Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.100
Filtrar
1.
J Genet Genomics ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960315

RESUMO

Cough is one of the most common symptoms observed in patients presenting with COVID-19, persisting for an extended duration following SARS-CoV-2 infection. We aim to describe the distribution of airway microbiota and explore its role in patients with post-COVID-19 chronic cough. A total of 57 patients experiencing persistent cough after infection were recruited during the Omicron wave of SARS-CoV-2 in China. Airway microbiota profiling is assessed in nasopharyngeal swab, nasal lavage, and induced sputum samples at 4 and 8 weeks after SARS-CoV-2 infection. Our findings reveal that bacterial families Staphylococcaceae, Corynebacteriaceae, and Enterobacteriaceae are the most prevalent in the upper airway, while Streptococcaceae, Lachnospiraceae, and Prevotellaceae emerge as the most prevalent bacterial families in the lower airway. An increase in the abundance of Staphylococcus in nasopharyngeal swab samples and of Streptococcus in induced sputum samples is observed after one month. Furthermore, the abundance of Staphylococcus identified in nasopharyngeal swab samples at the baseline period emerges as an insightful predictor for improvement in cough severity. In conclusion, dynamic alterations in the airway microbial composition may contribute to the post-COVID-19 chronic cough progression, while the compositional signatures of nasopharyngeal microbiota could reflect the improvement of this disease.

2.
J Periodontol ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946115

RESUMO

BACKGROUND: Periodontal diseases are associated with dysbiosis in the oral microbial communities. Managing oral biofilms is therefore key for preventing these diseases. Management protocols often include over-the-counter antimicrobial mouth rinses, which lack data on their effects on the oral microbiome's ecology, bacterial composition, metabolic activity, and dysbiosis resilience. This study examined the efficacy of antimicrobial mouth rinses to halt dysbiosis in in vitro oral biofilms under periodontitis-simulating conditions. METHODS: Multispecies oral biofilms were grown on hydroxyapatite discs (HADs) and rinsed daily with one of six mouth rinses. Positive and negative controls were included. After three rinses, biofilms were analyzed with viability quantitative polymerase chain reaction and visualized using scanning electron microscopy. Supernatants of rinsed biofilms were used for metabolic activity analysis. In addition, human oral keratinocytes were exposed to rinsed biofilms to assess their inflammatory response. All outputs were analyzed for correlation using Spearman coefficient. RESULTS: Product-related changes were observed in the rinsed biofilms. Three of the six tested mouth rinses could significantly prevent dysbiosis with ≥30% reduction in pathobiont abundance relative to the control. These biofilms had lower metabolic activity, and the exposed human oral keratinocyte produced less interleukin-8. Interleukin-8 production correlated to both pathobiont quantity and the metabolic activity of the biofilms. CONCLUSION: Some mouth rinses could support biofilm resilience and stop dysbiosis evolution in the biofilm model, with a clear product-related effect. Such mouth rinses can be considered for patients under maintenance/supportive periodontal therapy to prevent/delay disease recurrence. Others are more useful for different periodontal therapy stages.

3.
J Med Virol ; 96(7): e29781, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961767

RESUMO

Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is a serious and common extra-articular disease manifestation. Patients with RA-ILD experience reduced bacterial diversity and gut bacteriome alterations. However, the gut mycobiome and virome in these patients have been largely neglected. In this study, we performed whole-metagenome shotgun sequencing on fecal samples from 30 patients with RA-ILD, and 30 with RA-non-ILD, and 40 matched healthy controls. The gut bacteriome and mycobiome were explored using a reference-based approach, while the gut virome was profiled based on a nonredundant viral operational taxonomic unit (vOTU) catalog. The results revealed significant alterations in the gut microbiomes of both RA-ILD and RA-non-ILD groups compared with healthy controls. These alterations encompassed changes in the relative abundances of 351 bacterial species, 65 fungal species, and 4,367 vOTUs. Bacteria such as Bifidobacterium longum, Dorea formicigenerans, and Collinsella aerofaciens were enriched in both patient groups. Ruminococcus gnavus (RA-ILD), Gemmiger formicilis, and Ruminococcus bromii (RA-non-ILD) were uniquely enriched. Conversely, Faecalibacterium prausnitzii, Bacteroides spp., and Roseburia inulinivorans showed depletion in both patient groups. Mycobiome analysis revealed depletion of certain fungi, including Saccharomyces cerevisiae and Candida albicans, in patients with RA compared with healthy subjects. Notably, gut virome alterations were characterized by an increase in Siphoviridae and a decrease in Myoviridae, Microviridae, and Autographiviridae in both patient groups. Hence, multikingdom gut microbial signatures showed promise as diagnostic indicators for both RA-ILD and RA-non-ILD. Overall, this study provides comprehensive insights into the fecal virome, bacteriome, and mycobiome landscapes of RA-ILD and RA-non-ILD gut microbiota, thereby offering potential biomarkers for further mechanistic and clinical research.


Assuntos
Artrite Reumatoide , Bactérias , Fezes , Microbioma Gastrointestinal , Doenças Pulmonares Intersticiais , Humanos , Doenças Pulmonares Intersticiais/microbiologia , Doenças Pulmonares Intersticiais/virologia , Artrite Reumatoide/complicações , Artrite Reumatoide/microbiologia , Fezes/microbiologia , Fezes/virologia , Feminino , Masculino , Pessoa de Meia-Idade , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Idoso , Viroma , Micobioma , Adulto , Vírus/classificação , Vírus/isolamento & purificação , Vírus/genética , Fungos/isolamento & purificação , Fungos/classificação
4.
Aging (Albany NY) ; 162024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38968172

RESUMO

BACKGROUND: Chronic heart failure (CHF) impairs cognitive function, yet its effects on brain structure and underlying mechanisms remain elusive. This study aims to explore the mechanisms behind cognitive impairment. METHODS: CHF models in rats were induced by ligation of the left anterior descending coronary artery. Cardiac function was analyzed by cardiac ultrasound and hemodynamics. ELISA, immunofluorescence, Western blot, Golgi staining and transmission electron microscopy were performed on hippocampal tissues. The alterations of intestinal flora under the morbid state were investigated via 16S rRNA sequencing. The connection between neuroinflammation and synapses is confirmed by a co-culture system of BV2 microglia and HT22 cells in vitro. Results: CHF rats exhibited deteriorated cognitive behaviors. CHF induced neuronal structural disruption, loss of Nissl bodies, and synaptic damage, exhibiting alterations in multiple parameters. CHF rats showed increased hippocampal levels of inflammatory cytokines and activated microglia and astrocytes. Furthermore, the study highlights dysregulated PDE4-dependent cAMP signaling and intestinal flora dysbiosis, closely associated with neuroinflammation, and altered synaptic proteins. In vitro, microglial neuroinflammation impaired synaptic plasticity via PDE4-dependent cAMP signaling. CONCLUSIONS: Neuroinflammation worsens CHF-related cognitive impairment through neuroplasticity disorder, tied to intestinal flora dysbiosis. PDE4 emerges as a potential therapeutic target. These findings provide insightful perspectives on the heart-gut-brain axis.

5.
Parasit Vectors ; 17(1): 284, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956725

RESUMO

BACKGROUND: Toxoplasma gondii infection affects a significant portion of the global population, leading to severe toxoplasmosis and, in immunocompromised patients, even death. During T. gondii infection, disruption of gut microbiota further exacerbates the damage to intestinal and brain barriers. Therefore, identifying imbalanced probiotics during infection and restoring their equilibrium can regulate the balance of gut microbiota metabolites, thereby alleviating tissue damage. METHODS: Vimentin gene knockout (vim-/-) mice were employed as an immunocompromised model to evaluate the influence of host immune responses on gut microbiota balance during T. gondii infection. Behavioral experiments were performed to assess changes in cognitive levels and depressive tendencies between chronically infected vim-/- and wild-type (WT) mice. Fecal samples were subjected to 16S ribosomal RNA (rRNA) sequencing, and serum metabolites were analyzed to identify potential gut probiotics and their metabolites for the treatment of T. gondii infection. RESULTS: Compared to the immunocompetent WT sv129 mice, the immunocompromised mice exhibited lower levels of neuronal apoptosis and fewer neurobehavioral abnormalities during chronic infection. 16S rRNA sequencing revealed a significant decrease in the abundance of probiotics, including several species of Lactobacillus, in WT mice. Restoring this balance through the administration of Lactobacillus murinus and Lactobacillus gasseri significantly suppressed the T. gondii burden in the intestine, liver, and brain. Moreover, transplantation of these two Lactobacillus spp. significantly improved intestinal barrier damage and alleviated inflammation and neuronal apoptosis in the central nervous system. Metabolite detection studies revealed that the levels of various Lactobacillus-related metabolites, including indole-3-lactic acid (ILA) in serum, decreased significantly after T. gondii infection. We confirmed that L. gasseri secreted much more ILA than L. murinus. Notably, ILA can activate the aromatic hydrocarbon receptor signaling pathway in intestinal epithelial cells, promoting the activation of CD8+ T cells and the secretion of interferon-gamma. CONCLUSION: Our study revealed that host immune responses against T. gondii infection severely disrupted the balance of gut microbiota, resulting in intestinal and brain damage. Lactobacillus spp. play a crucial role in immune regulation, and the metabolite ILA is a promising therapeutic compound for efficient and safe treatment of T. gondii infection.


Assuntos
Lesões Encefálicas , Microbioma Gastrointestinal , Camundongos Knockout , Toxoplasma , Animais , Camundongos , Toxoplasma/imunologia , Lesões Encefálicas/imunologia , Probióticos/administração & dosagem , Encéfalo/imunologia , Lactobacillus , Modelos Animais de Doenças , Hospedeiro Imunocomprometido , Toxoplasmose/imunologia , RNA Ribossômico 16S/genética , Masculino , Intestinos/imunologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-38965037

RESUMO

Osteoporosis (OP) is a systemic skeletal disease that is characterized by low bone mass and increased fracture risk. This article explores the potential of probiotics as an adjunctive approach for the prevention and management of OP. It has been well established that the gut microbiota (GM), a complex community of microbes, plays an important role in bone health. The gut dysbiosis is linked with a higher risk of OP. However, the consumption of probiotics in adequate amounts restores gut health thus improving bone health. Probiotics may influence bone metabolism through enhanced calcium absorption, reduced inflammation, and increased bone formation. The animal and human studies demonstrate the positive effects of probiotics on bone health parameters like reduced osteoclastogenesis, bone resorption markers, osteoblast, osteocyte apoptosis, and increased bone mineral density and expression of osteoprotegerin. The current evidence suggests that probiotics can be used as an adjunctive approach along with the existing therapies for the prevention and management of OP.

7.
Environ Sci Technol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965053

RESUMO

Marine microalgae serve as an aquaculture bait. To enhance algal cell growth and breeding profits, high-intensity light conditions are standard for cultivating bait microalgae, potentially altering microalgal metabolite production. This research revealed that Thalassiosira pseudonana, when subjected to high-intensity light conditions, accumulated significant quantities of retinal (RAL) that transferred through the food chain and transformed into all-trans retinoic acid (atRA) in marine medaka. The study further explored the toxic effects on individual fish and specific tissues, as well as the mechanisms behind this toxicity. The accumulation of atRA in the liver, intestine, and spinal column resulted in structural damage and tissue inflammation, as well as oxidative stress. It also down-regulated the gene transcription levels of key pathways involved in immune function and growth. Furthermore, it disrupted the homeostasis of the intestinal microbial communities. The implications for wildlife and human health, which are influenced by the regulation of microalgal metabolite accumulation and their transfer via the food chain, require further investigation and could hold broader significance.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38967078

RESUMO

Dr. Aloysius Alzheimer, a German neuropathologist and psychiatrist, recognized the primary instance of Alzheimer's disease (AD) for a millennium, and this ailment, along with its related dementias, remains a severe overall community issue related to health. Nearly fifty million individuals worldwide suffer from dementia, with Alzheimer's illness contributing to between 60 and 70% of the instances, estimated through the World Health Organization. In addition, 82 million individuals are anticipated to be affected by the global dementia epidemic by 2030 and 152 million by 2050. Furthermore, age, environmental circumstances, and inherited variables all increase the likelihood of acquiring neurodegenerative illnesses. Most recent pharmacological treatments are found in original hypotheses of disease, which include cholinergic (drugs that show affective cholinergic system availability) as well as amyloid-accumulation (a single drug is an antagonist receptor of Nmethyl D-aspartate). In 2020, the FDA provided approval on anti-amyloid drugs. According to mounting scientific data, this gut microbiota affects healthy physiological homeostasis and has a role in the etiology of conditions that range between obesity and neurodegenerative disorders like Alzheimer's. The microbiota-gut-brain axis might facilitate interconnection among gut microbes as well as the central nervous system (CNS). Interaction among the microbiota-gut system as well as the brain occurs through the "two-way" microbiota-gut-brain axis. Along this axis, the stomach as well as the brain develop physiologically and take on their final forms. This contact is constant and is mediated by numerous microbiota-derived products. The gut microbiota, for instance, can act as non-genetic markers to set a threshold for maintaining homeostasis or getting ill. The scientific community has conducted research and found that bowel dysbiosis and gastrointestinal tract dysregulation frequently occur in Alzheimer's disease (AD) patients. In this review, the effects of the microbiota- gut-brain axis on AD pathogenesis will be discussed.

9.
FASEB J ; 38(13): e23766, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38967214

RESUMO

Dysbiosis of gut microbiota may account for pathobiology in simple fatty liver (SFL), metabolic dysfunction-associated steatohepatitis (MASH), fibrotic progression, and transformation to MASH-associated hepatocellular carcinoma (MASH-HCC). The aim of the present study is to investigate gut dysbiosis in this progression. Fecal microbial rRNA-16S sequencing, absolute quantification, histopathologic, and biochemical tests were performed in mice fed high fat/calorie diet plus high fructose and glucose in drinking water (HFCD-HF/G) or control diet (CD) for 2, 16 weeks, or 14 months. Histopathologic examination verified an early stage of SFL, MASH, fibrotic, or MASH-HCC progression with disturbance of lipid metabolism, liver injury, and impaired gut mucosal barrier as indicated by loss of occludin in ileum mucosa. Gut dysbiosis occurred as early as 2 weeks with reduced α diversity, expansion of Kineothrix, Lactococcus, Akkermansia; and shrinkage in Bifidobacterium, Lactobacillus, etc., at a genus level. Dysbiosis was found as early as MAHS initiation, and was much more profound through the MASH-fibrotic and oncogenic progression. Moreover, the expansion of specific species, such as Lactobacillus johnsonii and Kineothrix alysoides, was confirmed by an optimized method for absolute quantification. Dynamic alterations of gut microbiota were characterized in three stages of early SFL, MASH, and its HCC transformation. The findings suggest that the extent of dysbiosis was accompanied with MASH progression and its transformation to HCC, and the shrinking or emerging of specific microbial species may account at least in part for pathologic, metabolic, and immunologic alterations in fibrogenic progression and malignant transition in the liver.


Assuntos
Carcinoma Hepatocelular , Disbiose , Microbioma Gastrointestinal , Neoplasias Hepáticas , Camundongos Endogâmicos C57BL , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/microbiologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/etiologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/microbiologia , Neoplasias Hepáticas/etiologia , Disbiose/microbiologia , Masculino , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/microbiologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Progressão da Doença , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/patologia
10.
Res Sq ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38946944

RESUMO

Background: The gut microbiome is linked to brain pathology in cases of traumatic brain injury (TBI), yet the specific bacteria that are implicated are not well characterized. To address this gap, in this study, we induced traumatic brain injury (TBI) in male C57BL/6J mice using the controlled cortical impact (CCI) injury model. After 35 days, we administered a broad-spectrum antibiotics (ABX) cocktail (ampicillin, gentamicin, metronidazole, vancomycin) through oral gavage for 2 days to diminish existing microbiota. Subsequently, we inflicted a second TBI on the mice and analyzed the neuropathological outcomes five days later. Results: Longitudinal analysis of the microbiome showed significant shifts in the diversity and abundance of bacterial genera during both acute and chronic inflammation. These changes were particularly dramatic following treatment with ABX and after the second TBI. ABX treatment did not affect the production of short-chain fatty acids (SCFA) but did alter intestinal morphology, characterized by reduced villus width and a lower count of goblet cells, suggesting potential negative impacts on intestinal integrity. Nevertheless, diminishing the intestinal microbiome reduced cortical damage, apoptotic cell density, and microglial/macrophage activation in the cortical and thalamic regions of the brain. Conclusions: Our findings suggest that eliminating colonized gut bacteria via broad-spectrum ABX reduces neuroinflammation and enhances neurological outcomes in TBI despite implications to gut health.

11.
J Oral Biosci ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972505

RESUMO

OBJECTIVES: Oral microbiome dysbiosis prevention is important to avoid the onset and progression of periodontal disease. Dipotassium glycyrrhizate (GK2) is a licorice root extract with anti-inflammatory effects, and its associated mechanisms have been well-reported. However, their effects on the oral microbiome have not been investigated. This study aimed to elucidate the effects of GK2 on the oral microbiome using an in vitro polymicrobial biofilm model. METHODS: An in vitro saliva-derived polymicrobial biofilm model was used to evaluate the effects of GK2 on the oral microbiome. One-week anaerobic culture was performed, in which GK2 was added to the medium. Subsequently, microbiome analysis was performed based on the V1-V2 region of the 16S rRNA gene, and pathogenicity indices were assessed. We investigated the effects of GK2 on various bacterial monocultures by evaluating its inhibitory effects on cell growth, based on culture turbidity. RESULTS: GK2 treatment altered the microbiome structure and decreased the relative abundance of periodontal pathogenic bacteria, including Porphyromonas. Moreover, GK2 treatment reduced the DPP4 activity -a pathogenicity index of periodontal disease. Specifically, GK2 exhibited selective antibacterial activity against periodontal pathogenic bacteria. CONCLUSIONS: These findings suggest that GK2 has a selective antibacterial effect against periodontal pathogenic bacteria; thus, preventing oral microbiome dysbiosis. Therefore, GK2 is expected to contribute to periodontal disease prevention by modulating the oral microbiome toward a state with low inflammatory potential, thereby utilizing its anti-inflammatory properties on the host.

12.
Pharmacol Rep ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951480

RESUMO

Asthma is a lifelong condition with varying degrees of severity and susceptibility to symptom control. Recent studies have examined the effects of individual genus, species, and strains of probiotic microorganisms on the course of asthma. The present review aims to provide an overview of current knowledge on the use of probiotic microorganisms, mainly bacteria of the genus Lactobacillus and Bifidobacterium, in asthma prevention and treatment. Recent data from clinical trials and mouse models of allergic asthma indicate that probiotics have therapeutic potential in this condition. Animal studies indicate that probiotic microorganisms demonstrate anti-inflammatory activity, attenuate airway hyperresponsiveness (AHR), and reduce airway mucus secretion. A randomized, double-blind, placebo-controlled human trials found that combining multi-strain probiotics with prebiotics yielded promising outcomes in the treatment of clinical manifestations of asthma. It appears that probiotic supplementation is safe and significantly reduces the frequency of asthma exacerbations, as well as improved forced expiratory volume and peak expiratory flow parameters, and greater attenuation of inflammation. Due to the small number of available clinical trials, and the use of a wide range of probiotic microorganisms and assessment methods, it is not possible to draw clear conclusions regarding the use of probiotics as asthma treatments.

13.
Front Cell Infect Microbiol ; 14: 1402329, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947125

RESUMO

Introduction: In infants with cholestasis, variations in the enterohepatic circulation of bile acids and the gut microbiota (GM) characteristics differ between those with biliary atresia (BA) and non-BA, prompting a differential analysis of their respective GM profiles. Methods: Using 16S rDNA gene sequencing to analyse the variance in GM composition among three groups: infants with BA (BA group, n=26), non-BA cholestasis (IC group, n=37), and healthy infants (control group, n=50). Additionally, correlation analysis was conducted between GM and liver function-related indicators. Results: Principal component analysis using Bray-Curtis distance measurement revealed a significant distinction between microbial samples in the IC group compared to the two other groups. IC-accumulated co-abundance groups exhibited positive correlations with aspartate aminotransferase, alanine aminotransferase, total bilirubin, direct bilirubin, and total bile acid serum levels. These correlations were notably reinforced upon the exclusion of microbial samples from children with BA. Conclusion: The varying "enterohepatic circulation" status of bile acids in children with BA and non-BA cholestasis contributes to distinct GM structures and functions. This divergence underscores the potential for targeted GM interventions tailored to the specific aetiologies of cholestasis.


Assuntos
Ácidos e Sais Biliares , Atresia Biliar , Colestase , Microbioma Gastrointestinal , RNA Ribossômico 16S , Humanos , Atresia Biliar/microbiologia , Colestase/microbiologia , Lactente , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/sangue , Masculino , Feminino , RNA Ribossômico 16S/genética , Bilirrubina/sangue , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , DNA Ribossômico/genética , Fezes/microbiologia
14.
Heliyon ; 10(11): e32259, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38947439

RESUMO

An association between periodontal disease and oral squamous cell carcinoma (OSCC) has been recognized. However, there is no causal relationship between the two. The polymicrobial etiology of periodontal disease is confirmed, and so are the proven etiological factors for OSCC. Inflammation lies at the core of periodontal pathogenesis induced by the putative microbes. OSCC has inflammatory overtures in its pathobiology. Bacterial species involved in periodontal disease have been extensively documented and validated. The microbial profile in OSCC has been explored with no specific conclusions. The scientific reasoning to link a common microbial signature that connects periodontal disease to OSCC has led to many studies but has not provided conclusive evidence. Therefore, it would be beneficial to know the status of any plausible microbiota having a similarity in periodontal disease and OSCC. This brief review attempted to clarify the existence of a dysbiotic "fingerprint" that may link these two diseases. The review examined the literature with a focused objective of identifying periodontal microbial profiles in OSCC that could provide insights into pathogen commonality. The review concluded that there is great diversity in microbial association, but important bacterial species that correlate with periodontal disease and OSCC are forthcoming.

15.
J Family Med Prim Care ; 13(5): 1628-1635, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38948582

RESUMO

Cancer chemotherapy remains an area of concern, as many of the therapies are uncomfortable involving side effects and unpleasant experiences. These factors could further reduce patient's quality of life, and even endanger their life. Many therapeutic strategies have been tried to reduce the unpleasant side effects and increase the treatment effectiveness; however, none have shown to have promising effects. One of the main hindrances to cancer therapy is the escape strategies by tumor cells to the immune attack. Promoting inflammation in the tumor microenvironment is the cornerstone and key therapeutic target in cancer chemotherapy. High-salt diet (HSD) intake, though it has deleterious effects on human health by promoting chronic inflammation, is found to be advantageous in the tumor microenvironment. Studies identified HSD favors an increased abundance of Bifidobacterium species in the tumor environment due to gut barrier alteration, which, in turn, promotes inflammation and favors improved response to cancer chemotherapy. A review of the literature was carried out to find out the effects of an HSD on health and diseases, with special mention of its effect on cancer chemotherapy. Studies emphasized HSD would block the myeloid-derived suppressor cells which will enhance the tumor immunity. Exploration of the precise mechanism of simple HSD regime/ingestion of specific bacterial species as probiotics will be effective and essential to formulate the game-changing cancer chemotherapy. With the modern era of healthcare moving toward precision medicine where the physician can choose the treatment option suitable for the individual, HSD regime/ingestion of specific bacterial species can be considered.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38949882

RESUMO

Oral Squamous cell carcinoma (OSCC) is the 14th most frequent cancer with 300,000 new cases and 100,000 deaths reported annually. Even with advanced therapy, the treatment outcomes are poor at advanced stages of the disease. The diagnosis of early OSCC is of paramount clinical value given the high mortality rate associated with the late stages of the disease. Recently, the role of microbiome in the disease manifestation, including oral cancer, has garnered considerable attention. But, to establish the role of bacteria in oral cancer, it is important to determine the differences in the colonization pattern in non-tumour and tumour tissues. In this study, 16S rRNA based metagenomic analyses of 13 tumorous and contralateral anatomically matched normal tissue biopsies, obtained from patients with advanced stage of OSCC were evaluated to understand the correlation between OSCC and oral microbiome. In this study we identified Fusobacterium, Prevotella, Capnocytophaga, Leptotrichia, Peptostreptococcus, Parvimonas and Bacteroidetes as the most significantly enriched taxa in OSCC lesions compared to the non-cancerous tissues. Further, PICRUSt2 analysis unveiled enhanced expression of metabolic pathways associated with L-lysine fermentation, pyruvate fermentation, and isoleucine biosynthesis in those microbes associated with OSCC tissues. These findings provide valuable insights into the distinctive microbial signatures associated with OSCC, offering potential biomarkers and metabolic pathways underlying OSCC pathogenesis. While our focus has primarily centred on microbial signatures, it is essential to recognize the pivotal role of host factors such as immune responses, genetic predisposition, and the oral microenvironment in shaping OSCC development and microbiome composition.

17.
Ageing Res Rev ; : 102400, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945306

RESUMO

It has been four years since long COVID-the protracted consequences that survivors of COVID-19 face-was first described. Yet, this entity continues to devastate the quality of life of an increasing number of COVID-19 survivors without any approved therapy. Furthermore, there remains a paucity of clinical trials addressing the biological root causes of this disease. Notably, the symptoms of long COVID-including but not limited to exercise intolerance, cognitive impairment, orthostasis, and functional decline-are typically seen with advancing age. Leveraging this similarity, we posit that Geroscience-which aims to target the biological drivers of aging to prevent age-associated conditions as a group-could offer promising therapeutic avenues for long COVID. Bearing this in mind, this review presents a framework for studying long COVID as a state of effectively accelerated biological aging. Thus, we comprehensively review here the role of biological hallmarks of aging in long COVID, identifying research gaps and proposing directions for future preclinical and clinical studies.

18.
Vet Sci ; 11(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38921987

RESUMO

(1) Background: Dysbiosis is frequently observed in Canine Atopic Dermatitis (CAD). Antimicrobial treatment may be necessary to treat flare ups and the use of topical treatments is beneficial to prevent the development of bacterial resistance. Wipes are an easy way to apply antiseptic agents on the skin. The aim of this study was to evaluate the benefits of 3% chlorhexidine impregnated wipes (Pyoskin® wipes, MP Labo, France) on local areas of dysbiosis in dogs with CAD. (2) Methods: A total of 20 dogs suffering from CAD presented with localised areas of dysbiosis were included in this study. Affected areas were cleansed with the daily application of chlorhexidine wipes once a day for 14 days. Follow-up visits were scheduled after one and two weeks. Clinical signs (lesions and pruritus), dysbiosis scored by cytological counts (cocci and Malassezia) and investigator and owner global appreciation were evaluated. (3) Results: A statistically significant decrease in clinical scores and cytological counts were observed as soon as D7 and until D14. Both owner and investigator appreciation were considered high (4) Conclusions: The use of chlorhexidine impregnated wipes is a useful and easy way to manage localised dysbiosis in atopic dogs and allows limiting of systemic medication to prevent bacterial resistance.

19.
Biomolecules ; 14(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38927134

RESUMO

A notable shift in understanding the human microbiome's influence on cardiovascular disease (CVD) is underway, although the causal association remains elusive. A systematic review and meta-analysis were conducted to synthesise current knowledge on microbial taxonomy and metabolite variations between healthy controls (HCs) and those with CVD. An extensive search encompassing three databases identified 67 relevant studies (2012-2023) covering CVD pathologies from 4707 reports. Metagenomic and metabolomic data, both qualitative and quantitative, were obtained. Analysis revealed substantial variability in microbial alpha and beta diversities. Moreover, specific changes in bacterial populations were shown, including increased Streptococcus and Proteobacteria and decreased Faecalibacterium in patients with CVD compared with HC. Additionally, elevated trimethylamine N-oxide levels were reported in CVD cases. Biochemical parameter analysis indicated increased fasting glucose and triglycerides and decreased total cholesterol and low- and high-density lipoprotein cholesterol levels in diseased individuals. This study revealed a significant relationship between certain bacterial species and CVD. Additionally, it has become clear that there are substantial inconsistencies in the methodologies employed and the reporting standards adhered to in various studies. Undoubtedly, standardising research methodologies and developing extensive guidelines for microbiome studies are crucial for advancing the field.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Humanos , Doenças Cardiovasculares/microbiologia , Doenças Cardiovasculares/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Metilaminas/metabolismo , Metilaminas/sangue
20.
Biomedicines ; 12(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38927424

RESUMO

Heart failure (HF) is characterized by low-grade immune-mediated inflammation due to increased Toll-like receptor (TLR) expression as response to endotoxin increase and dysregulated gut barrier permeability. We investigated TLR expression and possible gut dysbiosis in HF patients compared to a control group. We enrolled 80 Caucasian HF patients and 20 controls. Low-grade immune-mediated inflammation was evaluated by TLR expression, while gut dysbiosis by the detection of zonulin and bacterial endotoxin activity in a semi-quantitative (endotoxin activity assay [EAA]) and quantitative (limulus amebocyte lysate [LAL] test) way. Compared to controls, patients with HF showed significantly higher age and blood pressure values, worse metabolic profile and kidney function, higher inflammatory biomarkers levels, and lower levels of zonulin and endotoxin activity. When dividing failing patients in those with reduced ejection fraction (HF-rEF) and those with preserved ejection fraction (HF-pEF), HF-rEF patients showed significantly higher values of inflammatory biomarkers and TLR expression than HF-pEF patients. Gut permeability biomarkers inversely correlated with the severity of HF and positively with renal function. eGFR was retained as an independent predictor of zonulin variation in all the three groups of failing patients. Present data work to extend current knowledge about the role of gut microbiota in immune-mediated inflammation in HF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...