivotal role in plant growth and development. This study identifies 12 Solanum tuberosum GRF transcription factors (StGRFs) and analyzes their physicochemical properties, phylogenetic relationships, gene structures and gene expression patterns using bioinformatics. The StGRFs exhibit a length range of 266 to 599 amino acids, with a molecular weight of 26.02 to 64.52 kDa. The majority of StGRFs possess three introns. The promoter regions contain a plethora of cis-acting elements related to plant growth and development, as well as environmental stress and hormone response. All the members of the StGRF family contain conserved WRC and QLQ domains, with the sequences of these two conserved domain modules exhibiting high levels of conservation. Transcriptomic data indicates that StGRFs play a significant role in the growth and development of stamens, roots, young tubers, and other tissues or organs in potatoes. Furthermore, a few StGRFs exhibit differential expression patterns in response to Phytophthora infestans, chemical elicitors, heat, salt, and drought stresses, as well as multiple hormone treatments. The results of the expression analysis indicate that StGRF1, StGRF2, StGRF5, StGRF7, StGRF10 and StGRF12 are involved in the process of tuber sprouting, while StGRF4 and StGRF9 may play a role in tuber dormancy. These findings offer valuable insights that can be used to investigate the roles of StGRFs during potato tuber dormancy and sprouting.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38946665

RESUMO

Dormancy is an essential ecological characteristic for the survival of organisms that experience harsh environments. Although factors that initiate dormancy vary, suppression or cessation of feeding activities are common among taxa. To distinguish between extrinsic and intrinsic causes of metabolic reduction, we focused on estivation, which occurs in summer when the feeding activity is generally enhanced. Sand lances (genus Ammodytes) are a unique marine fish with a long estivation period from early summer to late autumn. In the present study, we aimed to elucidate the control mechanisms of estivation in western sand lance (A. japonicus), and firstly examined behavioral changes in 8 months including a transition between active and dormant phases. We found that swimming/feeding behavior gradually decreased from June, and completely disappeared by late August, indicating all individuals had entered estivation. Next, we focused on leptin, known as a feeding suppression hormone in various organisms, and examined leptin-A gene (AjLepA) expression in the brain that may regulate the seasonal behavioral pattern. AjLepA expression decreased after 7 days of fasting, suggesting that leptin has a function to regulate feeding in this species. The monthly expression dynamics of AjLepA during the feeding (active) and non-feeding (estivation) periods showed that the levels gradually increased with the onset of estivation and reached its peak when all the experimental fish had estivated. The present study suggests that the suppression of feeding activity by leptin causes shift in the physiological modes of A. japonicus before estivation.

11.
Methods Mol Biol ; 2833: 109-119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38949705

RESUMO

Tuberculosis (TB) is the most common cause of death from an infectious disease. Although treatment has been available for more than 70 years, it still takes too long and many patients default risking relapse and the emergence of resistance. It is known that lipid-rich, phenotypically antibiotic-tolerant, bacteria are more resistant to antibiotics and may be responsible for relapse necessitating extended therapy. Using a microfluidic system that acoustically traps live mycobacteria, M. smegmatis, a model organism for M. tuberculosis we can perform optical analysis in the form of wavelength-modulated Raman spectroscopy (WMRS) on the trapped organisms. This system can allow observations of the mycobacteria for up to 8 h. By adding antibiotics, it is possible to study the effect of antibiotics in real-time by comparing the Raman fingerprints in comparison to the unstressed condition. This microfluidic platform may be used to study any microorganism and to dynamically monitor its response to many conditions including antibiotic stress, and changes in the growth media. This opens the possibility of understanding better the stimuli that trigger the lipid-rich downregulated and phenotypically antibiotic-resistant cell state.


Assuntos
Mycobacterium smegmatis , Análise Espectral Raman , Análise Espectral Raman/métodos , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/crescimento & desenvolvimento , Microfluídica/métodos , Microfluídica/instrumentação , Antibacterianos/farmacologia , Acústica/instrumentação , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Humanos
12.
Front Microbiol ; 15: 1415554, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952446

RESUMO

Introduction: The unique dormancy of Mycobacterium tuberculosis plays a significant role in the major clinical treatment challenge of tuberculosis, such as its long treatment cycle, antibiotic resistance, immune escape, and high latent infection rate. Methods: To determine the function of MtrA, the only essential response regulator, one strategy was developed to establish its regulatory network according to high-quality genome-wide binding sites. Results and discussion: The complex modulation mechanisms were implied by the strong bias distribution of MtrA binding sites in the noncoding regions, and 32.7% of the binding sites were located inside the target genes. The functions of 288 potential MtrA target genes predicted according to 294 confirmed binding sites were highly diverse, and DNA replication and damage repair, lipid metabolism, cell wall component biosynthesis, cell wall assembly, and cell division were the predominant pathways. Among the 53 pathways shared between dormancy/resuscitation and persistence, which accounted for 81.5% and 93.0% of the total number of pathways, respectively, MtrA regulatory genes were identified not only in 73.6% of their mutual pathways, but also in 75.4% of the pathways related to dormancy/resuscitation and persistence respectively. These results suggested the pivotal roles of MtrA in regulating dormancy/resuscitation and the apparent relationship between dormancy/resuscitation and persistence. Furthermore, the finding that 32.6% of the MtrA regulons were essential in vivo and/or in vitro for M. tuberculosis provided new insight into its indispensability. The findings mentioned above indicated that MtrA is a novel promising therapeutic target for tuberculosis treatment since the crucial function of MtrA may be a point of weakness for M. tuberculosis.

13.
Ecol Evol ; 14(7): e11671, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38952654

RESUMO

Despite their crucial role in determining the fate of seeds, the type and breaking mode of seed dormancy in peatland plants in temperate Asia with a continental monsoon climate are rarely known. Fifteen common peatland plant species were used to test their seed germination response to various dormancy-breaking treatments, including dry storage (D), gibberellin acid soaking (GA), cold stratification (CS), warm followed cold stratification (WCS), GA soaking + cold stratification (GA + CS) and GA soaking + warm followed cold stratification (GA + WCS). Germination experiment, viability and imbibition test, and morphological observation of embryos were conducted. Of the 15 species, nine showed physiological dormancy (PD), with non-deep PD being the dominant type. Four species, Angelica pubescens, Cicuta virosa, Iris laevigata, and Iris setosa exhibited morphophysiological dormancy. Two species, Lycopus uniflorus and Spiraea salicifolia, demonstrated nondormancy. Overall, the effect hierarchy of dormancy-breaking is: CS > GA > WCS > GA + CS > D > GA + WCS. Principal component analysis demonstrated that seed traits, including embryo length: seed length ratio, seed size, and monocot/eudicot divergence, are more likely to influence seed dormancy than environmental factors. Our study suggests that nearly 90% of the tested peatland plant species in the Changbai Mountains demonstrated seed dormancy, and seed traits (e.g. embryo-to-seed ratio and seed size) and abiotic environmental factors (e.g. pH and temperature seasonality) are related to germination behavior, suggesting seed dormancy being a common adaptation strategy for the peatland plants in the temperate montane environment.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38963567

RESUMO

Much of the fatality of tumors is linked to the growth of metastases, which can emerge months to years after apparently successful treatment of primary tumors. Metastases arise from disseminated tumor cells (DTCs), which disperse through the body in a dormant state to seed distant sites. While some DTCs lodge in pre-metastatic niches (PMNs) and rapidly develop into metastases, other DTCs settle in distinct microenvironments that maintain them in a dormant state. Subsequent awakening, induced by changes in the microenvironment of the DTC, causes outgrowth of metastases. Hence, there has been extensive investigation of the factors causing survival and subsequent awakening of DTCs, with the goal of disrupting these processes to decrease cancer lethality. We here provide a detailed overview of recent developments in understanding of the factors controlling dormancy and awakening in the lung, a common site of metastasis for many solid tumors. These factors include dynamic interactions between DTCs and diverse epithelial, mesenchymal, and immune cell populations resident in the lung. Paradoxically, among key triggers for metastatic outgrowth, lung tissue remodeling arising from damage induced by the treatment of primary tumors play a significant role. In addition, growing evidence emphasizes roles for inflammation and aging in opposing the factors that maintain dormancy. Finally, we discuss strategies being developed or employed to reduce the risk of metastatic recurrence.

15.
J Plant Physiol ; 301: 154301, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38968782

RESUMO

Abscisic acid (ABA) and gibberellin (GA) are major regulators of seed dormancy, an adaptive trait closely associated with preharvest sprouting. This study examined transcriptional regulation of ABA and GA metabolism genes and modulation of ABA and GA levels in seeds of barley genotypes exhibiting a range of dormancy phenotype. We observed a very strong negative correlation between genetic variation in seed germination and embryonic ABA level (r = 0.85), which is regulated by transcriptional modulation of HvNCED1 and/or HvCYP707A genes. A strong positive correlation was evident between variation in seed germination and GA level (r = 0.64), mediated via transcriptional regulation of GA biosynthesis genes, HvGA20ox2 and/or HvGA3oxs, and GA catabolism genes, HvGA2ox3 and/or HvGA3ox6. Modulation of the ABA and GA levels in the genotypes led to the prevalence of ABA to GA level ratio that exhibited a very strong negative correlation (r = 0.84) with seed germination, highlighting the importance of a shift in ABA/GA ratio in determining genetic variation of dormancy in barley seeds. Our results overall show that transcriptional regulation of specific ABA and GA metabolism genes underlies genetic variation in ABA/GA ratio and seed dormancy, reflecting the potential use of these genes as molecular tools for enhancing preharvest sprouting resistance in barley.

16.
Zookeys ; 1205: 169-189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957218

RESUMO

Diapausing embryos encased within cladoceran ephippia result from sexual reproduction and increase genetic diversity. They are also important means by which species bypass harsh environmental conditions and disperse in space and time. Once released, ephippia usually sink to the benthos and remain there until hatching. Using the Sars' method (incubating sediments to identify cladoceran hatchlings), ephippial egg bank biodiversity can be evaluated. Yet, even when samples are incubated under a variety of conditions, it is not possible to warrant that all have hatched. Few keys are available that facilitate the identification of cladocerans by using only ephippial morphology. Our goal was to analyze some cladoceran ephippia from Mexico, to develop a means to identify them using easily recognizable characteristics. Ephippia of 23 cladoceran species from waters in Aguascalientes (México) in 11 genera (Alona, Biapertura, Ceriodaphnia, Chydorus, Daphnia, Dunhevedia, Ilyocryptus, Macrothrix, Moina, Pleuroxus, and Simocephalus) were analyzed. In our analysis six morphological features were selected that permitted the identification of ephippia to species(-group) level. The results demonstrate that with a proper catalog of features, some ephippia can be identified.

17.
Elife ; 122024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023520

RESUMO

Dormancy in cancer is a clinical state in which residual disease remains undetectable for a prolonged duration. At a cellular level, rare cancer cells cease proliferation and survive chemotherapy and disseminate disease. We created a suspension culture model of high-grade serous ovarian cancer (HGSOC) dormancy and devised a novel CRISPR screening approach to identify survival genes in this context. In combination with RNA-seq, we discovered the Netrin signaling pathway as critical to dormant HGSOC cell survival. We demonstrate that Netrin-1, -3, and its receptors are essential for low level ERK activation to promote survival, and that Netrin activation of ERK is unable to induce proliferation. Deletion of all UNC5 family receptors blocks Netrin signaling in HGSOC cells and compromises viability during the dormancy step of dissemination in xenograft assays. Furthermore, we demonstrate that Netrin-1 and -3 overexpression in HGSOC correlates with poor outcome. Specifically, our experiments reveal that Netrin overexpression elevates cell survival in dormant culture conditions and contributes to greater spread of disease in a xenograft model of abdominal dissemination. This study highlights Netrin signaling as a key mediator HGSOC cancer cell dormancy and metastasis.


High-grade serous ovarian cancer (or HGSOC for short) is the fifth leading cause of cancer-related deaths in women. It is generally diagnosed at an advanced stage of disease when the cancer has already spread to other parts of the body. Surgical removal of tumors and subsequent treatment with chemotherapy often reduces the signs and symptoms of the disease for a time but some cancer cells tend to survive so that patients eventually relapse. The HGSOC cells typically spread from the ovaries by moving through the liquid surrounding organs in the abdomen. The cells clump together and enter an inactive state known as dormancy that allows them to survive chemotherapy and low-nutrient conditions. Understanding how to develop new drug therapies that target dormant cancer cells is thought to be an important step in prolonging the life of HGSOC patients. Cancer cells are hardwired to multiply and grow, so Perampalam et al. reasoned that becoming dormant poses challenges for HGSOC cells, which may create unique vulnerabilities not shared by proliferating cancer cells. To find out more, the researchers used HGSOC cells that had been isolated from patients and grown in the laboratory. The team used a gene editing technique to screen HGSOC cells for genes required by the cells to survive when they are dormant. The experiments found that genes involved in a cell signaling pathway, known as Netrin signaling, were critical for the cells to survive. Previous studies have shown that Netrin signaling helps the nervous system form in embryos and inhibits a program of controlled cell death in some cancers. Perampalam et al. discovered that Netrins were present in the environment immediately surrounding dormant HGSOC cells. Human HGSOC patients with higher levels of Netrin gene expression had poorer prognoses than patients with lower levels of Netrin gene expression. Further experiments demonstrated that Netrins help dormant HGSOC cells to spread around the body. These findings suggest that Netrin signalling may provide useful targets for future drug therapies against dormant cells in some ovarian cancers. This could include repurposing drugs already in development or creating new inhibitors of this pathway.


Assuntos
Carcinoma Epitelial do Ovário , Sobrevivência Celular , Netrinas , Neoplasias Ovarianas , Transdução de Sinais , Humanos , Feminino , Animais , Linhagem Celular Tumoral , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Netrinas/metabolismo , Netrinas/genética , Camundongos , Netrina-1/metabolismo , Netrina-1/genética , Proliferação de Células , Receptores de Netrina/metabolismo , Receptores de Netrina/genética
18.
Proc Natl Acad Sci U S A ; 121(28): e2404887121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968100

RESUMO

The timing of seed germination is controlled by the combination of internal dormancy and external factors. Temperature is a major environmental factor for seed germination. The permissive temperature range for germination is narrow in dormant seeds and expands during after-ripening (AR) (dormancy release). Quantitative trait loci analyses of preharvest sprouting in cereals have revealed that MKK3, a mitogen-activated protein kinase (MAPK) cascade protein, is a negative regulator of grain dormancy. Here, we show that the MAPKKK19/20-MKK3-MPK1/2/7/14 cascade modulates the germination temperature range in Arabidopsis seeds by elevating the germinability of the seeds at sub- and supraoptimal temperatures. The expression of MAPKKK19 and MAPKKK20 is induced around optimal temperature for germination in after-ripened seeds but repressed in dormant seeds. MPK7 activation depends on the expression levels of MAPKKK19/20, with expression occurring under conditions permissive for germination. Abscisic acid (ABA) and gibberellin (GA) are two major phytohormones which are involved in germination control. Activation of the MKK3 cascade represses ABA biosynthesis enzyme gene expression and induces expression of ABA catabolic enzyme and GA biosynthesis enzyme genes, resulting in expansion of the germinable temperature range. Our data demonstrate that the MKK3 cascade integrates temperature and AR signals to phytohormone metabolism and seed germination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Germinação , Sementes , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase 3/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Dormência de Plantas/genética , Dormência de Plantas/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/genética , Transdução de Sinais , Temperatura
19.
Anticancer Res ; 44(8): 3317-3319, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39060063

RESUMO

Breast cancer, a multifaceted disease, presents a dynamic ecosystem where the primary tumor interacts intricately with its microenvironment, circulatory system, and distant organs. Circulating tumor cells (CTCs) disseminate from the primary tumor to organs, such as the brain, lungs, liver, and bones, encountering various fates: cell death, cellular dormancy, or senescence. Dormant cells, characterized by reversible growth arrest at the G0/G1 phase of the cell cycle, pose a significant challenge as they evade conventional treatments and can later reawaken, leading to cancer relapse. The phenomenon of tumor dormancy is influenced by the tumor microenvironment, immune modulation, and cellular adaptations. Emerging evidence suggests that breast-conserving surgery coupled with radiation therapy offers superior survival benefits compared to mastectomy, potentially due to the 'breast homing phenomenon.' This hypothesis posits that residual breast tissue provides a niche for reactivated dormant cells, reducing distant metastasis. Immunotherapy and lifestyle modifications, including diet and exercise, show promise in managing dormant cells. Understanding the mechanisms of dormancy and developing targeted therapies are crucial for achieving long-term remission and potentially curing breast cancer.


Assuntos
Neoplasias da Mama , Microambiente Tumoral , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Neoplasias da Mama/metabolismo , Feminino , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo
20.
Plant Sci ; 347: 112200, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038707

RESUMO

Receptor-like kinases (RLKs) constitute a diverse superfamily of proteins pivotal for various plant physiological processes, including responses to pathogens, hormone perception, growth, and development. Their ability to recognize conserved epitopes for general elicitors and specific pathogens marked significant advancements in plant pathology research. Emerging evidence suggests that RLKs and associated components also act as modulators in hormone signaling and cellular trafficking, showcasing their multifunctional roles in growth and development. Notably, STRESS INDUCED FACTOR 2 (SIF2) stands out as a representative with distinct expression patterns in different Arabidopsis organs. Our prior work highlighted the specific induction of SIF2 expression in guard cells, emphasizing its positive contribution to stomatal immunity. Expanding on these findings, our present study delves into the diverse functions of SIF2 expression in root tissues. Utilizing comprehensive physiology, molecular biology, protein biochemistry, and genetic analyses, we reveal that SIF2 modulates abscisic acid (ABA) signaling in Arabidopsis roots. SIF2 is epistatic with key regulators in the ABA signaling pathway, thereby governing the expression of genes crucial for dormancy release and, consequently, Arabidopsis seed germination. This study sheds light on the intricate roles of SIF2 as a multi-functional RLK, underscoring its organ-specific contributions to plant immunity, hormonal regulation, and seed germination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...