Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 398
Filtrar
1.
Mikrochim Acta ; 191(8): 453, 2024 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970675

RESUMO

An electrochemical biosensor has been developed for detection of Escherichia coli O157 by integrating lateral flow with screen-printed electrodes. The screen-printed electrodes were attached under the lateral flow detection line, and organic-inorganic nanoflowers prepared from E. coli O157-specific antibodies as an organic component were attached to the lateral flow detection line. In the presence of E. coli O157, an organic-inorganic nanoflower-E. coli O157-antimicrobial peptide-labelled ferrocene sandwich structure is formed on the lateral flow detection line. Differential pulse voltammetry is applied using a smartphone-based device to monitor ferrocene on the detection line. The resulting electrochemical biosensor could specifically detect E. coli O157 with a limit of detection of 25 colony-forming units mL-1. Through substitution of antibodies of organic components in organic-inorganic nanoflowers, biosensors have great potential for the detection of other pathogens in biomedical research and clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Escherichia coli O157 , Escherichia coli O157/isolamento & purificação , Escherichia coli O157/imunologia , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Imunoensaio/instrumentação , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Limite de Detecção , Nanoestruturas/química , Eletrodos , Compostos Ferrosos/química , Anticorpos Imobilizados/imunologia , Metalocenos/química , Anticorpos Antibacterianos/química , Anticorpos Antibacterianos/imunologia , Peptídeos Antimicrobianos/química
2.
Mikrochim Acta ; 191(8): 441, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954045

RESUMO

A ratiometric SERS aptasensor based on catalytic hairpin self-assembly (CHA) mediated cyclic signal amplification strategy was developed for the rapid and reliable determination of Escherichia coli O157:H7. The recognition probe was synthesized by modifying magnetic beads with blocked aptamers, and the SERS probe was constructed by functionalizing gold nanoparticles (Au NPs) with hairpin structured DNA and 4-mercaptobenzonitrile (4-MBN). The recognition probe captured E. coli O157:H7 specifically and released the blocker DNA, which activated the CHA reaction on the SERS probe and turned on the SERS signal of 6-carboxyl-x-rhodamine (ROX). Meanwhile, 4-MBN was used as an internal reference to calibrate the matrix interference. Thus, sensitive and reliable determination and quantification of E. coli O157:H7 was established using the ratio of the SERS signal intensities of ROX to 4-MBN. This aptasensor enabled detection of 2.44 × 102 CFU/mL of E. coli O157:H7 in approximately 3 h without pre-culture and DNA extraction. In addition, good reliability and excellent reproducibility were observed for the determination of E. coli O157:H7 in spiked water and milk samples. This study offered a new solution for the design of rapid, sensitive, and reliable SERS aptasensors.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Escherichia coli O157 , Ouro , Limite de Detecção , Nanopartículas Metálicas , Leite , Análise Espectral Raman , Escherichia coli O157/isolamento & purificação , Aptâmeros de Nucleotídeos/química , Nanopartículas Metálicas/química , Ouro/química , Leite/microbiologia , Leite/química , Análise Espectral Raman/métodos , Técnicas Biossensoriais/métodos , Animais , Catálise , Sequências Repetidas Invertidas , Contaminação de Alimentos/análise , Microbiologia da Água , Reprodutibilidade dos Testes
3.
BMC Microbiol ; 24(1): 219, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902619

RESUMO

BACKGROUND: In Addis Ababa, Ethiopia, open ditches along innner roads in residential areas serve to convey domestic wastewater and rainwater away from residences. Contamination of drinking water by wastewater through faulty distribution lines could expose households to waterborne illnesses. This prompted the study to assess the microbiological safety of wastewater and drinking water in Addis Ababa, identify the pathogens therein, and determine their antibiotic resistance patterns. RESULTS VIBRIO CHOLERAE: O1, mainly Hikojima serotype, was isolated from 23 wastewater and 16 drinking water samples. Similarly, 19 wastewater and 10 drinking water samples yielded Escherichia coli O157:H7. V. cholerae O1 were 100% resistant to the penicillins (Amoxacillin and Ampicillin), and 51-82% were resistant to the cephalosporins. About 44% of the V. cholerae O1 isolates in this study were Extended Spectrum Beta-Lactamase (ESBL) producers. Moreover, 26% were resistant to Meropenem. Peperacillin/Tazobactam was the only effective ß-lactam antibiotic against V. cholerae O1. V. cholerae O1 isolates showed 37 different patterns of multiple resistance ranging from a minimum of three to a maximum of ten antimicrobials. Of the E. coli O157:H7 isolates, 71% were ESBL producers. About 96% were resistant to Ampicillin. Amikacin and Gentamicin were very effective against E. coli O157:H7 isolates. The isolates from wastewater and drinking water showed multiple antibiotic resistance against three to eight antibiotic drugs. CONCLUSIONS: Open ditches for wastewater conveyance along innner roads in residence areas and underground faulty municipal water distribution lines could be possible sources for V. cholerae O1 and E. coli O157:H7 infections to surrounding households and for dissemination of multiple drug resistance in humans and, potentially, the environment.


Assuntos
Antibacterianos , Água Potável , Escherichia coli O157 , Testes de Sensibilidade Microbiana , Vibrio cholerae O1 , Águas Residuárias , Etiópia , Vibrio cholerae O1/efeitos dos fármacos , Vibrio cholerae O1/isolamento & purificação , Vibrio cholerae O1/classificação , Águas Residuárias/microbiologia , Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/isolamento & purificação , Antibacterianos/farmacologia , Água Potável/microbiologia , Farmacorresistência Bacteriana Múltipla , beta-Lactamases , Humanos , Microbiologia da Água
4.
Sci Rep ; 14(1): 13245, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853163

RESUMO

In this work, a multispectral aptasensor structure, including a sub-layer and two side walls, was presented. The cells are positioned at the down and top of the structure, with the down cells oriented perpendicular to the walls and the top cells aligned parallel to the walls. The validity of the findings was verified by the utilization of a numerical simulation technique known as 3D Finite Difference Time Domain (FDTD). The biosensor under consideration exhibits sensitivities of 1093.7 nm/RIU, 754 nm/RIU, and 707.43 nm/RIU in mode III, mode II, and mode I, respectively. In the majority of instances, the quantity of analyte available is insufficient to coat the surface of the sensor thoroughly. Consequently, in this study, the evaluation of surface sensitivity was undertaken alongside bulk sensitivity. The surface sensitivity of the suggested structure for mode II in the sensor layer, with thicknesses of 10, 20, 30, and 70 nm, is measured to be 25, 78, 344, and 717.636 nm/RIU, respectively. Our design incorporates a unique arrangement of sub-layer and side walls, with cells positioned to maximize interaction with the target analyte. This innovative configuration, combined with Ag for its superior plasmonic properties, enables the detection of E. coli O157 with remarkable sensitivity.

5.
SAGE Open Med ; 12: 20503121241258071, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846513

RESUMO

Introduction: Microbial contamination of drinking water, particularly by pathogens such as Escherichia coli O157: H7, is a significant public health concern worldwide, especially in regions with limited access to clean water like the Gaza Strip. However, few studies have quantified the disease burden associated with E. coli O157: H7 contamination in such challenging water management contexts. Objective: This study aimed to conduct a comprehensive Quantitative Microbial Risk Assessment to estimate the annual infection risk and disease burden attributed to E. coli O157: H7 in Gaza's drinking water. Methods: Applying the typical four steps of the Quantitative Microbial Risk Assessment technique-hazard identification, exposure assessment, dose-response analysis, and risk characterization-the study assessed the microbial risk associated with E. coli O157: H7 contamination in Gaza's drinking water supply. A total of 1317 water samples from various sources across Gaza were collected and analyzed for the presence of E. coli O157: H7. Using Microsoft ExcelTM and @RISKTM software, a Quantitative Microbial Risk Assessment model was constructed to quantify the risk of infection associated with E. coli O157: H7 contamination. Monte Carlo simulation techniques were employed to assess uncertainty surrounding input variables and generate probabilistic estimates of infection risk and disease burden. Results: Analysis of the water samples revealed the presence of E. coli O157: H7 in 6.9% of samples, with mean, standard deviation, and maximum values of 1.97, 9.74, and 112 MPN/100 ml, respectively. The risk model estimated a median infection risk of 3.21 × 10-01 per person per year and a median disease burden of 3.21 × 10-01 Disability-Adjusted Life Years per person per year, significantly exceeding acceptable thresholds set by the WHO. Conclusion: These findings emphasize the urgent need for proactive strategies to mitigate public health risks associated with waterborne pathogens in Gaza.

6.
BMC Vet Res ; 20(1): 192, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734600

RESUMO

BACKGROUND: Natural antimicrobial agents such as nisin were used to control the growth of foodborne pathogens in dairy products. The current study aimed to examine the inhibitory effect of pure nisin and nisin nanoparticles (nisin NPs) against methicillin resistant Staphylococcus aureus (MRSA) and E.coli O157:H7 during the manufacturing and storage of yoghurt. Nisin NPs were prepared using new, natural, and safe nano-precipitation method by acetic acid. The prepared NPs were characterized using zeta-sizer and transmission electron microscopy (TEM). In addition, the cytotoxicity of nisin NPs on vero cells was assessed using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The minimum inhibitory concentrations (MICs) of nisin and its nanoparticles were determined using agar well-diffusion method. Further, fresh buffalo's milk was inoculated with MRSA or E.coli O157:H7 (1 × 106 CFU/ml) with the addition of either nisin or nisin NPs, and then the inoculated milk was used for yoghurt making. The organoleptic properties, pH and bacterial load of the obtained yoghurt were evaluated during storage in comparison to control group. RESULTS: The obtained results showed a strong antibacterial activity of nisin NPs (0.125 mg/mL) against MRSA and E.coli O157:H7 in comparison with control and pure nisin groups. Notably, complete eradication of MRSA and E.coli O157:H7 was observed in yoghurt formulated with nisin NPs after 24 h and 5th day of storage, respectively. The shelf life of yoghurt inoculated with nisin nanoparticles was extended than those manufactured without addition of such nanoparticles. CONCLUSIONS: Overall, the present study indicated that the addition of nisin NPs during processing of yoghurt could be a useful tool for food preservation against MRSA and E.coli O157:H7 in dairy industry.


Assuntos
Antibacterianos , Escherichia coli O157 , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Nanopartículas , Nisina , Iogurte , Nisina/farmacologia , Nisina/química , Iogurte/microbiologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Escherichia coli O157/efeitos dos fármacos , Nanopartículas/química , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Conservantes de Alimentos/farmacologia , Células Vero , Microbiologia de Alimentos , Chlorocebus aethiops , Conservação de Alimentos/métodos
7.
Talanta ; 276: 126273, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38776775

RESUMO

Ultrasensitive and rapid detection of low concentration of Escherichia coli O157: H7 (E. coli O157:H7) in food is essential for food safety and public health. In this study, A novel fluorescence signal amplification biosensor based on magnetic separation platform and red fluorescent carbon dots (R-CDs)-encapsulated breakable organosilica nanocapsules (BONs) for ultrasensitive detection of E. coli O157:H7 was established. Wulff-type boronic acid functionalized magnetic nanoparticles (MNPs@B-N/APBA) with broad-spectrum bacterial recognition ability were synthesized for the first time to recognize and capture E. coli O157: H7 in food samples. R-CDs@BONs labeled with anti-E. coli O157:H7 monoclonal antibody (mAb@R-CDs@BONs-NH2) were used as the second recognition element to ensure the specificity for E. coli O157:H7 and form MNPs@B-N/APBA∼ E. coli O157:H7∼mAb@R-CDs@BONs-NH2 sandwich complexes, followed by releasing R-CDs to generate amplified fluorescence response signals for quantitative detection of E. coli O157:H7. The proposed method had a limit of detection with 25 CFU/mL in pure culture and contaminated lettuce samples, which the whole detection process took about 120 min. This fluorescence signal amplification biosensor has the potential to detect other pathogens in food by altering specific antibodies.


Assuntos
Técnicas Biossensoriais , Carbono , Escherichia coli O157 , Pontos Quânticos , Escherichia coli O157/isolamento & purificação , Técnicas Biossensoriais/métodos , Carbono/química , Pontos Quânticos/química , Nanocápsulas/química , Corantes Fluorescentes/química , Fluorescência , Limite de Detecção , Compostos de Organossilício/química , Microbiologia de Alimentos , Lactuca/microbiologia , Lactuca/química
8.
Food Res Int ; 184: 114252, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609230

RESUMO

Leafy green surface microbiology studies often experience significant variations in results due to the heterogeneous nature of leaf surfaces. To provide a precise and controllable substitute, we microfabricated double-sided artificial leafy green phylloplanes using polydimethylsiloxane (PDMS) with a vinyl-terminated polyethylene glycol chain-based hydrophobicity modifier (PDMS-PEG) to modify PDMS hydrophobicity. We further tested the properties and applications of these artificial leaves, by examining the function of epicuticular wax, growth and survival of E. coli O157:H7 87-23 on the surface, and removal of attached E. coli cells via sanitation. The double-sided PDMS-PDMS-PEG leaves well-replicated their natural counterparts in macroscopic and microscopic structure, hydrophobicity, and E. coli O157:H7 87-23 attachment. After depositing natural epicuticular wax onto artificial leaves, the leaf surface wetting ability decreased, while E. coli O157:H7 87-23 surface retention increased. The artificial leaves supplied with lettuce lysate or bacterial growth media supported E. coli O157:H7 87-23 growth and survival similarly to those on natural leaves. In the sanitation test, the artificial lettuce leaves also displayed patterns similar to those of natural leaves regarding sanitizer efficiency. Overall, this study showcased the microfabrication and applications of double-sided PDMS-PDMS-PEG leaves as a replicable and controllable platform for future leafy green food safety studies.


Assuntos
Dimetilpolisiloxanos , Escherichia coli O157 , Meios de Cultura , Inocuidade dos Alimentos , Lactuca
9.
Food Microbiol ; 121: 104508, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637072

RESUMO

Diarrheagenic E. coli (DEC) can cause severe diarrhea and is a public health concern worldwide. Cattle are an important reservoir for this group of pathogens, and once introduced into the abattoir environment, these microorganisms can contaminate consumer products. This study aimed to characterize the distribution of DEC [Shiga toxin-producing E. coli (STEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), and enteroaggregative E. coli (EAEC)] from extensive and intensive cattle production systems in Brazil. Samples (n = 919) were collected from animal feces (n = 200), carcasses (n = 600), meat cuts (n = 90), employee feces (n = 9), and slaughterhouse water (n = 20). Virulence genes were detected by PCR in 10% of animal samples (94/919), with STEC (n = 81) as the higher prevalence, followed by EIEC (n = 8), and lastly EPEC (n = 5). Animals raised in an extensive system had a higher prevalence of STEC (average 48%, sd = 2.04) when compared to animals raised in an intensive system (23%, sd = 1.95) (Chi-square test, P < 0.001). From these animals, most STEC isolates only harbored stx2 (58%), and 7% were STEC LEE-positive isolates that were further identified as O157:H7. This study provides further evidence that cattle are potential sources of DEC, especially STEC, and that potentially pathogenic E. coli isolates are widely distributed in feces and carcasses during the slaughter process.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Bovinos , Animais , Proteínas de Escherichia coli/genética , Brasil/epidemiologia , Sorotipagem , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Fezes
10.
Food Chem ; 450: 139331, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38621310

RESUMO

The sensitive detection of foodborne pathogenic and rapid antibiotic susceptibility testing (AST) is of great significance. This paper reports the enzyme-triggered in situ synthesis of yellow emitting silicon nanoparticles (SiNPs) and the detection of Escherichia coli (E. coli) O157:H7 in food samples and the rapid AST. The rapid counting of E. coli O157:H7 has been achieved through direct visual observation, equipment detection, and smartphone digitalization. A simple detection platform based on smartphone senses and cotton swabs has been established. Meanwhile, rapid AST based on enzyme-catalyzed SiNPs can intuitively obtain colorimetric samples. This paper established a system for bacterial enzyme-triggered in situ synthesis of SiNPs, with high responsiveness, luminescence ratio, and specificity. The detection limit for E. coli O157:H7 can reach 100 CFU/mL during 5 h, and the recovery efficiency ranges from 90.14% to 110.16%, which makes it a promising strategy for the rapid detection of E. coli O157:H7 and AST.


Assuntos
Escherichia coli O157 , Nanopartículas , Silício , beta-Galactosidase , Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/isolamento & purificação , Nanopartículas/química , Silício/química , Silício/farmacologia , beta-Galactosidase/metabolismo , beta-Galactosidase/química , Testes de Sensibilidade Microbiana , Contaminação de Alimentos/análise , Colorimetria , Antibacterianos/farmacologia , Antibacterianos/química , Microbiologia de Alimentos
11.
ACS Infect Dis ; 10(5): 1644-1653, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38602317

RESUMO

This study describes the synthesis of amino-functionalized carbon nanoparticles derived from biopolymer chitosan using green synthesis and its application toward ultrasensitive electrochemical immunosensor of highly virulent Escherichia coli O157:H7 (E. coli O157:H7). The inherent advantage of high surface-to-volume ratio and enhanced rate transfer kinetics of nanoparticles is leveraged to push the limit of detection (LOD), without compromising on the selectivity. The prepared carbon nanoparticles were systematically characterized by employing CO2-thermal programmed desorption (CO2-TPD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-visible), and transmission electron microscopy (TEM). The estimated limit of detection of 0.74 CFU/mL and a sensitivity of 5.7 ((ΔRct/Rct)/(CFU/mL))/cm2 in the electrochemical impedance spectroscopy (EIS) affirm the utility of the sensor. The proposed biosensor displayed remarkable selectivity against interfering species, making it well suited for real-time applications. Moreover, the chitosan-derived semiconducting amino-functionalized carbon shows excellent sensitivity in a comparative analysis compared to highly conducting amine-functionalized carbon synthesized via chemical modification, demonstrating its vast potential as an E. coli sensor.


Assuntos
Técnicas Biossensoriais , Carbono , Quitosana , Espectroscopia Dielétrica , Escherichia coli O157 , Escherichia coli O157/isolamento & purificação , Técnicas Biossensoriais/métodos , Carbono/química , Quitosana/química , Nanopartículas/química , Limite de Detecção , Química Verde
12.
Ultrason Sonochem ; 106: 106884, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677267

RESUMO

The purpose of this study was to investigate ferroptosis in Escherichia coli O157:H7 caused by ferrous sulfate (FeSO4) and to examine the synergistic effectiveness of FeSO4 combined with ultrasound-emulsified cinnamaldehyde nanoemulsion (CALNO) on inactivation of E. coli O157:H7 in vitro and in vivo. The results showed that FeSO4 could cause ferroptosis in E. coli O157:H7 via generating reactive oxygen species (ROS) and exacerbating lipid peroxidation. In addition, the results indicated that FeSO4 combined with CALNO had synergistic bactericidal effect against E. coli O157:H7 and the combined treatment could lead considerable nucleic acids and protein to release by damaging the cell membrane of E. coli O157:H7. Besides, FeSO4 combined with CALNO had a strong antibiofilm ability to inhibit E. coli O157:H7 biofilm formation by reducing the expression of genes related on biofilm formation. Finally, FeSO4 combined with CALNO exhibited the significant antibacterial activity against E. coli O157:H7 in hami melon and cherry tomato.


Assuntos
Acroleína , Emulsões , Escherichia coli O157 , Ferroptose , Compostos Ferrosos , Escherichia coli O157/efeitos dos fármacos , Acroleína/análogos & derivados , Acroleína/farmacologia , Acroleína/química , Compostos Ferrosos/farmacologia , Compostos Ferrosos/química , Ferroptose/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Ondas Ultrassônicas , Espécies Reativas de Oxigênio/metabolismo
13.
Int J Biol Macromol ; 264(Pt 1): 130533, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428782

RESUMO

In this work, silver­bismuth oxide encapsulated 1,3,5-triazine-bis(4-methylbenzenesulfonyl)-hydrazone functionalized chitosan (SBO/FCS) nanocomposite was synthesized by a simple hydrothermal method. The amine (-NH2) group was functionalized by the addition of cyanuric acid chloride followed by 4-methylbenzenesulfonol hydrazide. The SBO/FCS has been characterized by FT-IR, X-ray diffraction, XPS, HR-SEM, HR-TEM, AFM, and thermogravimetry (TGA). Under the optimum conditions, the SBO/FCS sensor showed brilliant electrochemical accomplishment for the sensing of glucose and H2O2 by a limit of detection (LOD) of 0.057 µM and 0.006 µM. It also showed linearity for glucose 0.008-4.848 mM and for H2O2 of 0.01-6.848 mM. Similarly, the sensor exhibited a low sensitivity to glucose (32 µA mM-1 cm-2) and a good sensitivity to H2O2 (295 µA mM-1 cm-2). In addition, that the prepared electrode could be used to sense the glucose and H2O2 levels in real samples such as blood serum and HeLa cell lines. The screen printed electrode (SPE) immunosensor could sense the E. coli O157:H7 concurrently and quantitatively with a linear range of 1.0 × 101-1.0 × 109 CFU mL-1 and a LOD of 4 CFU mL-1. Likewise, the immunosensor efficiently detect spiked E. coli O157:H7 in milk, chicken, and pork samples, with recoveries ranging from 89.70 to 104.72 %, demonstrating that the immunosensor was accurate and reliable.


Assuntos
Técnicas Biossensoriais , Bismuto , Quitosana , Escherichia coli O157 , Nanocompostos , Humanos , Peróxido de Hidrogênio/química , Prata , Glucose , Técnicas Biossensoriais/métodos , Hidrazonas , Espectroscopia de Infravermelho com Transformada de Fourier , Células HeLa , Imunoensaio/métodos , Nanocompostos/química
14.
Food Chem ; 445: 138749, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38368699

RESUMO

In this study, a type of luminescent porous coordination network-224 (PCN-224) in alkaline conditions was synthesized with the dramatic fluorescence enhancement by 20.4 times, which was explained by the fact that the decrease of Zr4+ content in alkaline conditions resulted in the partial recovery of the electron cloud density of 4,4',4'',4'''-(Porphine-5,10,15,20-tetrayl) tetrakis(benzoic acid) (TCPP). Given the large overlap between the excitation spectrum of PCN-224 and the absorption band of Ag nanoparticles (Ag NPs), the coating of the Ag layer on PCN-224 triggered the fluorescence quenching effect, which was applied to "turn off" fluorescence immunoassay for sensitive detection of Escherichia coli O157:H7 (E. coli O157:H7) in milk. The proposed immunoassay reached a low limit of detection (LOD) of 3.3 × 102 CFU mL-1, 29.7 times more sensitive than the conventional ELISA. It will provide a novel alternative strategy for sensitively detecting pathogenic bacteria in the field of food safety.


Assuntos
Escherichia coli O157 , Nanopartículas Metálicas , Animais , Leite/microbiologia , Prata , Imunoensaio/métodos , Microbiologia de Alimentos
15.
Food Chem ; 443: 138564, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38320374

RESUMO

Escherichia coli O157:H7 (E. coli O157:H7) emerges as a significantly worrisome pathogen associated with foodborne illnesses, emphasizing the imperative for creating precise detection tools. In this investigation, we developed a sensitive colorimetric biosensor for detecting E. coli O157:H7. It was constructed using a nanozyme comprised of Au@Fe3O4 NPs, which was fabricated and subsequently modified with an aptamer (Apt). The nanozyme harnesses its inherent peroxidase-like activity to facilitate the transformation of reduced TMB into its oxidized form in the presence of H2O2, resulting in a noticeable shift to a blue color. However, the presence of E. coli O157:H7 effectively diminished the absorbance of oxidized TMB. Consequently, the normalized absorbance at 652 nm demonstrates a linear decrease corresponding to concentrations of E. coli O157:H7 within the range of 101 to 108 CFU mL-1 with a low limit of detection (LOD, S/N = 3) of 3 CFU mL-1.


Assuntos
Técnicas Biossensoriais , Escherichia coli O157 , Colorimetria , Peróxido de Hidrogênio , Peroxidases , Técnicas Biossensoriais/métodos , Microbiologia de Alimentos
16.
J Food Prot ; 87(3): 100217, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38184149

RESUMO

The application of antimicrobial treatments to beef trimmings prior to grinding for the reduction of microbial contamination in ground beef has increased recently. However, raw single-ingredient meat products are not permitted by Food Safety and Inspection Services (FSIS) to retain more than 0.49% water resulting from postevisceration processing. The effectiveness of antimicrobials with the limited water retention is not well documented. The objective of this study was to determine the effectiveness of peracetic acid at varied concentrations against E. coli O157:H7 and Salmonella on the surface of beef trimmings and beef subprimals that was applied at industry operating parameters within the retained water requirement. One hundred and forty-four each of beef trimmings and subprimals were used to evaluate the effect of different concentrations of peracetic acid solution on reducing E. coli O157:H7 and Salmonella on surfaces of fresh beef within the FSIS requirement of ≤0.49% retained water from antimicrobial spray treatments using a conveyor system. A ten-strain cocktail mixture was inoculated on surfaces of fresh beef and subjected to water or four different concentrations of peracetic acid (130, 150, 200, and 400 ppm). Spray treatments with 130, 150, and 200 ppm peracetic acid reduced (P ≤ 0.05) E. coli O157:H7 and Salmonella at least 0.2 log on surfaces of beef trimmings and subprimals. Spray treatment with 400 ppm peracetic acid resulted in approximately 0.5 and 0.3 log reduction of E. coli O157:H7 and Salmonella, respectively. Results indicate that all concentrations (130-400 ppm) of peracetic acid significantly reduced E. coli O157:H7 and Salmonella on beef trimmings and subprimals compared to untreated controls. Thus, a range from 130 to 400 ppm of peracetic acid can be used during beef processing to improve the safety of beef trimmings and subprimals when weight gain is limited to ≤0.49% to meet regulatory requirements.


Assuntos
Anti-Infecciosos , Escherichia coli O157 , Animais , Bovinos , Ácido Peracético/farmacologia , Microbiologia de Alimentos , Manipulação de Alimentos/métodos , Água/farmacologia , Carne , Contagem de Colônia Microbiana , Anti-Infecciosos/farmacologia , Salmonella , Contaminação de Alimentos/análise
17.
Food Microbiol ; 119: 104432, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225040

RESUMO

Leafy greens, especially lettuce, are repeatedly linked to foodborne outbreaks. This paper studied the susceptibility of different leafy greens to human pathogens. Five commonly consumed leafy greens, including romaine lettuce, green-leaf lettuce, baby spinach, kale, and collard, were selected by their outbreak frequencies. The behavior of E. coli O157:H7 87-23 on intact leaf surfaces and in their lysates was investigated. Bacterial attachment was positively correlated with leaf surface roughness and affected by the epicuticular wax composition. At room temperature, E. coli O157:H7 had the best growth potentials on romaine and green-leaf lettuce surfaces. The bacterial growth was positively correlated with stomata size and affected by epicuticular wax compositions. At 37 °C, E. coli O157:H7 87-23 was largely inhibited by spinach and collard lysates, and it became undetectable in kale lysate after 24 h of incubation. Kale and collard lysates also delayed or partially inhibited the bacterial growth in TSB and lettuce lysate at 37 °C, and they sharply reduced the E. coli O157:H7 population on green leaf lettuce at 4 °C. In summary, the susceptibility of leafy greens to E. coli O157:H7 is determined by a produce-specific combination of physiochemical properties and temperature.


Assuntos
Brassicaceae , Escherichia coli O157 , Humanos , Contagem de Colônia Microbiana , Temperatura , Lactuca , Spinacia oleracea/microbiologia , Microbiologia de Alimentos , Contaminação de Alimentos/análise
18.
J Microbiol Methods ; 217-218: 106858, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38040292

RESUMO

Access to clean water for irrigation and drinking has long been a global concern. The need for fast, precise, and cost-effective methods to detect harmful bacteria like Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is high due to the potential for severe infectious diseases. Fortunately, recent research has led to developing and utilizing rapid bacterial detection methods. The creation of an aptamer-based biosensor (aptasensor) for the detection of E. coli O157:H7 using label-free aptamers and gold nanoparticles (AuNPs) is described in this study. The specific aptamers that can detect target bacteria are adsorbed on the surface of unmodified AuNPs to form the aptasensor. The detection is performed by target bacterium-induced aptasensor aggregation, which is associated with a red-to-purple color change under high-salt circumstances. We devised a quick and easy method for detecting bacteria using an anti-E. coli O157:H7 aptamer without the need for specialized equipment or pretreatment processes like cell lysis. The aptasensor could identify target bacteria with only as few as 250 colony-forming units (CFU)/ml in 15 min or less, and its specificity based on our test was 100%. This method not only provides a fast direct preparation process but also exhibits remarkable proficiency in promptly identifying the intended target with a heightened level of sensitivity and specificity. Therefore, it can serve as an intelligent tool for monitoring water reservoirs and preventing the transmission of infectious diseases associated with EHEC.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Doenças Transmissíveis , Escherichia coli O157 , Nanopartículas Metálicas , Humanos , Ouro , Técnicas Biossensoriais/métodos , Água
19.
J Food Prot ; 87(3): 100210, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38158047

RESUMO

Antimicrobial properties of biochar have been attributed to its ability to inactivate foodborne pathogens in soil, to varying degrees. High concentrations of biochar have reduced E. coli O157:H7 in soil and dairy manure compost, based on alkaline pH. Preliminary studies evaluating 31 different biochars determined that two slow pyrolysis biochars (paper biochar and walnut hull cyclone biochar) were the most effective at inactivating E. coli in soil. A study was conducted to determine the lowest percentages of paper and walnut hull cyclone biochars needed to reduce E. coli O157:H7 in soil. A model soil was adjusted to 17.75% moisture, and the two types of biochar were added at concentrations of 1.0, 1.5, 2.0, 2.5, 3.5, 4.5, 5.5, and 6.5%. Nontoxigenic E. coli O157:H7 were inoculated into soil at 6.84 log CFU/g and stored for up to 6 weeks at 21°C. Mean E. coli O157:H7 counts were 6.01-6.86 log CFU/g at all weeks between 1 and 6 in soil-only positive control samples. Populations in all soil amended with 1.0 and 1.5% of either type of biochar (as well as 2.0% of the walnut hull biochar) resulted in ≤0.68 log reductions at week 6, when compared with positive controls. All other concentrations (i.e., ≥2.0% paper and ≥2.5% walnut hull) inactivated ≥2.7 log at all weeks between 1 and 6 (p < 0.05). At the end of 6 weeks, E. coli O157:H7 declined by 2.84 log in 2.0% paper biochar samples, while concentrations of between 2.5 and 6.5% paper biochar completely inactivated E. coli O157:H7, as determined by spiral plating, at weeks 5 and 6. In contrast, 2.0% walnut hull biochar lowered populations by only 0.38 log at week 6, although 2.5-6.5% concentrations of walnut hull biochar resulted in complete inactivation at all weeks between 3 and 6, as assessed by spiral plating. In summary, ≥2.5% paper or walnut hull biochar reduced ≥5.0 log of E. coli O157:H7 during the 6-week storage period, which we attribute to high soil alkalinity. Amended at a 2.5% concentration, the pH of soil with paper or walnut hull biochar was 10.67 and 10.06, respectively. Results from this study may assist growers in the use of alkaline biochar for inactivating E. coli O157:H7 in soil.


Assuntos
Carvão Vegetal , Tempestades Ciclônicas , Escherichia coli O157 , Juglans , Solo , Pirólise , Contagem de Colônia Microbiana , Microbiologia de Alimentos
20.
Academic monograph. São Paulo: Instituto Butantan; 2024. 41 p.
Tese em Português | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5364

RESUMO

Diarrheal diseases persist as a global concern due to their significant impact on health. Diarrhea, responsible for the death of 370,000 children worldwide in 2019, ranks as the second leading cause of mortality in children under five. Diverse factors, such as infections by parasitic, viral, or bacterial pathogens, trigger episodes of diarrhea, with Escherichia coli standing out, associated with hemolytic-uremic syndrome (HUS). The E. coli O157:H7 serotype, known for its Shiga toxin production, is linked to gastrointestinal infections and HUS, particularly in children. Treatment primarily involves supportive measures, as antibiotic exposure can exacerbate symptoms, increasing the risk of HUS and other complications. Due to this serotype's association with foodborne outbreaks, strict surveillance in food production, sanitation practices, and processes is essential to prevent infections caused by these pathogens. This study evaluates the potential of O157 polysaccharide as a vaccine candidate against Shiga toxin-producing E. coli (STEC). Results indicate that antibodies generated against O157 polysaccharide could recognize E. coli O157:H7 even in the presence of a capsule. They also assisted the complement system in lysing these bacteria and inhibited their adherence to human epithelial cells. In summary, the findings suggest that O157 polysaccharide could be considered a promising antigen in vaccine formulations against Shiga toxin-producing E. coli.


As doenças diarreicas persistem como uma preocupação global devido ao seu impacto significativo na saúde. A diarreia, responsável pela morte de 370 mil crianças em 2019 no mundo, é a segunda principal causa de óbito em crianças menores de cinco anos. Fatores diversos, como infecções por patógenos parasitários, virais ou bacterianos, desencadeiam episódios de diarreia, destacando-se Escherichia coli, associada à síndrome hemolítico-urêmica (SHU). O sorotipo E. coli O157:H7, reconhecido por sua produção de toxinas Shiga, está associado a infecções gastrointestinais e SHU, especialmente em crianças. O tratamento envolve principalmente medidas de suporte, pois a exposição a antibióticos pode intensificar os sintomas, aumentando o risco de SHU e outras complicações. Devido à associação deste sorotipo com surtos alimentares, é essencial uma vigilância rigorosa na produção de alimentos, práticas sanitárias e processos que resultem na prevenção de infeções causadas por esses patógenos. Esse estudo, portanto, avalia o potencial do polissacarídeo O157 como agente vacinal contra E. coli produtora de toxina Shiga (STEC). Os resultados mostraram que anticorpos gerados contra o polissacarídeo O157 foram capazes de reconhecer E. coli O157:H7 mesmo na presença de cápsula. Eles também auxiliaram o sistema complemento na lise dessas bactérias bem como inibiram a adesão das mesmas a células epiteliais humanas. Em suma, os resultados sugerem que o polissacarídeo O157 pode ser considerado um bom candidato a antígeno em formulações vacinais contra E. coli produtoras de toxina Shiga.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...