Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75.847
Filtrar
1.
J Biomed Opt ; 29(Suppl 2): S22702, 2025 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38434231

RESUMO

Significance: Advancements in label-free microscopy could provide real-time, non-invasive imaging with unique sources of contrast and automated standardized analysis to characterize heterogeneous and dynamic biological processes. These tools would overcome challenges with widely used methods that are destructive (e.g., histology, flow cytometry) or lack cellular resolution (e.g., plate-based assays, whole animal bioluminescence imaging). Aim: This perspective aims to (1) justify the need for label-free microscopy to track heterogeneous cellular functions over time and space within unperturbed systems and (2) recommend improvements regarding instrumentation, image analysis, and image interpretation to address these needs. Approach: Three key research areas (cancer research, autoimmune disease, and tissue and cell engineering) are considered to support the need for label-free microscopy to characterize heterogeneity and dynamics within biological systems. Based on the strengths (e.g., multiple sources of molecular contrast, non-invasive monitoring) and weaknesses (e.g., imaging depth, image interpretation) of several label-free microscopy modalities, improvements for future imaging systems are recommended. Conclusion: Improvements in instrumentation including strategies that increase resolution and imaging speed, standardization and centralization of image analysis tools, and robust data validation and interpretation will expand the applications of label-free microscopy to study heterogeneous and dynamic biological systems.


Assuntos
Técnicas Histológicas , Microscopia , Animais , Citometria de Fluxo , Processamento de Imagem Assistida por Computador
2.
Sci Rep ; 14(1): 14970, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38951632

RESUMO

In the field of hydrate formation cementing, the method of developing the low hydration exothermic cement systems cannot effectively solve the problem of hydrate dissociation caused by the hydration heat release of cement. Therefore, we proposed a new approach to address this issue by employing cement additives that can effectively delay the dissociation of hydrate. In our previous work, we designed a novel hydrate dissociation inhibitor, PVCap/dmapma, however, its applicability with cement slurry remains unverified. In this study, we established a more realistic model of oilwell cement gel based on experimental data. Additionally, we investigated the potential effects of PVCap/dmapma on the microstructure and mechanical properties of cement gel through molecular simulations. The results suggest that PVCap/dmapma has no negative effect on the performance of cement slurry compared to Lecithin. By adding PVCap/dmapma to cement slurry, the problem of cementing in hydrate formations is expected to be solved.

3.
Sci Rep ; 14(1): 15008, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951644

RESUMO

This work introduces and discusses the impacts of the water bridge on gas adsorption and diffusion behaviors in a shale gas-bearing formation. The density distribution of the water bridge has been analyzed in micropores and meso-slit by molecular dynamics. Na+ and Cl- have been introduced into the system to mimic a practical encroachment environment and compared with pure water to probe the deviation in water bridge distribution. Additionally, practical subsurface scenarios, including pressure and temperature, are examined to reveal the effects on gas adsorption and diffusion properties, determining the shale gas transportation in realistic shale formation. The outcomes suggest carbon dioxide (CO2) usually has higher adsorption than methane (CH4) with a water bridge. Increasing temperature hinders gas adsorption, density distribution decreases in all directions. Increasing pressure facilitates gas adsorption, particularly as a bulk phase in the meso-slit, whereas it restricts gas diffusion by enhancing the interaction strength between gas and shale. Furthermore, ions make the water bridge distributes more unity and shifts to the slit center, impeding gas adsorption onto shale while encouraging gas diffusion. This study provides updated guidelines for gas adsorption and transportation characteristics and supports the fundamental understanding of industrial shale gas exploration and transportation.

4.
Sci Total Environ ; 946: 174397, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38955274

RESUMO

The stratification and turnover dynamics of a tropical lake were evaluated using field observations and 3D hydrodynamic simulations. Located in the Philippines, Sampaloc Lake is a 104-ha and 27-m deep volcanic crater lake with enclosed watershed, which is at risk of the impacts of intensive aquaculture, rapid urbanization and climate change. Temperature, dissolved oxygen (DO) and chlorophyll-a (Chl-a) were measured at seven sampling stations using a multiprobe. Kruskal-Wallis test revealed that the three parameters are not significantly different among stations, indicating that one sampling station can represent the water quality of the whole lake. Schmidt's Stability Index (SSI) and thermocline strength, together with DO and Chl-a gradients decreased from October 2022 (stratified) to January 2023 (turnover). After successfully verifying the 3D numerical model, sensitivity analyses of water temperature to varying weather, together with particle tracking simulations, were implemented to determine the timing of isothermal state, upwelling, partial mixing, and full turnover. Compared to air temperature, variations in wind speed have more pronounced effects on the delay or progression of isothermal conditions in the lake based on SSI, Lake Number and Wedderburn Number. Isothermal conditions do not necessarily coincide with the timing of full turnover, with the latter being delayed by two days than the former, on average. Results revealed that full turnover can occur several weeks earlier with the decrease in AT and increase in WS. This study can advance the understanding of thermal and turnover dynamics of stratified tropical lakes, leading to better management of the water quality of these water bodies.

5.
Front Chem ; 12: 1404573, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957406

RESUMO

Non-Small Cell Lung Cancer (NSCLC) is a prevalent and deadly form of lung cancer worldwide with a low 5-year survival rate. Current treatments have limitations, particularly for advanced-stage patients. P21, a protein that inhibits the CCND1-CDK4 complex, plays a crucial role in cell proliferation. Computer-Aided Drug Design (CADD) based on pharmacophores can screen and design PPI inhibitors targeting the CCND1-CDK4 complex. By analyzing known inhibitors, key pharmacophores are identified, and computational methods are used to screen potential PPI inhibitors. Molecular docking, pharmacophore matching, and structure-activity relationship studies optimize the inhibitors. This approach accelerates the discovery of CCND1-CDK4 PPI inhibitors for NSCLC treatment. Molecular dynamics simulations of CCND1-CDK4-P21 and CCND1-CDK4 complexes showed stable behavior, comprehensive sampling, and P21's impact on complex stability and hydrogen bond formation. A pharmacophore model facilitated virtual screening, identifying compounds with favorable binding affinities. Further simulations confirmed the stability and interactions of selected compounds, including 513457. This study demonstrates the potential of CADD in optimizing PPI inhibitors targeting the CCND1-CDK4 complex for NSCLC treatment. Extended simulations and experimental validations are necessary to assess their efficacy and safety.

6.
Front Plant Sci ; 15: 1399840, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957604

RESUMO

The genetic basis of plant response to light and heat stresses had been unveiled, and different molecular mechanisms of leaf cell homeostasis to keep high physiological performances were recognized in grapevine varieties. However, the ability to develop heat stress tolerance strategies must be further elucidated since the morpho-anatomical and physiological traits involved may vary with genotype × environment combination, stress intensity, and duration. A 3-year experiment was conducted on potted plants of Sardinian red grapevine cultivars Cannonau (syn. Grenache) and Carignano (syn. Carignan), exposed to prolonged heat stress inside a UV-blocking greenhouse, either submitted to low daily UV-B doses of 4.63 kJ m-2 d-1 (+UV) or to 0 kJ m-2 d-1 (-UV), and compared to a control (C) exposed to solar radiation (4.05 kJ m-2 d-1 average UV-B dose). Irrigation was supplied to avoid water stress, and canopy light and thermal microclimate were monitored continuously. Heat stress exceeded one-third of the duration inside the greenhouse and 6% in C. In vivo spectroscopy, including leaf reflectance and fluorescence, allowed for characterizing different patterns of leaf traits and metabolites involved in oxidative stress protection. Cannonau showed lower stomatal conductance under C (200 mmol m-2 s-1) but more than twice the values inside the greenhouse (400 to 900 mmol m-2 s-1), where water use efficiency was reduced similarly in both varieties. Under severe heat stress and -UV, Cannonau showed a sharper decrease in primary photochemical activity and higher leaf pigment reflectance indexes and leaf mass area. UV-B increased the leaf pigments, especially in Carignano, and different leaf cell regulatory traits to prevent oxidative damage were observed in leaf cross-sections. Heat stress induced chloroplast swelling, plastoglobule diffusion, and the accumulation of secretion deposits in both varieties, aggravated in Cannonau -UV by cell vacuolation, membrane dilation, and diffused leaf blade spot swelling. Conversely, in Carignano UV-B, cell wall barriers and calcium oxalate crystals proliferated in mesophyll cells. These responses suggest an adaptive divergence among cultivars to prolonged heat stress and UV-B light. Further research on grapevine biodiversity, heat, and UV-B light interactions may give new insights on the extent of stress tolerance to improve viticulture adaptive strategies in climate change hotspots.

7.
Comput Biol Med ; 179: 108802, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959526

RESUMO

BACKGROUND: Although the dynamics of the middle ear (ME) have been modeled since the mid-twentieth century, only recently stochastic approaches started to be applied. In this study, a stochastic model of the ME was utilized to predict the ME dynamics under both healthy and pathological conditions. METHODS: The deterministic ME model is based on a lumped-parameter representation, while the stochastic model was developed using a probabilistic non-parametric approach that randomizes the deterministic model. Subsequently, the ME model was modified to represent the ME under pathological conditions. Furthermore, the simulated data was used to develop a classifier model of the ME condition based on a machine learning algorithm. RESULTS: The ME model under healthy conditions exhibited good agreement with statistical experimental results. The ranges of probabilities from models under pathological conditions were qualitatively compared to individual experimental data, revealing similarities. Moreover, the classifier model presented promising results. DISCUSSION: The results aimed to elucidate how the ME dynamics, under different conditions, can overlap across various frequency ranges. Despite the promising results, improvements in the stochastic and classifier models are necessary. Nevertheless, this study serves as a starting point that can yield valuable tools for researchers and clinicians.

8.
Comput Biol Chem ; 112: 108132, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38959551

RESUMO

In the global fight against the COVID-19 pandemic caused by the highly transmissible SARS-CoV-2 virus, the search for potent medications is paramount. With a focused investigation on the SARS-CoV-2 papain-like protease (PLpro) as a promising therapeutic target due to its pivotal role in viral replication and immune modulation, the catalytic triad of PLpro comprising Cys111, His272, and Asp286, highlights Cys111 as an intriguing nucleophilic center for potential covalent bonds with ligands. The detailed analysis of the binding site unveils crucial interactions with both hydrophobic and polar residues, demonstrating the structural insights of the cavity and deepening our understanding of its molecular landscape. The sequence of PLpro among variants of concern (Alpha, Beta, Gamma, Delta and Omicron) and the recent variant of interest, JN.1, remains conserved with no mutations at the active site. Moreover, a thorough exploration of apo, non-covalently bound, and covalently bound PLpro conformations exposes significant conformational changes in loop regions, offering invaluable insights into the intricate dynamics of ligand-protein complex formation. Employing strategic in silico medication repurposing, this study swiftly identifies potential molecules for target inhibition. Within the domain of covalent docking studies and molecular dynamics, using reported inhibitors and clinically tested molecules elucidate the formation of stable covalent bonds with the cysteine residue, laying a robust foundation for potential therapeutic applications. These details not only deepen our comprehension of PLpro inhibition but also play a pivotal role in shaping the dynamic landscape of COVID-19 treatment strategies.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38959908

RESUMO

Quasiperiodic magnonic crystals, in contrast to their periodic counterparts, lack strict periodicity which gives rise to complex and localised spin wave spectra characterized by numerous band gaps and fractal features. Despite their intrinsic structural complexity, quasiperiodic nature of these magnonic crystals enables better tunability of spin wave spectra over their periodic counterparts and therefore holds promise for the applications in reprogrammable magnonic devices. In this article, we provide an overview of magnetization reversal and precessional magnetization dynamics studied so far in various quasiperiodic magnonic crystals, illustrating how their quasiperiodic nature gives rise to tailored band structure, enabling unparalleled control over spin waves. The review is concluded by highlighting the possible potential applications of these quasiperiodic magnonic crystals, exploring potential avenues for future exploration followed by a brief summary.

10.
FEBS J ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946302

RESUMO

Nitroreductases (NRs) are NAD(P)H-dependent flavoenzymes that reduce nitro aromatic compounds to their corresponding arylamines via the nitroso and hydroxylamine intermediates. Because of their broad substrate scope and versatility, NRs have found application in multiple fields such as biocatalysis, bioremediation, cell-imaging and prodrug activation. However, only a limited number of members of the broad NR superfamily (> 24 000 sequences) have been experimentally characterized. Within this group of enzymes, only few are capable of amine synthesis, which is a fundamental chemical transformation for the pharmaceutical, agricultural, and textile industries. Herein, we provide a comprehensive description of a recently discovered NR from Bacillus tequilensis, named BtNR. This enzyme has previously been demonstrated to have the capability to fully convert nitro aromatic and heterocyclic compounds to their respective primary amines. In this study, we determined its biochemical, kinetic and structural properties, including its apparent melting temperature (Tm) of 59 °C, broad pH activity range (from pH 3 to 10) and a notably low redox potential (-236 ± 1 mV) in comparison to other well-known NRs. We also determined its steady-state and pre-steady-state kinetic parameters, which are consistent with other NRs. Additionally, we elucidated the crystal structure of BtNR, which resembles the well-characterized Escherichia coli oxygen-insensitive NAD(P)H nitroreductase (NfsB), and investigated the substrate binding in its active site through docking and molecular dynamics studies with four nitro aromatic substrates. Guided by these structural analyses, we probed the functional roles of active site residues by site-directed mutagenesis. Our findings provide valuable insights into the biochemical and structural properties of BtNR, as well as its potential applications in biotechnology.

11.
Chem Asian J ; : e202400416, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949780

RESUMO

Photoswitchable lipids, particularly azobenzene-derivatized phosphatidylcholine (azoPC) lipids, offer a unique mechanism for reversible modification of membrane properties upon exposure to ultraviolet (UV) radiation. Through all-atom molecular dynamics simulations, we explore how UV irradiation-induced trans-to-cis photoisomerization(TCPI) of AzoPC lipid influences the structure and dynamics of a lipid membrane, composed of dipalmitoylphosphatidylcholine (DPPC) and cholesterol with similar composition to that of the DOXIL®.  Structural and dynamical analyses of two states of the membrane, 'dark' state (containing cis-azoPC lipid) and 'bright' state (containing 85% cis-azoPC and 15% trans-azoPC lipids) reveal that the TCPI reduces membrane packing density and increases diffusivity of lipids. We have demonstrated an enhanced intercalation of doxorubicine (DOX), an anticancer drug, in the 'bright' state of the membrane compared to that in 'dark' state. This study - elucidating the complex interplay between lipid composition, photoswitching, and lipid-drug interactions - contribute to the design of lipid-based systems for targeted drug delivery and biomedical applications.

12.
J Nonlinear Sci ; 34(5): 81, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966687

RESUMO

Several methods in nonadiabatic molecular dynamics are based on Madelung's hydrodynamic description of nuclear motion, while the electronic component is treated as a finite-dimensional quantum system. In this context, the quantum potential leads to severe computational challenges and one often seeks to neglect its contribution, thereby approximating nuclear motion as classical. The resulting model couples classical hydrodynamics for the nuclei to the quantum motion of the electronic component, leading to the structure of a complex fluid system. This type of mixed quantum-classical fluid models has also appeared in solvation dynamics to describe the coupling between liquid solvents and the quantum solute molecule. While these approaches represent a promising direction, their mathematical structure requires a certain care. In some cases, challenging higher-order gradients make these equations hardly tractable. In other cases, these models are based on phase-space formulations that suffer from well-known consistency issues. Here, we present a new complex fluid system that resolves these difficulties. Unlike common approaches, the current system is obtained by applying the fluid closure at the level of the action principle of the original phase-space model. As a result, the system inherits a Hamiltonian structure and retains energy/momentum balance. After discussing some of its structural properties and dynamical invariants, we illustrate the model in the case of pure-dephasing dynamics. We conclude by presenting some invariant planar models.

13.
Comput Biol Med ; 179: 108695, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38968763

RESUMO

This study uses CFD methods to investigate the effects of the impeller's geometry on the hemodynamic characteristics, pump performance, and blood damage parameters, in a percutaneous microaxial Mechanical Circulatory Support (MCS) device. The numerical simulations employ the steady state Reynolds-Averaged Navier-Stokes approximation using the SST k-ω turbulent model. Three different impeller models are examined with different hub conversion angles (α = 0○, 3○ and 5○). The analysis includes 23 cases for different pressure heads (Δp = 60-80 mmHg) and angular velocities (ω = 30-52 kRPM). The obtained flow rate is compared between the cases to assess the effect of the impeller's design and working conditions on the pump performance. The comparative risk of shear-induced platelet activation is estimated using the statistical median of the stress-accumulation values calculated along streamlines. The risk of hemolysis is estimated using the average exposure time to shear stress above a threshold (τ > 425 Pa). The results reveal that the shape of the impeller's hub has a great impact on the flow patterns, performance, and risk of blood damage, as well as the angular velocity. The highest flow rate (Q = 3.7 L/min) and efficiency (η = 11.3 %) were achieved using a straight hub (α = 0○). Similarly, for the same condition of flow and pressure, the straight hub impeller has the lowest blood damage risk parameters. This study shed light on the effect of pump design on the performance and risk of blood damage, indicating the roles of the hub shape and angular velocity as dominant parameters.

14.
Comput Biol Chem ; 112: 108133, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38968780

RESUMO

Nipah virus (NiV) remains a significant global concern due to its impact on both the agricultural industry and human health, resulting in substantial economic and health consequences. Currently, there is no cure or commercially available vaccine for the virus. Therefore, it is crucial to prioritize the discovery of new and effective treatment options to prevent its continued spread. Streptomyces spp. are rich sources of metabolites known for their bioactivity against certain diseases; however, their potential as antiviral drugs against the Nipah virus remain unexplored. In this study, 6524 Streptomyces spp. metabolites were screened through in silico methods for their inhibitory effects against the Nipah virus matrix (NiV-M) protein, which assists in virion assembly of Nipah virus. Different computer-aided tools were utilized to carry out the virtual screening process: ADMET profiling revealed 913 compounds with excellent safety and efficacy profiles, molecular docking predicted the binding poses and associated docking scores of the ligands in their respective targets, MD simulations confirmed the binding stability of the top ten highest-scoring ligands in a 100 ns all-atom simulation, PCA elucidated simulation convergence, and MMPB(GB)SA calculations estimated the binding energies of the final candidate compounds and determined the key residues crucial for complex formation. Using in silico methods, we identified six metabolites targeting the main substrate-binding site and five targeting the dimerization site that exhibited excellent stability and strong binding affinity. We recommend testing these compounds in the next stages of drug development to confirm their effectiveness as therapeutic agents against Nipah virus.

15.
Comput Methods Programs Biomed ; 254: 108306, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38968828

RESUMO

BACKGROUND AND OBJECTIVE: Hepatitis virus infections are affecting millions of people worldwide, causing death, disability, and considerable expenditure. Chronic infection with hepatitis C virus (HCV) can cause severe public health problems because of their high prevalence and poor long-term clinical outcomes. Thus a fractional-order epidemic model of the hepatitis C virus involving partial immunity under the influence of memory effect to know the transmission patterns and prevalence of HCV infection is studied. Investigating the transmission dynamics of HCV makes the issue more interesting. The HCV epidemic model and worldwide dynamics are examined in this study. Calculate the basic reproduction number for the HCV model using the next-generation matrix technique. We determine the model's global dynamics using reproduction numbers, the Lyapunov functional approach, and the Routh-Hurwitz criterion. The model's reproduction number shows how the disease progresses. METHODS: A fractional differential equation model of HCV infection has been created. Maximum relevant parameters, such as fractional power, HCV transmission rate, reproduction number, etc., influencing the dynamic process, have been incorporated. The model's numerical solutions are obtained using the fractional Adams method. Finally, numerical simulations support the theoretical conclusions, showing the great agreement between the two. RESULTS: In the fractional-order HCV infection model, the memory effect, which is not seen in the classical model, was shown on graphs so that disease dynamics and vector compartments could be seen. We found that the fractional-order HCV infection model has more stages of freedom than regular derivatives. Fractional-order derivations, which may be the best and most reliable, explained bodily approaches better than classical order. CONCLUSION: The current study modeled and analyzed a fractional-order HCV infection model. The current approach results in a much better understanding of HCV transmission in a population, which leads to important insights into its spread and control, such as better treatment dosage for different age groups, identifying the best control measure, improving health, prolonging life, reducing the risk of HCV transmission, and effectively increasing the quality of life of HCV patients. The creation of a fractional-order HCV infection model, which provides a better understanding of HCV transmission dynamics and leads to significant insights for better treatment dosages, identification of optimal control measures, and ultimately improvement of the quality of life for HCV patients, is the study's major outcome.

16.
Trends Cell Biol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969554

RESUMO

Filopodia, widely distributed on cell surfaces, are distinguished by their dynamic extensions, playing pivotal roles in a myriad of biological processes. Their functions span from mechanosensing and guidance to cell-cell communication during cellular organization in the early embryo. Filopodia have significant roles in pathogenic processes, such as cancer invasion and viral dissemination. Molecular mapping of the filopodome has revealed generic components essential for filopodia functions. In parallel, recent insights into biophysical mechanisms governing filopodia dynamics have provided the foundation for broader investigations of filopodia's biological functions. We highlight recent discoveries of engagement of filopodia in various stages of development and pathogenesis and present an overview of intricate molecular and physical features of these cellular structures across a spectrum of cellular activities.

17.
ISA Trans ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969589

RESUMO

This paper proposes a novel fault-tolerant control (FTC) scheme for real-time uncertainty estimation in nonlinear systems. It addresses the challenges arising from nonlinear dynamics in system inputs, states, and outputs, along with measurement uncertainties, within an output feedback framework. Our approach leverages two key components: 1) A neural network NN descriptor-based observer: this novel observer concurrently estimates both system states and sensor uncertainties. It is particularly capable of handling unbounded sensor uncertainties in specific situations. It utilizes NNs as universal approximators to capture the system's complex nonlinearities. 2) A robust model reference tracking controller: this controller employs the estimated states from the NN descriptor-based observer to achieve the desired system performance despite the existence of uncertainties. It exhibits robustness, guaranteeing system stability and asymptotic state tracking to a given reference model. The efficacy of the proposed FTC scheme is validated through theoretical analysis and its application to two real-world case studies.

18.
J Mol Model ; 30(8): 252, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38969920

RESUMO

CONTEXT: Traditional conductive adhesives based on epoxy resin system often encounter problems such as high brittleness and low heat resistance. Therefore, it is particularly important to improve the thermal and mechanical properties of the conductive adhesive. In this study, the effects of SWCNT-Ag and SWCNT fillers on the thermal properties of DGEBA/DETA/Ag conductive adhesive system were studied by using molecular dynamics to construct different cross-linking models. The final results show that the addition of SWCNT and SWCNT-Ag can significantly improve the thermal properties of the conductive adhesive. However, the nanosilver particles on the surface of SWCNT-Ag act as a bridge for the connection between SWCNT and Ag in the conductive adhesive. Therefore, SWCNT-Ag has a more positive impact on the thermal properties of DGEBA/DETA/Ag conductive adhesive system. METHODS: In this paper, the influence of SWCNT-Ag on the thermal properties of traditional DGEBA/DETA/Ag conductive adhesive system was studied by using Materials Studio software. The volume shrinkage, glass transition temperature, thermal expansion coefficient, and thermal conductivity of the material were calculated based on COMPASS force field. The thermal conductivity is calculated by using reverse non-equilibrium molecular dynamics method. Finally, it is found that SWCNT-Ag has a positive effect on the thermal properties of the conductive adhesive system by comparing several groups of calculation data.

19.
Nanomicro Lett ; 16(1): 233, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954272

RESUMO

The rapid development of organic electrochemical transistors (OECTs) has ushered in a new era in organic electronics, distinguishing itself through its application in a variety of domains, from high-speed logic circuits to sensitive biosensors, and neuromorphic devices like artificial synapses and organic electrochemical random-access memories. Despite recent strides in enhancing OECT performance, driven by the demand for superior transient response capabilities, a comprehensive understanding of the complex interplay between charge and ion transport, alongside electron-ion interactions, as well as the optimization strategies, remains elusive. This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses, emphasizing advancements in device physics and optimization approaches. We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications, as well as the impact of materials, morphology, device structure strategies on optimizing transient responses. This paper not only offers a detailed overview of the current state of the art, but also identifies promising avenues for future research, aiming to drive future performance advancements in diversified applications.

20.
Sci Total Environ ; 946: 174246, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38955266

RESUMO

The ionizing radiation (IR) represents a formidable challenge as an environmental factor to mitochondria, leading to disrupt cellular energy metabolism and posing health risks. Although the deleterious impacts of IR on mitochondrial function are recognized, the specific molecular targets remain incompletely elucidated. In this study, HeLa cells subjected to γ-rays exhibited concomitant oxidative stress, mitochondrial structural alterations, and diminished ATP production capacity. The γ-rays induced a dose-dependent induction of mitochondrial fission, simultaneously manifested by an elevated S616/S637 phosphorylation ratio of the dynamin-related protein 1 (DRP1) and a reduction in the expression of the mitochondrial fusion protein mitofusin 2 (MFN2). Knockdown of DRP1 effectively mitigated γ-rays-induced mitochondrial network damage, implying that DRP1 phosphorylation may act as an effector of radiation-induced mitochondrial damage. The mitochondrial outer membrane protein voltage-dependent anion channel 1 (VDAC1) was identified as a crucial player in IR-induced mitochondrial damage. The VDAC1 inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), counteracts the excessive mitochondrial fission induced by γ-rays, consequently rebalancing the glycolytic and oxidative phosphorylation equilibrium. This metabolic shift was uncovered to enhance glycolytic capacity, thus fortifying cellular resilience and elevating the radiosensitivity of cancer cells. These findings elucidate the intricate regulatory mechanisms governing mitochondrial morphology under radiation response. It is anticipated that the development of targeted drugs directed against VDAC1 may hold promise in augmenting the sensitivity of tumor cells to radiotherapy and chemotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...