RESUMO
The glass particles were coated with Spirulina sp. LEB-18 and bioblends of Spirulina sp. LEB-18/chitosan by casting technique and, afterward, it was verified its potential as adsorbents for basic and acid dyes. Nine Spirulina sp. suspensions with different components were used to coat the glass particles, and in the best condition of coating were prepared the bioblends with chitosan. The coated glass particles with Spirulina sp. and its bioblends with chitosan were applied in adsorption of the allura red (acid) and methylene blue (basic) dyes in a batch operation evaluate the pH effect, and a fixed bed column operation, being evaluated to the removal percentage and adsorption capacity of the column. The glass particles coated with Spirulina sp. applied in batch adsorption showed the highest removal percentages for allura red dye (35 to 45%) at pH 4.0, and for methylene blue dye (35 to 80%) at pH 6.0 and 8.0. In fixed bed column using glass particles coated with bioblends were reached the amount dye of 54.2 mg of adsorbed allura red dye and 60.2 mg of the of adsorbed methylene blue dye, respectively. Moreover, it was found good dye adsorption capacities, around 89 mg g-1, for both dyes, in acidic and basic pH values. Based on these results, these bioblends coated glass particles can be applied as an adsorbent for different types of dyes in adsorption column.
Assuntos
Quitosana , Spirulina , Poluentes Químicos da Água , Purificação da Água , Adsorção , Corantes/química , Quitosana/química , Purificação da Água/métodos , Azul de Metileno/química , Suspensões , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de HidrogênioRESUMO
This work reports the removal of textile dyes and metallic ions by means of adsorption and coagulation-flocculation using two polyelectrolytes and two macroelectrolytes containing sulfonic acid groups. The adsorption of textile dyes was studied in aqueous solutions containing cationic dyes and in wastewater containing a vat dye. Also, removal of vat and naphthol dyes was studied using the process of coagulation-flocculation. The results show these materials possess elevated adsorption capacity, and they accomplished removal rates above 97% in aqueous solutions. The removal of the vat dye improved the quality of the wastewater notably, and an uncolored effluent was obtained at the end of the treatment. The treatment using adsorption decreased the values for coloration, conductivity, suspended solids, and pH. The removal of vat and naphthol dyes by means of coagulation-flocculation was studied as well, and removal rates of 90% were obtained. The polyelectrolytes and macroelectrolytes also proved effective in the adsorption of metallic ions in wastewater. The treatment using adsorption accomplished high removal rates of metallic ions, and it showed greater selectivity towards Cu(2+), Fe(3+) and Pb(2+). A decrease in the content of solids as well as the values for COD and conductivity was observed in the wastewater as well. The analyses of FT-IR indicated that cationic dyes and metallic ions were chemisorbed by means of ionic exchange.