Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
Drug Metab Rev ; : 1-23, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888291
2.
Pharmaceutics ; 16(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38931920

RESUMO

Zastaprazan (JP-1366), a novel potassium-competitive acid blocker, is a new drug for the treatment of erosive esophagitis. JP-1366 is highly metabolized in human, mouse, and dog hepatocytes but moderately metabolized in rat and monkey hepatocytes when estimated from the metabolic stability of this compound in hepatocyte suspension and when 18 phase I metabolites and 5 phase II metabolites [i.e., N-dearylation (M6), hydroxylation (M1, M19, M21), dihydroxylation (M7, M8, M14, M22), trihydroxylation (M13, M18), hydroxylation and reduction (M20), dihydroxylation and reduction (M9, M16), hydrolysis (M23), hydroxylation and glucuronidation (M11, M15), hydroxylation and sulfation (M17), dihydroxylation and sulfation (M10, M12), N-dearylation and hydroxylation (M3, M4), N-dearylation and dihydroxylation (M5), and N-dearylation and trihydroxylation (M2)] were identified from JP-1366 incubation with the hepatocytes from humans, mice, rats, dogs, and monkeys. Based on the cytochrome P450 (CYP) screening test and immune-inhibition analysis with CYP antibodies, CYP3A4 and CYP3A5 played major roles in the metabolism of JP-1366 to M1, M3, M4, M6, M8, M9, M13, M14, M16, M18, M19, M21, and M22. CYP1A2, 2C8, 2C9, 2C19, and 2D6 played minor roles in the metabolism of JP-1366. UDP-glucuronosyltransferase (UGT) 2B7 and UGT2B17 were responsible for the glucuronidation of M1 to M15. However, JP-1366 and active metabolite M1 were not substrates for drug transporters such as organic cation transporter (OCT) 1/2, organic anion transporter (OAT) 1/3, organic anion transporting polypeptide (OATP)1B1/1B3, multidrug and toxic compound extrusion (MATE)1/2K, P-glycoprotein (P-gp), and breast cancer-resistant protein (BCRP). Only M1 showed substrate specificity for P-gp. The findings indicated that drug-metabolizing enzymes, particularly CYP3A4/3A5, may have a significant role in determining the pharmacokinetics of zastaprazan while drug transporters may only have a small impact on the absorption, distribution, and excretion of this compound.

3.
Br J Clin Pharmacol ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38817198

RESUMO

AIM: Understanding how COVID-19 impacts the expression of clinically relevant drug metabolizing enzymes and membrane transporters (DMETs) is vital for addressing potential safety and efficacy concerns related to systemic and peripheral drug concentrations. This study investigates the impact of COVID-19 severity on DMETs expression and the underlying mechanisms to inform the design of precise clinical dosing regimens for affected patients. METHODS: Transcriptomics analysis of 102 DMETs, 10 inflammatory markers, and 12 xenosensing regulatory genes was conducted on nasopharyngeal swabs from 50 SARS-CoV-2 positive (17 outpatients, 16 non-ICU, and 17 ICU) and 13 SARS-CoV-2 negative individuals, clinically tested through qPCR, in the Greater Toronto area from October 2020 to October 2021. RESULTS: We observed a significant differential gene expression for 42 DMETs, 6 inflammatory markers, and 9 xenosensing regulatory genes. COVID-19 severity was associated with the upregulation of AKR1C1, MGST1, and SULT1E1, and downregulation of ABCC10, CYP3A43, and SLC29A4 expressions. Altogether, SARS-CoV-2-positive patients showed an upregulation in CYP2C9, CYP2C19, AKR1C1, SULT1B1, SULT2B1, and SLCO4A1 and downregulation in FMO5, MGST3, ABCC5, and SLCO4C1 compared with SARS-CoV-2 negative individuals. These dysregulations were associated with significant changes in the expression of inflammatory and xenosensing regulatory genes driven by the disease. GSTM3, PPARA, and AKR1C1 are potential biomarkers of the observed DMETs dysregulation pattern in nasopharyngeal swabs of outpatients, non-ICU, and ICU patients, respectively. CONCLUSION: The severity of COVID-19 is associated with the dysregulation of DMETs involved in processing commonly prescribed drugs, suggesting potential disease-drug interactions, especially for narrow therapeutic index drugs.

4.
Int J Antimicrob Agents ; 64(1): 107209, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761871

RESUMO

OBJECTIVES: Malaria-induced alteration of physiological parameters and pharmacokinetic properties of antimalarial drugs may be clinically relevant. Whether and how malaria alters the disposition of piperaquine (PQ) was investigated in this study. METHODS: The effect of malaria on drug metabolism-related enzymes and PQ pharmacokinetic profiles was studied in Plasmodium yoelii-infected mice in vitro/in vivo. Whether the malaria effect was clinically relevant for PQ was evaluated using a validated physiologically-based pharmacokinetic model with malaria-specific scalars obtained in mice. RESULTS: The infection led to a higher blood-to-plasma partitioning (Rbp) for PQ, which was concentration-dependent and correlated to parasitemia. No significant change in plasma protein binding was found for PQ. Drug metabolism-related genes (CYPs/UDP-glucuronosyltransferase/nuclear receptor, except for CYP2a5) were downregulated in infected mice, especially at the acute phase. The plasma oral clearances (CL/F) of three probe substrates for CYP enzymes were significantly decreased (by ≥35.9%) in mice even with moderate infection. The validated physiologically-based pharmacokinetic model indicated that the hepatic clearance (CLH) of PQ was the determinant of its simulated CL/F, which was predicted to slightly decrease (by ≤23.6%) in severely infected mice but not in malaria patients. The result fitted well with the plasma pharmacokinetics of PQ in infected mice and literature data on malaria patients. The blood clearance of PQ was much lower than its plasma clearance due to its high Rbp. CONCLUSIONS: The malaria-induced alteration of drug metabolism was substrate-dependent, and its impact on the disposition of PQ and maybe other long-acting aminoquinoline antimalarials was not expected to be clinically relevant.


Assuntos
Antimaláricos , Modelos Animais de Doenças , Malária , Plasmodium yoelii , Quinolinas , Animais , Quinolinas/farmacocinética , Malária/tratamento farmacológico , Malária/parasitologia , Plasmodium yoelii/efeitos dos fármacos , Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Humanos , Camundongos , Feminino , Parasitemia/tratamento farmacológico , Masculino , Piperazinas
5.
Toxics ; 12(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38668482

RESUMO

Molecular autopsy is a very important tool in forensic toxicology. However, many determinants, such as co-medication and physiological parameters, should be considered for optimal results. These determinants could cause phenoconversion (PC), a discrepancy between the real metabolic profile after phenoconversion and the phenotype determined by the genotype. This study's objective was to assess the PC of drug-metabolizing enzymes, namely CYP2D6, 2C19, and 3A4, in 45 post-mortem cases where medications that are substrates, inducers, or inhibitors of these enzymes were detected. It also intended to evaluate how PC affected the drug's metabolic ratio (MR) in four cases. Blood samples from 45 cases of drug-related deaths were analyzed to detect and determine drug and metabolite concentrations. Moreover, all the samples underwent genotyping utilizing the HaloPlex Target Enrichment System for CYP2D6, 2C19, and 3A4. The results of the present study revealed a statistically significant rate of PC for the three investigated enzymes, with a higher frequency of poor metabolizers after PC. A compatibility was seen between the results of the genomic evaluation after PC and the observed MRs of venlafaxine, citalopram, and fentanyl. This leads us to focus on the determinants causing PC that may be mainly induced by drug interactions. This complex phenomenon can have a significant impact on the analysis, interpretation of genotypes, and accurate conclusions in forensic toxicology. Nevertheless, more research with more cases in the future is needed to confirm these results.

6.
Cancers (Basel) ; 16(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38473371

RESUMO

Rhabdomyosarcoma (RMS) is a rare soft tissue sarcoma (STS) that predominantly affects children and teenagers. It is the most common STS in children (40%) and accounts for 5-8% of total childhood malignancies. Apart from surgery and radiotherapy in eligible patients, standard chemotherapy is the only therapeutic option clinically available for RMS patients. While survival rates for this childhood cancer have considerably improved over the last few decades for low-risk and intermediate-risk cases, the mortality rate remains exceptionally high in high-risk RMS patients with recurrent and/or metastatic disease. The intensification of chemotherapeutic protocols in advanced-stage RMS has historically induced aggravated toxicity with only very modest therapeutic gain. In this review, we critically analyse what has been achieved so far in RMS therapy and provide insight into how a diverse group of drug-metabolising enzymes (DMEs) possess the capacity to modify the clinical efficacy of chemotherapy. We provide suggestions for new therapeutic strategies that exploit the presence of DMEs for prodrug activation, targeted chemotherapy that does not rely on DMEs, and RMS-molecular-subtype-targeted therapies that have the potential to enter clinical evaluation.

7.
J Basic Clin Physiol Pharmacol ; 35(1-2): 85-91, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38468541

RESUMO

OBJECTIVES: The principal motive of this study is to explore the influence maternal separation (MS) exhibits on the mRNA expression of major drug metabolizing-cyp450s in parallel with the assessment of pathological changes that can be induced by MS in the livers of experimental mice. METHODS: Eighteen Balb/c mouse pups, comprising of both males and females, were separated from their mothers after birth. Following a six-week period during when the pups became adults, the mice were sacrificed and their livers were isolated for analysis of weight, pathohistological alterations, and the mRNA expression of drug metabolizing cyp450 genes: cyp1a1, cyp3a11, cyp2d9, and cyp2c29. RESULTS: The study demonstrated that MS markedly downregulated (p<0.05) the mRNA expression of all tested drug-metabolizing cyp450s in livers of female and male mice. Furthermore, the mRNA levels of major drug-metabolizing cyp450s were notably lower (p<0.05) in livers of female MS mice as compared with male MS mice. It was found that values of the total body weight and liver weight of MS mice did not vary significantly (p>0.05) from those of the control groups. Additionally, histological examination revealed that the hepatic tissue of MS mice was normal, similar to that of the control mice. CONCLUSIONS: In summary, MS downregulates the gene expression of major hepatic drug-metabolizing cyp450s without inducing pathological alterations in the livers of mice. These findings provide an explanation for the heterogeneity in pharmacokinetics and drug response of patients with early life stress.


Assuntos
Sistema Enzimático do Citocromo P-450 , Privação Materna , Humanos , Adulto , Masculino , Camundongos , Feminino , Animais , Sistema Enzimático do Citocromo P-450/genética , Fígado/metabolismo , Camundongos Endogâmicos BALB C , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Expressão Gênica
8.
Stem Cell Res Ther ; 15(1): 57, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424603

RESUMO

BACKGROUND: Human induced pluripotent stem (iPS) cell-derived enterocyte-like cells (ELCs) are expected to be useful for evaluating the intestinal absorption and metabolism of orally administered drugs. However, it is difficult to generate large amounts of ELCs with high quality because they cannot proliferate and be passaged. METHODS: To solve the issue above, we have established intestinal organoids from ELCs generated using our protocol. Furthermore, monolayers were produced from the organoids. We evaluated the usefulness of the monolayers by comparing their functions with those of the original ELCs and the organoids. RESULTS: We established organoids from ELCs (ELC-org) that could be passaged and maintained for more than a year. When ELC-org were dissociated into single cells and seeded on cell culture inserts (ELC-org-mono), they formed a tight monolayer in 3 days. Both ELC-org and ELC-org-mono were composed exclusively of epithelial cells. Gene expressions of many drug-metabolizing enzymes and drug transporters in ELC-org-mono were enhanced, as compared with those in ELC-org, to a level comparable to those in adult human small intestine. The CYP3A4 activity level in ELC-org-mono was comparable or higher than that in primary cryopreserved human small intestinal cells. ELC-org-mono had the efflux activities of P-gp and BCRP. Importantly, ELC-org-mono maintained high intestinal functions without any negative effects even after long-term culture (for more than a year) or cryopreservation. RNA-seq analysis showed that ELC-org-mono were more mature as intestinal epithelial cells than ELCs or ELC-org. CONCLUSIONS: We have successfully improved the function and convenience of ELCs by utilizing organoid technology.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Diferenciação Celular , Proteínas de Neoplasias/metabolismo , Organoides/metabolismo , Mucosa Intestinal/metabolismo
9.
Microrna ; 13(1): 63-70, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38265404

RESUMO

BACKGROUND: Alteration in the expression and activity of drug-metabolizing enzymes (DMEs) can alter the pharmacokinetics and hence the response of the drug. Some chemicals found in herbs and fruits affect the expression of DMEs. Calamintha incana is commonly used in Middle Eastern Arabic countries. There is no report regarding the influence of Calamintha incana on the hepatic expression of DMEs. AIMS: The current investigation aimed to investigate the effect of Calamintha incana consumption on the mRNA expression of major hepatic drug-metabolizing cytochrome (cyp) P450 genes in mice. METHODS: The chemical composition of the ethanoic extract was analyzed using liquid chromatography/ mass spectrometry. Then, 21 BALB/c mice were used for the in vivo experiment. The mice were divided into three groups, each consisting of seven mice. The first group (low-dose group) was treated with 41.6 mg/kg of Calamintha incana extract and the second group was administered the high-dose (125 mg/kg) of the extract for one month. The mice in the third "control" group administrated the vehicle 20% polyethylene glycol 200. Then, the expression of cyp3a11, cyp2c29, cyp2d9, and cyp1a1 was analyzed using the real-time polymerase chain reaction. The relative liver weights of the mice and the hepatic pathohistological alterations were assessed. RESULTS: The ethanolic extract of Calamintha incana contained 27 phytochemical compounds. The most abundant compounds were linolenic acid, myristic acid, and p-cymene. It was found that the low dose of Calamintha incana extract upregulated significantly (P < 0.05) the expression of cyp3a11 by more than ten folds in the liver of treated mice. Furthermore, the histological analysis showed that low- and high-dose administration of the C. incana did not cause pathological alterations. CONCLUSION: It can be concluded from these findings that consumption of low doses of Calamintha incana upregulated the mRNA expression of mouse cyp3a11 without causing histopathological alterations in the livers. Further studies are needed to determine the influence of Calamintha incana on the pharmacokinetics and response of drugs metabolized by cyp3a11.


Assuntos
Sistema Enzimático do Citocromo P-450 , Fígado , Camundongos Endogâmicos BALB C , Extratos Vegetais , RNA Mensageiro , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Masculino , Etanol
10.
Drug Metab Pharmacokinet ; 54: 100532, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064926

RESUMO

Human intestinal organoids (HIOs) have been reported to exert their functions in a way that mimics living organs, and HIOs-derived monolayers are expected to be applied to in vitro intestinal pharmacokinetic studies. However, HIOs are established from human tissue, which raises issues of availability and ethics. In the present study, to solve these problems, we have established intestinal organoids using commercially available cryopreserved human intestinal epithelial cells (C-IOs), and compared their functions with biopsy-derived human intestinal organoids (B-IOs) from a pharmacokinetic point of view. Both C-IOs and B-IOs reproduced the morphological features of the intestinal tract and were shown to be composed of epithelial cells. Monolayers generated from C-IOs and B-IOs (C-IO-2D, B-IO-2D, respectively) structurally mimic the small intestine. The C-IOs showed gene expression levels comparable to those of the B-IOs, which were close to those of adult human small intestine. Importantly, the C-IOs-2D showed levels of pharmacokinetics-related protein expression and activity-including cytochrome P450 3A4 (CYP3A4) and carboxylesterase 2 (CES2) enzymatic activities and P-glycoprotein (P-gp) transporter activities -similar to those of B-IOs-2D. This study addresses the difficulties associated with B-IOs and provides fundamental characteristics for the application of C-IOs in pharmacokinetic studies.


Assuntos
Mucosa Intestinal , Intestinos , Adulto , Humanos , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Células Epiteliais/metabolismo , Organoides/metabolismo
11.
Drug Metab Rev ; 56(1): 1-30, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38126313

RESUMO

Drug metabolism is one of the critical determinants of drug disposition throughout the body. While traditionally associated with the liver, recent research has unveiled the presence and functional significance of drug-metabolizing enzymes (DMEs) within the brain. Specifically, cytochrome P-450 enzymes (CYPs) and UDP-glucuronosyltransferases (UGTs) enzymes have emerged as key players in drug biotransformation within the central nervous system (CNS). This comprehensive review explores the cellular and subcellular distribution of CYPs and UGTs within the CNS, emphasizing regional expression and contrasting profiles between the liver and brain, humans and rats. Moreover, we discuss the impact of species and sex differences on CYPs and UGTs within the CNS. This review also provides an overview of methodologies for identifying and quantifying enzyme activities in the brain. Additionally, we present factors influencing CYPs and UGTs activities in the brain, including genetic polymorphisms, physiological variables, pathophysiological conditions, and environmental factors. Examples of CYP- and UGT-mediated drug metabolism within the brain are presented at the end, illustrating the pivotal role of these enzymes in drug therapy and potential toxicity. In conclusion, this review enhances our understanding of drug metabolism's significance in the brain, with a specific focus on CYPs and UGTs. Insights into the expression, activity, and influential factors of these enzymes within the CNS have crucial implications for drug development, the design of safe drug treatment strategies, and the comprehension of drug actions within the CNS. To that end, CNS pharmacokinetic (PK) models can be improved to further advance drug development and personalized therapy.


Assuntos
Sistema Enzimático do Citocromo P-450 , Fígado , Humanos , Masculino , Feminino , Animais , Ratos , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/metabolismo , Encéfalo/metabolismo , Glucuronosiltransferase/metabolismo
12.
Toxins (Basel) ; 15(12)2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38133191

RESUMO

The most frequent adverse effects of AFB1 in chicken are low performance, the depression of the immune system, and a reduced quality of both eggs and meat, leading to economic losses. Since oxidative stress plays a major role in AFB1 toxicity, natural products are increasingly being used as an alternative to mineral binders to tackle AFB1 toxicosis in farm animals. In this study, an in vivo trial was performed by exposing broilers for 10 days to AFB1 at dietary concentrations approaching the maximum limits set by the EU (0.02 mg/kg feed) in the presence or absence of turmeric powder (TP) (included in the feed at 400 mg/kg). The aims were to evaluate (i) the effects of AFB1 on lipid peroxidation, antioxidant parameters, histology, and the expression of drug transporters and biotransformation enzymes in the liver; (ii) the hepatic accumulation of AFB1 and its main metabolites (assessed using an in-house-validated HPLC-FLD method); (iii) the possible modulation of the above parameters elicited by TP. Broilers exposed to AFB1 alone displayed a significant increase in lipid peroxidation in the liver, which was completely reverted by the concomitant administration of TP. Although no changes in glutathione levels and antioxidant enzyme activities were detected in any treatment group, AFB1 significantly upregulated and downregulated the mRNA expression of CYP2A6 and Nrf2, respectively. TP counteracted such negative effects and increased the hepatic gene expression of selected antioxidant enzymes (i.e., CAT and SOD2) and drug transporters (i.e., ABCG2), which were further enhanced in combination with AFB1. Moreover, both AFB1 and TP increased the mRNA levels of ABCC2 and ABCG2 in the duodenum. The latter changes might be implicated in the decrease in hepatic AFB1 to undetectable levels (

Assuntos
Antioxidantes , Micotoxinas , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Galinhas/metabolismo , Curcuma/metabolismo , Pós/metabolismo , Pós/farmacologia , Micotoxinas/metabolismo , Aflatoxina B1/metabolismo , Fígado , Estresse Oxidativo , RNA Mensageiro/metabolismo
13.
Xenobiotica ; 53(10-11): 581-586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37991059

RESUMO

Toxoplasma gondii is an intracellular protozoan parasite causing toxoplasmosis, an infectious disease affecting warm-blooded vertebrates worldwide. Many drug-metabolizing enzymes are located in the liver, a major organ of drug metabolism, and their function can be affected by pathogen infection.Using next-generation sequencing (RNA-seq) and quantitative polymerase chain reaction (qPCR), changes in the hepatic expressions of drug-metabolizing enzymes were analysed in mice chronically infected with T. gondii. The analysis found that, among drug-metabolizing enzymes, 22 genes were upregulated and 28 genes were downregulated (≥1.5-fold); of these 5 and 17 genes, respectively, were cytochromes P450 (Cyp or P450).Subsequent qPCR analysis showed that six P450 genes were upregulated significantly (≥1.5-fold, p < 0.05), namely, Cyp1b1, Cyp2c29, Cyp2c65, Cyp2d9, Cyp2d12, and Cyp3a59, whereas nine P450 genes were downregulated significantly (≥1.5-fold, p < 0.05), namely, Cyp2c38, Cyp2c39, Cyp2c44, Cyp2c69, Cyp2d40, Cyp2e1, Cyp3a11, Cyp3a41, and Cyp3a44.Moreover, metabolic assays in infected mouse liver using typical P450 substrates revealed that midazolam 1'-hydroxylation and testosterone 2-hydroxylation activities decreased significantly (≥1.5-fold, p < 0.05), whereas testosterone 16-hydroxylation activity increased significantly (≥1.5-fold, p < 0.05).Chronic Toxoplasma infection affects drug metabolism, at least partly, by altering the gene expressions of drug-metabolizing enzymes, including P450s.


Assuntos
Toxoplasma , Animais , Camundongos , Toxoplasma/genética , Toxoplasma/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/metabolismo , Testosterona/metabolismo , Expressão Gênica
15.
Front Pharmacol ; 14: 1222435, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026963

RESUMO

Background: Osimertinib has shown greater efficacy than standard epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) and fewer grade 3 or higher adverse drug reactions (ADRs) in patients with advanced non-small cell lung cancer (NSCLC) harboring epidermal growth factor receptor (EGFR) mutations. However, the clinical outcomes of osimertinib treatment vary depending on the patient's ethnicity. Therefore, further research is necessary to evaluate the impact of single nucleotide polymorphisms (SNPs) in cytochrome P450 (CYP450) and drug transporters on the therapeutic outcomes and ADRs to osimertinib in Thai patients, to provide improved pharmacological treatments for cancer patients. Methods: This retrospective and prospective cohort study enrolled 63 Thai patients with NSCLC treated with 80 mg of osimertinib once daily as monotherapy. Seventeen SNPs in candidate genes related to drug metabolism and transport pathways were analyzed in each patient. Chi-square or Fisher's exact tests were used to evaluate the associations between SNPs and clinical outcomes, including ADR incidence and objective response rate (ORR). In addition, the correlation between the genotype and median time to treatment failure (TTF) or progression-free survival (PFS) was assessed using Kaplan-Meier analysis and a log-rank test. Results: We identified six SNPs (rs2231142 and rs2622604 in ABCG2, rs762551 in CYP1A2, rs1057910 in CYP2C9, rs28371759 in CYP3A4, and CYP2A6 deletion polymorphism (CYP2A6*4)) that significantly increased the incidence of ADRs. In addition, we found two SNPs (rs2069514 in CYP1A2 and rs1057910 in CYP2C9) that significantly decreased the median TTF, and two SNPs (rs28399433 in CYP2A6 and rs1057910 in CYP2C9) that significantly decreased the median progression-free survival (PFS). Specifically, we found that one of these SNPs (rs1057910 in CYP2C9) influenced ADRs, TTF, and PFS. Additionally, SNPs in the CYP2A6 heterozygous variant (non4/*4) significantly increased ADR incidence, leading to a high frequency of dose reduction (27.0%). Conclusion: Our study demonstrated significant SNPs associated with increased ADR incidence, decreased PFS, and decreased TTF in Thai patients with NSCLC treated with osimertinib. The CYP2C9 (*3) and CYP2A6 (*4) allele frequencies differed between ethnicities and were associated with an increased incidence of ADRs. These findings highlight the importance of considering genetic factors in NSCLC treatment and may facilitate personalized medicine approaches. Moreover, our study showed a higher incidence of ADRs than the previous trials, including FLAURA and AURA2, and a higher frequency of dose reduction than reported in the AURA 3 trial, possibly due to genetic differences among the study populations.

16.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686303

RESUMO

BACKGROUND: Adverse drug reactions (ADRs) are a significant cause of mortality, and pharmacogenomics (PGx) offers the potential to optimize therapeutic efficacy while minimizing ADRs. However, there is a lack of data on the Croatian population, highlighting the need for investigating the most common alleles, genotypes, and phenotypes to establish national guidelines for drug use. METHODS: A single-center retrospective cross-sectional study was performed to examine the allele, genotype, and phenotype frequencies of drug-metabolizing enzymes, receptors, and other proteins in a random sample of 522 patients from Croatia using a 28-gene PGx panel. RESULTS: Allele frequencies, genotypes, and phenotypes for the investigated genes were determined. No statistically significant differences were found between the Croatian and European populations for most analyzed genes. The most common genotypes observed in the patients resulted in normal metabolism rates. However, some genes showed higher frequencies of altered metabolism rates. CONCLUSIONS: This study provides insights into the allele, genotype, and phenotype frequencies of drug-metabolizing enzymes, receptors, and other associated proteins in the Croatian population. The findings contribute to optimizing drug use guidelines, potentially reducing ADRs, and improving therapeutic efficacy. Further research is needed to tailor population-specific interventions based on these findings and their long-term benefits.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Farmacogenética , Humanos , Croácia , Estudos Transversais , Estudos Retrospectivos , Frequência do Gene
17.
Pharmacy (Basel) ; 11(4)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37624080

RESUMO

BACKGROUND: There is a paucity of evidence to inform the value of pharmacogenomic (PGx) results in patients after kidney transplant and how these results differ between Indigenous Americans and Whites. This study aims to identify the frequency of recommended medication changes based on PGx results and compare the pharmacogenomic (PGx) results and patients' perceptions of the findings between a cohort of Indigenous American and White kidney transplant recipients. METHODS: Thirty-one Indigenous Americans and fifty White kidney transplant recipients were studied prospectively. Genetic variants were identified using the OneOme RightMed PGx test of 27 genes. PGx pharmacist generated a report of the genetic variation and recommended changes. Pre- and post-qualitative patient surveys were obtained. RESULTS: White and Indigenous American subjects had a similar mean number of medications at the time of PGx testing (mean 13 (SD 4.5)). In the entire cohort, 53% received beta blockers, 30% received antidepressants, 16% anticoagulation, 47% pain medication, and 25% statin therapy. Drug-gene interactions that warranted a clinical action were present in 21.5% of patients. In 12.7%, monitoring was recommended. Compared to the Whites, the Indigenous American patients had more normal CYP2C19 (p = 0.012) and CYP2D6 (p = 0.012) activities. The Indigenous American patients had more normal CYP4F2 (p = 0.004) and lower VKORC (p = 0.041) activities, phenotypes for warfarin drug dosing, and efficacy compared to the Whites. SLC6A4, which affects antidepressant metabolism, showed statistical differences between the two cohorts (p = 0.017); specifically, SLC6A4 had reduced expression in 45% of the Indigenous American patients compared to 20% of the White patients. There was no significant difference in patient perception before and after PGx. CONCLUSIONS: Kidney transplant recipients had several drug-gene interactions that were clinically actionable; over one-third of patients were likely to benefit from changes in medications or drug doses based on the PGx results. The Indigenous American patients differed in the expression of drug-metabolizing enzymes and drug transporters from the White patients.

18.
Life (Basel) ; 13(8)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37629602

RESUMO

Drug-metabolizing enzymes (DMEs) and transporters play a major role in drug efficacy and safety. They are regulated at multiple levels and by multiple factors. Estimating their expression and activity could contribute to predicting drug pharmacokinetics and their regulation by drugs or pathophysiological situations. Determining the expression of these proteins in the liver, intestine, and kidney requires the collection of biopsy specimens. Instead, the isolation of extracellular vesicles (EVs), which are nanovesicles released by most cells and present in biological fluids, could deliver this information in a less invasive way. In this article, we review the use of EVs as surrogates for the expression and activity of DMEs, uptake, and efflux transporters. Preliminary evidence has been provided for a correlation between the expression of some enzymes and transporters in EVs and the tissue of origin. In some cases, data obtained in EVs reflect the induction of phase I-DMEs in the tissues. Further studies are required to elucidate to what extent the regulation of other DMEs and transporters in the tissues reflects in the EV cargo. If an association between tissues and their EVs is firmly established, EVs may represent a significant advancement toward precision therapy based on the biotransformation and excretion capacity of each individual.

19.
Drug Metab Rev ; 55(4): 388-404, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37606301

RESUMO

High-altitude hypoxic environments have critical implications on cardiovascular system function as well as blood pressure regulation. Such environments place patients with hypertension at risk by activating the sympathetic nervous system, which leads to an increase in blood pressure. In addition, the high-altitude hypoxic environment alters the in vivo metabolism and antihypertensive effects of antihypertensive drugs, which changes the activity and expression of drug-metabolizing enzymes and drug transporters. The present study reviewed the pharmacodynamics and pharmacokinetics of antihypertensive drugs and its effects on patients with hypertension in a high-altitude hypoxic environment. It also proposes a new strategy for the rational use of antihypertensive drugs in clinical practice in high-altitude hypoxic environments. The increase in blood pressure on exposure to a high-altitude hypoxic environment was mainly dependent on increased sympathetic nervous system activity. Blood pressure also increased proportionally to altitude, whilst ambulatory blood pressure increased more than conventional blood pressure, especially at night. High-altitude hypoxia can reduce the activities and expression of drug-metabolizing enzymes, such as CYP1A1, CYP1A2, CYP3A1, and CYP2E1, while increasing those of CYP2D1, CYP2D6, and CYP3A6. Drug transporter changes were related to tissue type, hypoxic degree, and hypoxic exposure time. Furthermore, the effects of high-altitude hypoxia on drug-metabolism enzymes and transporters altered drug pharmacokinetics, causing changes in pharmacodynamic responses. These findings suggest that high-altitude hypoxic environments affect the blood pressure, pharmacokinetics, and pharmacodynamics of antihypertensive drugs. The optimal hypertension treatment plan and safe and effective medication strategy should be formulated considering high-altitude hypoxic environments.


Assuntos
Doença da Altitude , Hipertensão , Humanos , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Altitude , Doença da Altitude/tratamento farmacológico , Monitorização Ambulatorial da Pressão Arterial , Hipertensão/tratamento farmacológico , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo
20.
Turk J Med Sci ; 53(2): 455-462, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37476879

RESUMO

BACKGROUND: Ankaferd blood stopper® (ABS) is an herbal extract consisting of mixtures of Alpinia officinarum, Gycyrrhiza glabra, Vitis vinifera, Thymus vulgaris, and Urtica dioica plants and has been used in recent years in Turkish medicine as a hemostatic agent. Despite its extensive usage, there is no information available about the drug interaction in HepG2 cells. The current work evaluated the effect of ABS on the expression of CYP1A1-1A2, CYP2E1, and CYP3A4 isozymes that are primarily involved in drug and carcinogen metabolism. METHODS: We selected HepG2 cells as in vitro cellular models of the human liver. The cells were treated with different concentrations of ABS [0.25%-40% (v/v)]. A crystal violet staining assay was used to determine the cytotoxicity of ABS. We examined drug-metabolizing enzymes, including 7-ethoxyresorufin O-deethylase (CYP1A1), 7-methoxyresorufin O-demethylase (CYP1A2), aniline 4-hydroxylase (CYP2E1), and erythromycin N-demethylase (CYP3A4), in vitro in HepG2 cells. The expression (mRNA, protein) levels of drug-metabolizing enzymes were analyzed by qPCR and Western blotting, respectively. RESULTS: The EC05 and EC10 values for ABS were 0.37% and 0.52% (v/v), respectively. Therefore, 0.37% and 0.52% (v/v) doses were used for the remaining portion of this study. Investigation of the expression and activity levels revealed that CYP1A1-1A2, CYP2E1, and CYP3A4 activities were not affected by ABS significantly, with qPCR and Western blot results corroborating this result. DISCUSSION: Our study found that the activity, mRNA, and protein expression levels of CYP isozymes did not change with the application of ABS, suggesting that when humans are exposed to ABS, there may not be any risk associated with clinical drug toxicity, cancer formation, and drug metabolism disorders in humans.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Citocromo P-450 CYP2E1 , Citocromo P-450 CYP1A1 , Isoenzimas , Citocromo P-450 CYP3A/genética , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Interações Medicamentosas , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...