Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Food Res Int ; 170: 112920, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316040

RESUMO

Fruits and their derivatives are sources of phenolic compounds, which contribute to the maintenance of health benefits. In order to exert such properties, these compounds must be exposed to gastrointestinal conditions during digestion. In vitro methods of gastrointestinal digestion have been developed to simulate and evaluate the changes that compounds undergo after being exposed to various conditions. We present, in this review, the major in vitro methods for evaluating the effects of gastrointestinal digestion of phenolic compounds in fruits and their derivatives. We discuss the concept of bioaccessibility, bioactivity, and bioavailability, as well as the conceptual differences and calculations among studies. Finally, the main changes caused by in vitro gastrointestinal digestion in phenolic compounds are also discussed. The significant variation of parameters and concepts observed hinders a better evaluation of the real effects on the antioxidant activity of phenolic compounds, thus, the use of standardized methods in research would contribute for a better understanding of these changes.


Assuntos
Bioensaio , Frutas , Disponibilidade Biológica , Fenóis , Digestão
2.
Sensors (Basel) ; 21(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34833510

RESUMO

High-order switched DC-DC converters, such as SEPIC, Cuk and Zeta, are classic energy processing elements, which can be used in a wide variety of applications due to their capacity to step-up and/or step-down voltage characteristic. In this paper, a novel methodology for analyzing the previous converters operating in discontinuous conduction mode (DCM) is applied to obtain full-order dynamic models. The analysis is based on the fact that inductor currents have three differentiated operating sub-intervals characterized by a third one in which both currents become equal, which implies that the current flowing through the diode is zero (DCM). Under a small voltage ripple hypothesis, the currents of all three converters have similar current piecewise linear shapes that allow us to use a graphical method based on the triangular shape of the diode current to obtain the respective non-linear average models. The models' linearization around their steady-state operating points yields full-order small-signal models that reproduce accurately the dynamic behavior of the corresponding switched model. The proposed methodology is applicable to the proposed converters and has also been extended to more complex topologies with magnetic coupling between inductors and/or an RC damping network in parallel with the intermediate capacitor. Several tests were carried out using simulation, hardware-in-the-loop, and using an experimental prototype. All the results validate the theoretical models.

3.
Nonlinear Dyn ; 104(4): 4655-4669, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967393

RESUMO

The present work is focused on modeling and predicting the cumulative number of deaths from COVID-19 in México by comparing an artificial neural network (ANN) with a Gompertz model applying multiple optimization algorithms for the estimation of coefficients and parameters, respectively. For the modeling process, the data published by the daily technical report COVID-19 in Mexico from March 19th to September 30th were used. The data published in the month of October were included to carry out the prediction. The results show a satisfactory comparison between the real data and those obtained by both models with a R2 > 0.999. The Levenberg-Marquardt and BFGS quasi-Newton optimization algorithm were favorable for fitting the coefficients during learning in the ANN model due to their fast and precision, respectively. On the other hand, the Nelder-Mead simplex algorithm fitted the parameters of the Gompertz model faster by minimizing the sum of squares. Therefore, the ANN model better fits the real data using ten coefficients. However, the Gompertz model using three parameters converges in less computational time. In the prediction, the inverse ANN model was solved by a genetic algorithm obtaining the best precision with a maximum error of 2.22% per day, as opposed to the 5.48% of the Gompertz model with respect to the real data reported from November 1st to 15th. Finally, according to the coefficients and parameters obtained from both models with recent data, a total of 109,724 cumulative deaths for the inverse ANN model and 100,482 cumulative deaths for the Gompertz model were predicted for the end of 2020.

4.
Biometrics ; 75(4): 1356-1366, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31180147

RESUMO

Personal exposure assessment is a challenging task that requires both measurements of the state of the environment as well as the individual's movements. In this paper, we show how location data collected by smartphone applications can be exploited to quantify the personal exposure of a large group of people to air pollution. A Bayesian approach that blends air quality monitoring data with individual location data is proposed to assess the individual exposure over time, under uncertainty of both the pollutant level and the individual location. A comparison with personal exposure obtained assuming fixed locations for the individuals is also provided. Location data collected by the Earthquake Network research project are employed to quantify the dynamic personal exposure to fine particulate matter of around 2500 people living in Santiago (Chile) over a 4-month period. For around 30% of individuals, the personal exposure based on people movements emerges significantly different over the static exposure. On the basis of this result and thanks to a simulation study, we claim that even when the individual location is known with nonnegligible error, this helps to better assess personal exposure to air pollution. The approach is flexible and can be adopted to quantify the personal exposure based on any location-aware smartphone application.


Assuntos
Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Smartphone , Teorema de Bayes , Chile , Monitoramento Ambiental/métodos , Humanos
5.
Electron. j. biotechnol ; Electron. j. biotechnol;14(5): 7-7, Sept. 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-640514

RESUMO

Background: Calibration of dynamic models in biotechnology is challenging. Kinetic models are usually complex and differential equations are highly coupled involving a large number of parameters. In addition, available measurements are scarce and infrequent, and some key variables are often non-measurable. Therefore, effective optimization and statistical analysis methods are crucial to achieve meaningful results. In this research, we apply a metaheuristic scatter search algorithm to calibrate a solid substrate cultivation model. Results: Even though scatter search has shown to be effective for calibrating difficult nonlinear models, we show here that a posteriori analysis can significantly improve the accuracy and reliability of the estimation. Conclusions: Sensibility and correlation analysis helped us detect reliability problems and provided suggestions to improve the design of future experiments.


Assuntos
Biotecnologia/métodos , Gibberella , Giberelinas , Calibragem , Meios de Cultura , Fermentação , Cinética , Modelos Biológicos , Dinâmica não Linear , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA