Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Food Chem ; 458: 139838, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38959792

RESUMO

Side streams from milling result in significant food wastage. While highly nutritious, their harmful elements raise concerns. To repurpose these side streams safely, this study designed a dry fractionation technique for anthocyanin-rich purple bread wheat. Four fractions - from inner to outer layers: flour, middlings, shorts and bran - alongside whole-wheat flour were obtained and examined by microstructure, antioxidant activity, anthocyanin profiles, and essential and harmful minerals. Across the four investigated cultivars, both anthocyanin content and antioxidant capacity increased from inner to outer layers. In comparison to flour, cyanidin-3-glucoside concentrations in middlings, shorts and bran were 2-5 times, 3-9 times, and 6-19 times, respectively. Concentrations of Cr, Ni, Sr and Ba progressively increased from inner to outer layers, Pb and Se exhibited uniform distribution, while Al was more concentrated in inner layers. These findings indicate that the fractionation technique is effective in deriving valuable ingredients from underexploited side streams, especially bran.

2.
J Agric Food Chem ; 72(22): 12319-12339, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38780067

RESUMO

This review aims to provide an updated overview of the effects of protein extraction/recovery on antinutritional factors (ANFs) in plant protein ingredients, such as protein-rich fractions, protein concentrates, and isolates. ANFs mainly include lectins, trypsin inhibitors, phytic acid, phenolic compounds, oxalates, saponins, tannins, and cyanogenic glycosides. The current technologies used to recover proteins (e.g., wet extraction, dry fractionation) and novel technologies (e.g., membrane processing) are included in this review. The mechanisms involved during protein extraction/recovery that may enhance or decrease the ANF content in plant protein ingredients are discussed. However, studies on the effects of protein extraction/recovery on specific ANFs are still scarce, especially for novel technologies such as ultrasound- and microwave-assisted extraction and membrane processing. Although the negative effects of ANFs on protein digestibility and the overall absorption of plant proteins and other nutrients are a health concern, it is also important to highlight the potential positive effects of ANFs. This is particularly relevant given the rise of novel protein ingredients in the market and the potential presence or absence of these factors and their effects on consumers' health.


Assuntos
Proteínas de Plantas , Animais , Fracionamento Químico/métodos , Valor Nutritivo , Proteínas de Plantas/química , Inibidores da Tripsina/isolamento & purificação , Inibidores da Tripsina/análise , Inibidores da Tripsina/química , Humanos
3.
Crit Rev Food Sci Nutr ; 64(13): 4179-4201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708867

RESUMO

The increasing world population requires the production of nutrient-rich foods. Protein is an essential macronutrient for healthy individuals. Interest in using plant proteins in foods has increased in recent years due to their sustainability and nutritional benefits. Dry and wet protein fractionation methods have been developed to increase protein yield, purity, and functional and nutritional qualities. This review explores the recent developments in pretreatments and fractionation processes used for producing pulse protein concentrates and isolates. Functionality differences between pulse proteins obtained from different fractionation methods and the use of fractionated pulse proteins in different food applications are also critically reviewed. Pretreatment methods improve the de-hulling efficiency of seeds prior to fractionation. Research on wet fractionation methods focuses on improving sustainability and functionality of proteins while studies on dry methods focus on increasing protein yield and purity. Hybrid methods produced fractionated proteins with higher yield and purity while also improving protein functionality and process sustainability. Dry and hybrid fractionated proteins have comparable or superior functionalities relative to wet fractionated proteins. Pulse protein ingredients are successfully incorporated into various food formulations with notable changes in their sensory properties. Future studies could focus on optimizing the fractionation process, improving protein concentrate palatability, and optimizing formulations using pulse proteins.


Assuntos
Fracionamento Químico , Valor Nutritivo , Proteínas de Plantas , Fracionamento Químico/métodos , Proteínas de Plantas/análise , Manipulação de Alimentos/métodos , Humanos , Proteínas Alimentares/análise , Sementes/química
4.
J Food Sci ; 89(6): 3347-3368, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38745379

RESUMO

The present work investigated the structure-function relationship of dry fractionated oat flour (DFOF) as a techno-functional ingredient using bread as a model system. Mechanically, DFOF fractions (F), that is, F1: <224 µm, F2: 250-280 µm, F3: 280-500 µm, F4: 500-600 µm, and whole oat flour (F5) were blended with white wheat flour at 10%, 30%, and 50% substitution levels for bread making. The blended flours, doughs, and bread samples were assessed for their techno-functional, nutritional, and structural characteristics. The results of Mixolab and the Rapid Visco Analyzer show that the 50% substituted F3 fraction exhibits the highest water absorption properties (69.53%), whereas the 50% F1 fraction exhibits the highest peak viscosity of the past slurry. Analysis of bread samples revealed a lower particle size of DFOF fractions and higher supplementation levels, increased ß-glucan levels (0.13-1.29 g/100 bread (db), reduced fermentable monosaccharides, that is, glucose (1.44-0.33 g/100 g), and fructose (1.06-0.28 g/100 g). The effect of particle size surpassed the substitution level effect on bread volume reduction. The lowest hardness value for F1 is 10%, and the highest value for F2 is 50%. The total number of cells in the bread slice decreased from the control to the F4 fraction (50%). Multi-criteria analysis indicated that DFOF fractions produced breads with similar structure and higher nutritional value developed from white wheat flour. PRACTICAL APPLICATION: The use of mechanically fractionated oat flours fractions in white wheat flour breads can improve the nutritional profile without affecting the physical properties of the bread product. Based on the oat flour fractions, bakers and food processing companies can tailor the bread formulations for high ß-glucan, high fiber, and low reduced sugar claims.


Assuntos
Avena , Pão , Farinha , Manipulação de Alimentos , Valor Nutritivo , Triticum , Pão/análise , Avena/química , Farinha/análise , Triticum/química , Manipulação de Alimentos/métodos , Tamanho da Partícula , Viscosidade , Relação Estrutura-Atividade , beta-Glucanas/análise , beta-Glucanas/química
5.
Food Chem X ; 22: 101350, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38699590

RESUMO

The physicochemical properties of anhydrous milk fats (AMF) often change according to different regions and seasons, inevitably affecting dry fractionation. This study analyzed the differences in the fraction yields and physicochemical characteristics of four AMFs from different sources. The results showed that single-stage dry fractionation conducted at 25 °C easily separated AMFs into liquid fractions (L25) and solid fractions (S25) via pressure filtration, both producing satisfactory yields. Moreover, all L25s exhibited few crystals with good fluidity at 25 °C, while S25s presented as semi-solids supported by ß crystal networks with a certain hardness and plasticity. However, four AMFs displayed fractionation efficiency variation, while the thermal differences among them showed no obvious correlation with those among their fractions. Generally, more trisaturated triglycerides with 48 to 54 carbon atoms in the AMF increased the S25 yield and decreased the slip melting points (SMP) of both fractions.

6.
Compr Rev Food Sci Food Saf ; 22(6): 4670-4697, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37779384

RESUMO

The market for plant proteins is expanding rapidly as the negative impacts of animal agriculture on the environment and resources become more evident. Plant proteins offer competitive advantages in production costs, energy requirements, and sustainability. Conventional plant-protein extraction is water and chemical-intensive, posing environmental concerns. Dry fractionation is an energy-efficient and environmentally friendly process for protein separation, preserving protein's native functionality. Cereals and pulses are excellent sources of plant proteins as they are widely grown worldwide. This paper provides a comprehensive review of the dry fractionation process utilized for different seeds to obtain protein-rich fractions with high purity and functionality. Pretreatments, such as dehulling and defatting, are known to enhance the protein separation efficiency. Factors, such as milling speed, mill classifier speed, feed rate, seed type, and hardness, were crucial for obtaining parent flour of desired particle size distribution during milling. The air classification or electrostatic separation settings are crucial in determining the quality of the separated protein. The cut point in air classification is targeted based on the starch granule size of the seed material. Optimization of these operations, applied to different pulses and seeds, led to higher yields of proteins with higher purity. Dual techniques, such as air classification and electrostatic separation, enhance protein purity. The yield of the protein concentrates can be increased by recycling the coarse fractions. Further research is necessary to improve the quality, purity, and yield of protein concentrates to enable more efficient use of plant proteins to meet global protein demands.


Assuntos
Proteínas de Plantas , Sementes , Grão Comestível , Farinha/análise , Fracionamento Químico/métodos
7.
Foods ; 12(16)2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37628124

RESUMO

The roller milling of sorghum and quinoa seeds into flour fractions (coarse, middle, and fine) was investigated, chemically analysed, and applied in the baking of gluten-free sourdough bread. The gap settings were adjusted to 0, 5, 8, and 10 for quinoa, and 3, 5, and 7 for sorghum. The fine fractions reached values of up to about 41% (gap 8) for quinoa and around 20% for sorghum (gap 5). SEM pictographs illustrated the clear separation of each fraction with the chemical analysis showing high contents of protein, TDF (total dietary fibre), and IDF (insoluble dietary fibre) in the coarse fraction. Up to 77% starch content was obtained in the fine fraction with significant amounts of SDF (soluble dietary fibre), which has good health benefits. Increasing the dough moisture up to 90% helped in decreasing the bread crumb firmness, while low Avrami parameters and RVA pasting behaviour indicated a slow bread-staling rate for both sourdough breads.

8.
J Dairy Sci ; 106(10): 6655-6670, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37210356

RESUMO

In this study, we aimed to detect the physicochemical properties of distilled products (residue and distillate) obtained from anhydrous milk fat (AMF) and its dry fractionation products (liquid and solid fractions at 25°C [25 L and 25 S]). The results showed that the saturated fatty acids and low- and medium molecular-weight triglycerides were easily accumulated in the distillate, and the percentage of unsaturated fatty acid and high molecular-weight triglycerides in the residue were higher, and these components in 25 S and 25 L were influenced more significantly than those in the AMF. In addition, the distillate had larger melting ranges in comparison with the distilled substrate, while the melting ranges of residue was smaller. The triglycerides were presented as the mixture crystal forms (α, ß', and ß crystal) in 25 S, AMF, and their distilling products, and it was transformed gradually to a single form as the increasing of distilling temperature. Moreover, the accumulated pattern of triglycerides was double chain length in 25 S, AMF, and their distilling products. These results provide a new approach to obtain the milk fat fractions with different properties, and the findings of this study enrich the theoretical basis of milk fat separation in practical production.


Assuntos
Ácidos Graxos , Leite , Animais , Ácidos Graxos/análise , Triglicerídeos/análise , Leite/química , Destilação , Fracionamento Químico
9.
Foods ; 12(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36981257

RESUMO

The demand of plant-based protein ingredients (PBPIs) in the food sector has strongly increased over recent years. These ingredients are produced under a wide range of technological processes that impact their final characteristics. This work aimed to evaluate acrylamide contamination in a range of PBPIs produced with different technologies and classified into four categories i.e., flours, dry-fractionated proteins, wet-extracted proteins, and texturized vegetable proteins. The results highlighted a remarkable variability in the acrylamide contamination in all the classes under investigation, with the flours showing the lowest mean acrylamide content (280 µg kg-1) compared with the wet-extracted proteins that showed the highest (451 µg kg-1). These differences could likely be associated with the different processing technologies used to obtain the protein ingredients. These findings suggest the need to monitor acrylamide formation during the processing of PBPIs and, consequently, to study mitigation strategies when necessary.

10.
Annu Rev Food Sci Technol ; 14: 473-493, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36972157

RESUMO

With the rising problems of food shortages, energy costs, and raw materials, the food industry must reduce its environmental impact. We present an overview of more resource-efficient processes to produce food ingredients, describing their environmental impact and the functional properties obtained. Extensive wet processing yields high purities but also has the highest environmental impact, mainly due to heating for protein precipitation and dehydration. Milder wet alternatives exclude, for example, low pH-driven separation and are based on salt precipitation or water only. Drying steps are omitted during dry fractionation using air classification or electrostatic separation. Benefits of milder methods are enhanced functional properties. Therefore, fractionation and formulation should be focused on the desired functionality instead of purity. Environmental impact is also strongly reduced by milder refining. Antinutritional factors and off-flavors remain challenges in more mildly produced ingredients. The benefits of less refining motivate the increasing trend toward mildly refined ingredients.


Assuntos
Ingredientes de Alimentos , Tecnologia de Alimentos , Tecnologia de Alimentos/tendências
11.
Foods ; 11(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36429200

RESUMO

Macauba palm fruits (Acrocomia aculeata and Acrocomia totai) are emerging as sources of high-quality oils from their pulp and kernels. The protein-rich macauba kernel meal (MKM) left after oil extraction remains undervalued, mainly due to the lack of suitable deoiling parameters and integrated protein recovery methods. Therefore, the present study aimed to produce protein concentrates from MKM using sieve fractionation. The deoiling parameters, comprising pressing, milling, and solvent extraction, were improved in terms of MKM functionality. The combination of hydraulic pressing, milling to 1 mm, and the hexane extraction of A. aculeata kernels resulted in MKM with the highest protein solubility (77.1%), emulsifying activity index (181 m2/g protein), and emulsion stability (149 min). After sieve fractionation (cut size of 62 µm), this meal yielded a protein concentrate with a protein content of 65.6%, representing a 74.1% protein enrichment compared to the initial MKM. This protein concentrate showed a reduced gelling concentration from 8 to 6%, and an increased emulsion stability from 149 to 345 min, in comparison to the MKM before sieving. Therefore, sieve fractionation after improved deoiling allows for the simple, cheap, and environmentally friendly recovery of MKM proteins, highlighting the potential of macauba kernels as a new source of protein.

12.
J Sci Food Agric ; 102(12): 5478-5487, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35355256

RESUMO

BACKGROUND: Consumer demand for plant-based cheese analogues (PCA) is growing because of the easy and versatile ways in which they can be used. However, the products available on the market are nutritionally poor. They are low in protein, high in saturated fat and sodium, and often characterized by a long list of ingredients. RESULTS: A clean label spreadable plant-based cheese analogue was developed using dry-fractionated pea protein and an emulsion-filled gel composed of extra virgin olive oil and inulin, added in different concentrations as fat replacer (10%, 13% and 15% of the formulation). First, nutritional and textural analyses were performed, and the results were compared with two commercial products. The products were high in protein (134 g kg-1 ) and low in fat (52.2 g kg-1 ). The formulated PCAs had similar spreadability index to the dairy cheese but lower hardness (15.1 vs. 19.0 N) and a higher elasticity (0.60 vs. 0.35) consequent to their lower fat content (52.2 vs. 250 g kg-1 ). Then, dry oregano and rosemary (5 g kg-1 ) were added to the PCA, and sensory evaluation and analysis of volatile compounds were conducted. The addition of spices masked the legume flavor and significantly enriched the final product with aromatic compounds. CONCLUSION: The use of dry-fractioned pea protein and of the emulsion-filled gel allowed us to develop a clean label and nutritionally valuable spreadable plant-based cheese analogue. Overall, the ingredients and product concepts developed could be used to upgrade the formulation of plant-based cheese on a larger scale. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Queijo , Proteínas de Ervilha , Queijo/análise , Emulsões , Inulina/análise , Azeite de Oliva
13.
Heliyon ; 7(2): e06177, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33644466

RESUMO

Coarse (CF) and Fine (FF) fractions were obtained by dry fractionation (air classification) of raw micronized flour (RM) of kabuli chickpea, green pea, yellow and red lentil. Pea showed the highest phytate content in RM and CF. Stachyose was the main oligosaccharide in lentils, exceeding 50 mg g-1, whereas raffinose (39.9 mg g-1) was abundant in chickpea. Antinutritional factors were significantly enriched in FF, whereas decreased in CF. Total-reflection X-ray fluorescence identified potassium as the main macronutrient in pulses. Ca was highly variable, ranging from 0.92 to 0.28 g kg-1 in pea and yellow lentil, respectively. A significant shift of minerals was observed in FF, but despite the highest phytate content, phytate:Zn ratio of lentils was lower than RM, indicating that Zn was enriched more than phytates. Yellow lentil and pea FF showed a protein content higher than 55 g 100g-1. Dry fractionation significantly affected the physicochemical properties, indicating different potential use of fractions.

14.
Food Res Int ; 139: 109971, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33509517

RESUMO

Dry milling and air classification were applied to produce three different ingredients from wheat and rye brans. Dried and pin disc-milled brans having particle size medians of 89-131 µm were air classified to produce protein- and soluble dietary fibre-enriched hybrid ingredients (median particle size 7-9 µm) and additionally brans were ultra-finely milled (median particle size 17-19 µm). The samples were characterised in regard to their composition and techno-functional properties. In air classification, protein content increased from 16.4 and 14.7% to 30.9 and 30.7% for wheat and rye brans, which corresponded to protein separation efficiencies of 18.0 and 26.9%, respectively. Concurrently, the ratio between soluble and insoluble dietary fibre increased from 0.22 to 0.85 for wheat and from 0.56 to 1.75 for rye bran. The protein- and soluble dietary fibre-enriched wheat bran fraction showed improved protein solubility at alkaline pH when compared to pin disc- and ultra-finely-milled wheat bran, whereas less difference between the wheat ingredients was observed at native and acidic pH. The protein- and soluble dietary fibre-enriched rye bran fraction exhibited lower solubility than the pin disc- or ultra-finely-milled rye brans at all the studied pH-values. Ultra-fine milling alone decreased protein solubility and increased damaged starch content when compared to the pin disc-milled brans. Both protein enrichment and ultra-fine milling improved colloidal stability in comparison to the pin disc-milled raw materials. The lowest water and oil binding capacities were obtained for the protein-enriched fractions. Ultrasound-assisted emulsification of the protein- and soluble dietary fibre-enriched fractions and the ultra-finely-milled brans revealed no major differences in the visual quality or stability of the emulsions. The results suggest that modification of the techno-functional properties of cereal brans may be acquired via both air classification and ultra-fine milling.


Assuntos
Fibras na Dieta , Secale , Fibras na Dieta/análise , Grão Comestível/química , Tamanho da Partícula , Solubilidade
15.
Biotechnol Biofuels ; 14(1): 1, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33402195

RESUMO

BACKGROUND: The recalcitrance of lignocellulosics to enzymatic saccharification has been related to many factors, including the tissue and molecular heterogeneity of the plant particles. The role of tissue heterogeneity generally assessed from plant sections is not easy to study on a large scale. In the present work, dry fractionation of ground maize shoot was performed to obtain particle fractions enriched in a specific tissue. The degradation profiles of the fractions were compared considering physical changes in addition to chemical conversion. RESULTS: Coarse, medium and fine fractions were produced using a dry process followed by an electrostatic separation. The physical and chemical characteristics of the fractions varied, suggesting enrichment in tissue from leaves, pith or rind. The fractions were subjected to enzymatic hydrolysis in a torus reactor designed for real-time monitoring of the number and size of the particles. Saccharification efficiency was monitored by analyzing the sugar release at different times. The lowest and highest saccharification yields were measured in the coarse and fine fractions, respectively, and these yields paralleled the reduction in the size and number of particles. The behavior of the positively- and negatively-charged particles of medium-size fractions was contrasted. Although the amount of sugar release was similar, the changes in particle size and number differed during enzymatic degradation. The reduction in the number of particles proceeded faster than that of particle size, suggesting that degradable particles were degraded to the point of disappearance with no significant erosion or fragmentation. Considering all fractions, the saccharification yield was positively correlated with the amount of water associated with [5-15 nm] pore size range at 67% moisture content while the reduction in the number of particles was inversely correlated with the amount of lignin. CONCLUSION: Real-time monitoring of sugar release and changes in the number and size of the particles clearly evidenced different degradation patterns for fractions of maize shoot that could be related to tissue heterogeneity in the plant. The biorefinery process could benefit from the addition of a sorting stage to optimise the flow of biomass materials and take better advantage of the heterogeneity of the biomass.

16.
Food Chem ; 345: 128563, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33191017

RESUMO

Reconstructing milk fat globules (MFG) with different-melting-temperature triacylglycerols (TAG) to improve its nutritional and functional properties has great potential for expanding industrial applications. Butterfat was fractionated by stepwise crystallization at 30, 20 and 15 °C to yield six fractions (30S, 30L, 20S, 20L, 15S and 15L). Fractions were analyzed for thermal properties and fatty acid composition. An efficient method for analyzing TAG was established using HPLC-ESI-Q-TOF-MS/MS combined with principal component analysis, and total 146 TAGs in butterfat and its fractions were identified. The melting enthalpy, melting temperature, and long-chain saturated TAG content of 30S fraction were 71.5 J/g, 42.1 °C, and 19.3%, respectively, while that of 15L fraction corresponded to 11.9 J/g, 17.1 °C and 0.1%, indicating that the butterfat was effectively separated. Then MFG were reconstituted with milk fat globule membrane and different-melting-temperature TAG cores from obtained fractions, and reconstituted MFG gave excellent microstructural stability and emulsifying activity.


Assuntos
Glicolipídeos/química , Glicoproteínas/química , Gotículas Lipídicas/química , Temperatura de Transição , Triglicerídeos/química , Animais , Bovinos , Cristalização , Espectrometria de Massas em Tandem
17.
Waste Manag ; 120: 538-548, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33131999

RESUMO

Urban parks and gardens green waste constitute a low-cost and highly available lignocellulosic-rich resource, that is currently treated in composting or anaerobic digestion processes. The present work investigated for the first time the potential of using urban green waste as raw resource for the production of lignocellulosic fillers by dry fractionation (combination of sorting and grinding processes). Five fractions of lignocellulosic fillers with controlled composition were produced: a branches-rich fraction, a grasses-rich fraction, a leaves-rich fraction, and two fractions constituted of a mixture of constituents. All the fractions were ground to reach an average median diameter around 100 µm. The reinforcing effect of each fraction was investigated and compared to that of the sample as a whole. Biocomposites based on a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as matrix were produced by melt extrusion, with filler contents up to 30 wt%. It was shown that the branches-rich fraction displayed the best reinforcing effect (e.g. stress at break of 37 ± 1 MPa for a filler content of 15 wt%, similar to that of the neat matrix) whereas the grasses-rich fraction slightly degraded the overall mechanical performance (e.g. stress at break of 33.5 ± 1.5 MPa for a filler content of 15 wt%). The dry fractionation and formulation steps could be thus adapted depending on the targeted application, e.g. by choosing to use the whole urban green waste resource, or to remove grasses, or to keep only branches.


Assuntos
Jardins , Parques Recreativos , Hidroxibutiratos
18.
Foods ; 9(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260878

RESUMO

Pea protein dry-fractionated (PDF), pea protein isolated (PIs), soy protein isolated (SIs) and oat protein (OP) were combined in four mixes (PDF_OP, PIs_OP, PDF_PIs_OP, SIs_OP) and extruded to produce meat analogues. The ingredients strongly influenced the process conditions and the use of PDF required higher specific mechanical energy and screw speed to create fibrous texture compared to PIs and SIs. PDF can be conveniently used to produce meat analogues with a protein content of 55 g 100 g-1, which is exploitable in meat-alternatives formulation. PDF-based meat analogues showed lower hardness (13.55-18.33 N) than those produced from PIs and SIs (nearly 27 N), probably due to a more porous structure given by the natural presence of carbohydrates in the dry-fractionated ingredient. PDF_OP and PIs_PDF_OP showed a significantly lower water absorption capacity than PIs OP and SIs_OP, whereas pea-based extrudates showed high oil absorption capacity, which could be convenient to facilitate the inclusion of oil and fat in the final formulation. The sensory evaluation highlighted an intense odor and taste profile of PDF_OP, whereas the extrudates produced by protein isolates had more neutral sensory characteristics. Overall, the use of dry-fractionated protein supports the strategies to efficiently produce clean-labeled and sustainable plant-based meat analogues.

19.
Foods ; 9(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352928

RESUMO

This work investigates the molecular interactions within the main triacylglycerols constitutive of palm oil, all having a key role in the multi-step dry fractionation process. Identification of these interactions is possible thanks to the establishment of binary and ternary phase diagrams, using differential scanning calorimetry (DSC) and powder X-ray diffraction (XRD) at variable temperature. The following systems were selected: PPP-POP, PPP-OPP, PPP-POO, POP-OPP, POP-POO, OPP-POO, PPP-POP-POO and PPP-OPP-POO (P: palmitic acid and O: oleic acid), and analyzed in direct mode (heating at 5 °C/min., after melting and quenching at -60 °C), and after tempering for three months at 20 °C (tempered mode). DSC makes it possible to bring out crystallization and melting phenomena associated to polymorphic transitions, which are further characterized (crystalline forms) by XRD. The results show that unsaturated are poorly soluble in fully saturated triacylglycerols, that the intersolubility decreases in proportion to the number of unsaturated fatty acids, that positional isomerism (POP/OPP) has a major impact, that OPP may induce formation of molecular compounds and that co-crystallization properties are highly modified by tempering depending on the polymorphic properties of the systems. This provides a better understanding and allows for effective control of the palm oil dry fractionation process.

20.
Food Res Int ; 138(Pt B): 109773, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33288162

RESUMO

Plant proteins, and specifically those from legume crops, are increasingly recognised as sustainable and functional food ingredients. In this study, we expand on the knowledge of Bambara groundnut (Vigna subterranea (L.) Verdc.) [BGN] proteins, by characterising the composition, microstructure and rheological properties of BGN protein isolates obtained via wet extraction and protein-enriched fractions obtained via dry fractionation. The BGN protein isolates were compared in the context of the major storage protein, vicilin, as previously identified. Molecular weight analysis performed with gel electrophoresis and size-exclusion chromatography coupled to light-scattering, revealed some major bands (190 kDa) and elution patterns with molecular weights (205.6-274.1 kDa) corresponding to that of BGN vicilin, whilst the thermal denaturation temperature (Tp 91.1 °C, pH 7) of BGN protein isolates also coincided to that of the vicilin fraction. Furthermore, the concentration dependence of the elastic modulus G' of the BGN protein isolates, closely resembled that of BGN vicilin (both upon NaCl addition); suggesting that vicilin is the main component responsible for gelation. Confocal laser scanning and scanning electron micrographs revealed inhomogeneous aggregate structures, which implies that fractal scaling were better suited for description of the BGN protein isolate gel networks. Concerning the BGN protein-enriched fractions, both rotor and impact milling with air jet sieving and air classification, respectively, were successfully applied to separate these fractions from those high in starch; as evident from compositional analysis, particle size distributions and microscopic imaging. When considering sustainability aspects, dry fractionation could thus be a viable alternative for producing BGN protein-enriched fractions.


Assuntos
Fabaceae , Vigna , Produtos Agrícolas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...