Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.828
Filtrar
1.
Int J Pharm ; 661: 124441, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977164

RESUMO

In type 2 diabetes mellitus, hepatic insulin resistance is intricately associated with oxidative stress and inflammation. Nonetheless, the lack of therapeutic interventions directly targeting hepatic dysfunction represents a notable gap in current treatment options. Flavonoids have been explored due to their potential antidiabetic effects. However, these compounds are associated with low bioavailability and high metabolization. In the present study, four flavonoids, kaempferol, quercetin, kaempferol-7-O-glucoside and quercetin-7-O-glucoside, were studied in a cellular model of hepatic insulin resistance using HepG2 cells. Quercetin was selected as the most promising flavonoid and incorporated into liposomes to enhance its therapeutic effect. Quercetin liposomes had a mean size of 0.12 µm, with an incorporation efficiency of 93 %. Quercetin liposomes exhibited increased efficacy in modulating insulin resistance. This was achieved through the modulation of Akt expression and the attenuation of inflammation, particularly via the NF-κB pathway, as well as the regulation of PGE2 and COX-2 expression. Furthermore, quercetin liposomes displayed a significant advantage over free quercetin in attenuating the production of reactive pro-oxidant species. These findings open new avenues for developing innovative therapeutic strategies to manage diabetes, emphasizing the potential of quercetin liposomes as a promising approach for targeting both hepatic insulin resistance and associated inflammation.

2.
FASEB J ; 38(13): e23707, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38995239

RESUMO

Abdominal aortic aneurysm (AAA) is a life-threatening disease characterized by extensive membrane destruction in the vascular wall that is closely associated with vascular smooth muscle cell (VSMC) phenotypic switching. A thorough understanding of the changes in regulatory factors during VSMC phenotypic switching is essential for managing AAA therapy. In this study, we revealed the impact of NRF2 on the modulation of VSMC phenotype and the development of AAA based on single-cell RNA sequencing analysis. By utilizing a murine model of VSMC-specific knockout of nuclear factor E2-related factor 2 (NRF2), we observed that the absence of NRF2 in VSMCs exacerbated AAA formation in an angiotensin II-induced AAA model. The downregulation of NRF2 promoted VSMC phenotypic switching, leading to an enhanced inflammatory response. Through genome-wide transcriptome analysis and loss- or gain-of-function experiments, we discovered that NRF2 upregulated the expression of VSMC contractile phenotype-specific genes by facilitating microRNA-145 (miR-145) expression. Our data identified NRF2 as a novel regulator involved in maintaining the VSMC contractile phenotype while also influencing AAA formation through an miR-145-dependent regulatory mechanism.


Assuntos
Aneurisma da Aorta Abdominal , MicroRNAs , Músculo Liso Vascular , Miócitos de Músculo Liso , Fator 2 Relacionado a NF-E2 , Fenótipo , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Masculino , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Camundongos Knockout , Análise de Célula Única , Camundongos Endogâmicos C57BL , Angiotensina II/farmacologia , Análise de Sequência de RNA , Modelos Animais de Doenças
3.
Mol Cell Biochem ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985251

RESUMO

Cardiomyopathies are a group of heterogeneous diseases, characterized by abnormal structure and function of the myocardium. For many years, it has been a hot topic because of its high morbidity and mortality as well as its complicated pathogenesis. The E2Fs, a group of transcription factors found extensively in eukaryotes, play a crucial role in governing cell proliferation, differentiation, and apoptosis, meanwhile their deregulated activity can also cause a variety of diseases. Based on accumulating evidence, E2Fs play important roles in cardiomyopathies. In this review, we describe the structural and functional characteristics of the E2F family and its role in cardiomyocyte processes, with a focus on how E2Fs are associated with the onset and development of cardiomyopathies. Moreover, we discuss the great potential of E2Fs as biomarkers and therapeutic targets, aiming to provide a reference for future research.

4.
Mol Oncol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39021294

RESUMO

Protein arginine methyltransferase 5 (PRMT5) is over-expressed in a wide variety of cancers and is implicated as having a key oncogenic role, achieved in part through its control of the master transcription regulator E2F1. We investigated the relevance of PRMT5 and E2F1 in neuroblastoma (NB) and found that elevated expression of PRMT5 and E2F1 occurs in poor prognosis high-risk disease and correlates with an amplified Myelocytomatosis viral-related oncogene, neuroblastoma-derived (MYCN) gene. Our results show that MYCN drives the expression of splicing factor genes that, together with PRMT5 and E2F1, lead to a deregulated alternative RNA splicing programme that impedes apoptosis. Pharmacological inhibition of PRMT5 or inactivation of E2F1 restores normal splicing and renders NB cells sensitive to apoptosis. Our findings suggest that a sustained cancer-relevant alternative RNA splicing programme desensitises NB cells to apoptosis, and identify PRMT5 as a potential therapeutic target for high-risk disease.

5.
J Pathol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39022843

RESUMO

Metastasis is the primary culprit behind cancer-related fatalities in multiple cancer types, including prostate cancer. Despite great advances, the precise mechanisms underlying prostate cancer metastasis are far from complete. By using a transgenic mouse prostate cancer model (TRAMP) with and without Phf8 knockout, we have identified a crucial role of PHF8 in prostate cancer metastasis. By complexing with E2F1, PHF8 transcriptionally upregulates SNAI1 in a demethylation-dependent manner. The upregulated SNAI1 subsequently enhances epithelial-to-mesenchymal transition (EMT) and metastasis. Given the role of the abnormally activated PHF8/E2F1-SNAI1 axis in prostate cancer metastasis and poor prognosis, the levels of PHF8 or the activity of this axis could serve as biomarkers for prostate cancer metastasis. Moreover, targeting this axis could become a potential therapeutic strategy for prostate cancer treatment. © 2024 The Pathological Society of Great Britain and Ireland.

6.
Sci Rep ; 14(1): 16051, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992083

RESUMO

RNA-binding proteins (RBPs) are a class of proteins that primarily function by interacting with different types of RNAs and play a critical role in regulating the transcription and translation of cancer-related genes. However, their role in the progression of hepatocellular carcinoma (HCC) remains unclear. In this study, we analyzed RNA sequencing data and the corresponding clinical information of patients with HCC to screen for prognostic RBPs. Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) was identified as an independent prognostic factor for liver cancer. It is upregulated in HCC and is associated with a poor prognosis. Elevated IGF2BP3 expression was validated via immunohistochemical analysis using a tissue microarray of patients with HCC. IGF2BP3 knockdown inhibited the proliferation of Hep3B and HepG2 cells, whereas IGF2BP3 overexpression promoted the expansion of HuH-7 and MHCC97H cells. Mechanistically, IGF2BP3 modulates cell proliferation by regulating E2F1 expression. DNA hypomethylation of the IGF2BP3 gene may increase the expression of IGF2BP3, thereby enhancing cell proliferation in HCC. Therefore, IGF2BP3 may act as a novel prognostic biomarker and a potential therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Metilação de DNA , Fator de Transcrição E2F1 , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Proteínas de Ligação a RNA , Regulação para Cima , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Proliferação de Células/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Masculino , Regulação para Cima/genética , Feminino , Prognóstico , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Células Hep G2 , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
7.
Methods Mol Biol ; 2816: 53-67, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977588

RESUMO

This chapter conducts an in-depth exploration of the impact of musculoskeletal (MSK) disorders and injuries, with a specific emphasis on their consequences within the older population demographic. It underscores the escalating demand for innovative interventions in MSK tissue engineering. The chapter also highlights the fundamental role played by lipid signaling mediators (LSMs) in tissue regeneration, with relevance to bone and muscle recovery. Remarkably, Prostaglandin E2 (PGE2) emerges as a central orchestrator in these regenerative processes. Furthermore, the chapter investigates the complex interplay between bone and muscle tissues, explaining the important influence exerted by LSMs on their growth and differentiation. The targeted modulation of LSM pathways holds substantial promise as a beneficial way for addressing muscle disorders. In addition to these conceptual understandings, the chapter provides a comprehensive overview of methodologies employed in the identification of LSMs, with a specific focus on the Liquid Chromatography-Mass Spectrometry (LC-MS). Furthermore, it introduces a detailed LC MS/MS-based protocol tailored for the detection of PGE2, serving as an invaluable resource for researchers immersed in this dynamic field of study.


Assuntos
Dinoprostona , Lipidômica , Espectrometria de Massas em Tandem , Humanos , Lipidômica/métodos , Dinoprostona/metabolismo , Dinoprostona/análise , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Doenças Musculoesqueléticas/diagnóstico , Metabolismo dos Lipídeos , Lipídeos/análise
8.
Cell Rep ; 43(7): 114469, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996067

RESUMO

Despite the success of anti-programmed cell death-1 (anti-PD-1) immunotherapy, many cancer patients remain unresponsive, and reliable predictive biomarkers are lacking. Here, we show that aberrant expression of the pyrimidinergic receptor P2RY6 is frequent in human cancers and causes immune evasion. In mouse syngeneic and human xenograft tumor models, ectopic expression of P2RY6 shapes an immunosuppressive tumor microenvironment (TME) to enhance tumor growth and resistance to immunotherapy, whereas deletion of P2RY6 from tumors with high P2RY6 expression inflames the TME to inhibit tumor growth. As a G protein-coupled receptor, P2RY6 activates Gq/phospholipase C-ß signaling and stimulates the synthesis of prostaglandin E2, which is a key mediator of immunosuppression in the TME. In contrast to the essential role of P2RY6 in tumors, global deletion of P2ry6 from mice does not compromise viability. Our study thus nominates P2RY6 as a precision immunotherapy target for patients with high tumor-intrinsic P2RY6 expression.

9.
World J Diabetes ; 15(6): 1299-1316, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38983806

RESUMO

BACKGROUND: Diabetic foot ulcers (DFU), as severe complications of diabetes mellitus (DM), significantly compromise patient health and carry risks of amputation and mortality. AIM: To offer new insights into the occurrence and development of DFU, focusing on the therapeutic mechanisms of X-Paste (XP) of wound healing in diabetic mice. METHODS: Employing traditional Chinese medicine ointment preparation methods, XP combines various medicinal ingredients. High-performance liquid chromatography (HPLC) identified XP's main components. Using streptozotocin (STZ)-induced diabetic, we aimed to investigate whether XP participated in the process of diabetic wound healing. RNA-sequencing analyzed gene expression differences between XP-treated and control groups. Molecular docking clarified XP's treatment mechanisms for diabetic wound healing. Human umbilical vein endothelial cells (HUVECs) were used to investigate the effects of Andrographolide (Andro) on cell viability, reactive oxygen species generation, apoptosis, proliferation, and metastasis in vitro following exposure to high glucose (HG), while NF-E2-related factor-2 (Nrf2) knockdown elucidated Andro's molecular mechanisms. RESULTS: XP notably enhanced wound healing in mice, expediting the healing process. RNA-sequencing revealed Nrf2 upregulation in DM tissues following XP treatment. HPLC identified 21 primary XP components, with Andro exhibiting strong Nrf2 binding. Andro mitigated HG-induced HUVECs proliferation, metastasis, angiogenic injury, and inflammation inhibition. Andro alleviates HG-induced HUVECs damage through Nrf2/HO-1 pathway activation, with Nrf2 knockdown reducing Andro's proliferative and endothelial protective effects. CONCLUSION: XP significantly promotes wound healing in STZ-induced diabetic models. As XP's key component, Andro activates the Nrf2/HO-1 signaling pathway, enhancing cell proliferation, tubule formation, and inflammation reduction.

10.
Front Ophthalmol (Lausanne) ; 4: 1331298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984123

RESUMO

Introduction: Estrogen has emerged as a multifaceted signaling molecule in the retina, playing an important role in neural development and providing neuroprotection in adults. It interacts with two receptor types: classical estrogen receptors (ERs) alpha and beta, and G protein-coupled estrogen receptor (Gper). Gper differs from classical ERs in structure, localization, and signaling. Here we provide the first report of the temporal and spatial properties of Gper transcript and protein expression in the developing and mature mouse retina. Methods: We applied qRT-PCR to determine Gper transcript expression in wild type mouse retina from P0-P21. Immunohistochemistry and Western blot were used to determine Gper protein expression and localization at the same time points. Results: Gper expression showed a 6-fold increase during postnatal development, peaking at P14. Relative total Gper expression exhibited a significant decrease during retinal development, although variations emerged in the timing of changes among different forms of the protein. Gper immunoreactivity was seen in retinal ganglion cells (RGCs) throughout development and also in somas in the position of horizontal cells at early time points. Immunoreactivity was observed in the cytoplasm and Golgi at all time points, in the nucleus at early time points, and in RGC axons as the retina matured. Discussion: In conclusion, our study illuminates the spatial and temporal expression patterns of Gper in the developing mouse retina and provides a vital foundation for further investigations into the role of Gper in retinal development and degeneration.

11.
Beilstein J Org Chem ; 20: 1468-1475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978743

RESUMO

A catalyst- and additive-free synthesis of 2-benzyl N-substituted anilines from (E)-2-arylidene-3-cyclohexenones and primary amines has been reported. The reaction proceeds smoothly through a sequential imine condensation-isoaromatization pathway, affording a series of synthetically useful aniline derivatives in acceptable to high yields. Mild reaction conditions, no requirement of metal catalysts, operational simplicity and the potential for scale-up production are some of the highlighted advantages of this transformation.

12.
Biochem Genet ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981987

RESUMO

Gastric cancer (GC) is a health problem that concerns people around the world. CDC25B is an essential cell cycle regulatory factor that is overexpressed in a variety of tumor cells. CDC25B plays a vital part in the progression and proliferation of malignant tumors. However, it is not yet clear that how CDC25B affects the stemness of GC cells. The study used bioinformatics to detect the expression of E2F1 and CDC25B in GC tissues and their correlation, as well as pathways enriched by CDC25B. We detected the expression of E2F1 and CDC25B in GC cell lines using quantitative reverse transcription polymerase chain reaction and tested the combination relationship between E2F1 and CDC25B using chromatin immunoprecipitation (ChIP) and dual-luciferase assays. We measured cell viability using CCK-8 assay, evaluated sphere-forming efficiency using sphere formation assay, and determined cell proliferation ability using colony formation assay. We also analyzed the expression of stemness markers and MAPK pathway-related proteins using western blot. In GC tissues and cells, CDC25B was upregulated. Silencing CDC25B could affect the MAPK pathway, thereby repressing the proliferation and stemness of GC cells. As predicted by bioinformatics, CDC25B had an upstream transcription factor, E2F1, which also had a high expression level in GC. Dual-luciferase and ChIP assays confirmed the combination relationship between the two. Rescue experiments uncovered that overexpression of CDC25B could reverse the impact induced by E2F1 knockdown on proliferation and stemness of cells. In conclusion, E2F1 could activate CDC25B transcription to regulate the MAPK pathway and enhance the proliferation and stemness of GC cells. We revealed a potential regulatory pathway of stemness of GC cells that was mediated by CDC25B, providing new ideas for improving and innovating GC treatment.

13.
Transl Res ; 273: 32-45, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969167

RESUMO

In general, ensuring safety is the top priority of a new modality. Although oncolytic virus armed with an immune stimulatory transgene (OVI) showed some promise, the strategic concept of simultaneously achieving maximum effectiveness and minimizing side effects has not been fully explored. We generated a variety of survivin-responsive "conditionally replicating adenoviruses that can target and treat cancer cells with multiple factors (m-CRAs)" (Surv.m-CRAs) armed with the granulocyte-macrophage colony-stimulating factor (GM-CSF) transgene downstream of various promoters using our m-CRA platform technology. We carefully analyzed both therapeutic and adverse effects of them in the in vivo syngeneic Syrian hamster cancer models. Surprisingly, an intratumor injection of a conventional OVI, which expresses the GM-CSF gene under the constitutively and strongly active "cytomegalovirus enhancer and ß-actin promoter", provoked systemic and lethal GM-CSF circulation and shortened overall survival (OS). In contrast, a new conceptual type of OVI, which expressed GM-CSF under the cancer-predominant and mildly active E2F promoter or the moderately active "Rous sarcoma virus long terminal repeat", not only abolished lethal adverse events but also prolonged OS and systemic anti-cancer immunity. Our study revealed a novel concept that optimal expression levels of an immune stimulatory transgene regulated by a suitable upstream promoter is crucial for achieving high safety and maximal therapeutic effects simultaneously in OVI therapy. These results pave the way for successful development of the next-generation OVI and alert researchers about possible problems with ongoing clinical trials.

14.
J Neurogenet ; 38(2): 41-45, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39007626

RESUMO

Pyruvate Dehydrogenase (PDH) E2 deficiency due to Dihydrolipoamide acetyltransferase (DLAT) mutations is a very rare condition with only nine reported cases to date. We describe a 15-year-old girl with mild intellectual disability, paroxysmal dystonia and bilateral basal ganglia signal abnormalities on brain magnetic resonance imaging (MRI). Additionally, neurophysiological, imaging, metabolic and exome sequencing studies were performed. Routine metabolite testing, and GLUT1 and PRRT2 mutation analysis were negative. A repeat brain MRI revealed 'Eye-of-the-tiger-sign'. Exome sequencing identified homozygous valine to glycine alteration at amino acid position 157 in the DLAT gene. Bioinformatic and family analyses indicated that the alteration was likely pathogenic. Patient's dystonia was responsive to low-dose carbamazepine. On weaning carbamazepine, patient developed hallucinations which resolved after carbamazepine was restarted. PDH E2 deficiency due to DLAT mutation has a more benign course compared to common forms of PDH E1 deficiency due to X-linked PDHA1 mutations. All known cases of PDH E2 deficiency due to DLAT mutations share the features of episodic dystonia and intellectual disability. Our patient's dystonia and hallucinations responded well to low-dose carbamazepine.


Assuntos
Carbamazepina , Distonia , Alucinações , Humanos , Feminino , Adolescente , Distonia/genética , Distonia/tratamento farmacológico , Carbamazepina/uso terapêutico , Alucinações/genética , Alucinações/tratamento farmacológico , Mutação , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/genética , Deficiência Intelectual/genética , Deficiência Intelectual/tratamento farmacológico , Anticonvulsivantes/uso terapêutico
15.
J Ginseng Res ; 48(4): 384-394, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39036736

RESUMO

Background: Herpes simplex virus type 1 (HSV-1), known to latently infect the host's trigeminal ganglion, can lead to severe herpes encephalitis or asymptomatic infection, potentially contributing to neurodegenerative diseases like Alzheimer's. The virus generates reactive oxygen species (ROS) that significantly impact viral replication and induce chronic inflammation through NF-κB activation. Nuclear factor E2-related factor 2 (Nrf2), an oxidative stress regulator, can prevent and treat HSV-1 infection by activating the passive defense response in the early stages of infection. Methods and results: Our study investigated the antiviral effects of ginsenoside Rg5, an Nrf2 activator, on HSV-1 replication and several host cell signaling pathways. We found that HSV-1 infection inhibited Nrf2 activity in host cells, induced ROS/NF-κB signaling, and triggered inflammatory cytokines. However, treatment with ginsenoside Rg5 inhibited ROS/NF-κB signaling and reduced inflammatory cytokines through NRF2 induction. Interestingly, the Nrf2 inhibitor ML385 suppressed the expression of NAD(P)H quinone oxidoreductase 1(NQO1) and enhanced the expression of KEAP1 in HSV-1 infected cells. This led to the reversal of VP16 expression inhibition, a protein factor associated with HSV-1 infection, thereby promoting HSV-1 replication. Conclusion: These findings suggest for the first time that ginsenoside Rg5 may serve as an antiviral against HSV-1 infection and could be a novel therapeutic agent for HSV-1-induced neuroinflammation.

16.
Cell Biochem Biophys ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014186

RESUMO

Podocyte damage plays a crucial role in the occurrence and development of diabetic nephropathy (DN). Accumulating evidence suggests that dysregulation of transcription factors plays a crucial role in podocyte damage in DN. However, the biological functions and underlying mechanisms of most transcription factors in hyperglycemia-induced podocytes damage remain largely unknown. Through integrated analysis of data mining, bioinformatics, and RT-qPCR validation, we identified a critical transcription factor forkhead box F1 (FOXF1) implicated in DN progression. Moreover, we discovered that FOXF1 was extensively down-regulated in renal tissue and serum from DN patients as well as in high glucose (HG)-induced podocyte damage. Meanwhile, our findings showed that FOXF1 might be a viable diagnostic marker for DN patients. Functional experiments demonstrated that overexpression of FOXF1 strikingly enhanced proliferation, outstandingly suppressed apoptosis, and dramatically reduced inflammation and fibrosis in HG-induced podocytes damage. Mechanistically, we found that the downregulation of FOXF1 in HG-induced podocyte damage was caused by DNMT1 directly binding to FOXF1 promoter and mediating DNA hypermethylation to block FOXF1 transcriptional activity. Furthermore, we found that FOXF1 inhibited the transcriptional expression of miR-342-3p by binding to the promoter of miR-342, resulting in reduced sponge adsorption of miR-342-3p to E2F1, promoting the expression of E2F1, and thereby inhibiting HG-induced podocytes damage. In conclusion, our findings showed that blocking the FOXF1/miR-342-3p/E2F1 axis greatly alleviated HG-induced podocyte damage, which provided a fresh perspective on the pathogenesis and therapeutic strategies for DN patients.

17.
J Leukoc Biol ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041661

RESUMO

Tumor-derived prostaglandin E2 (PGE2) impairs anti-tumor immunity by priming suppressive functions on various immune cell types, including dendritic cells (DCs). In this way, tumors mediate DC dysfunction and hamper their anti-tumoral activity. PGE2 is known to modulate DC function via signaling through the E-prostanoid receptor type (EP) 2 and EP4. Preclinical studies have demonstrated the therapeutic value of targeting EP2/4 receptor signaling in DCs. Ongoing phase I clinical trials with EP antagonists have shown immunomodulation in cancer patients. However, the systemic drug administration leads to off-target events and subsequent side-effects. To limit the off-target effects of EP targeting, EP2 and EP4 antagonists were encapsulated in polymeric nanoparticles (NPs). In this study we evaluated the efficacy of EP2/4 specific antagonists encapsulated in NPs to protect cDC2s from suppressive effects of tumor-derived PGE2 in different tumor models. We show that tumor-derived PGE2 signals via EP2/4 to mediate the acquisition of a suppressive phenotype of cDC2s. EP2/4 antagonists encapsulated NPs impaired the conversion of cDC2s towards a suppressive state and inhibited the occurrence of suppressive features such as IL-10 production or the ability to expand Tregs. Importantly, the NPs abolished the transition towards this suppressive state in different tumor models: Melanoma-conditioned media, ascites fluid derived from ovarian cancer patients (2D), and upon coculture with colorectal cancer patient-derived organoids (3D). We propose that targeting the PGE2-EP2/4 axis using NPs can achieve immunomodulation in the immune system of cancer patients, alleviate tumor-derived suppression, and thus facilitate the development of potent anti-tumor immunity in cancer patients.

18.
Food Chem ; 458: 140174, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38964109

RESUMO

Fu Brick Tea (FBT) is characterized by Fungus Aroma (FA), which determines the quality of FBT products. However, the aroma constituents and their interactive mechanism for FA remain unclear. In this study, the FBT sample with the optimal FA characteristics was selected from 29 FBTs. Then, 19 components with OAV ≥ 1 were identified as the odorants involved in the FA formation. The aroma recombination test suggested that the FA was potentially produced by the synergistic interplay among the 15 key odorants, including (E,E)-2,4-heptadienal, (E,E)-2,4-nonadienal, (E)-2-nonenal, (E,Z)-2,6-nonadienal, (E)-2-octenal, (E)-ß-ionone, 4-ketoisophorone, dihydroactinidiolide, (E)-ß-damascenone, 1-octen-3-ol, linalool, geraniol, heptanal, hexanal, and phenylacetaldehyde. And, the synergistic effects between them were preliminarily studied by aroma omissions, such as modulatory effects, masking effects, compensatory effects, and novelty effects, ultimately contributing to the FA. In all, this work helps us better understand the formation of the FA and provides a basis for the improvement of FBT production technology.

19.
Cancer Commun (Lond) ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958445

RESUMO

BACKGROUND: Lymph node metastasis (LNM) is the primary mode of metastasis in gastric cancer (GC). However, the precise mechanisms underlying this process remain elusive. Tumor cells necessitate lipid metabolic reprogramming to facilitate metastasis, yet the role of lipoprotein lipase (LPL), a pivotal enzyme involved in exogenous lipid uptake, remains uncertain in tumor metastasis. Therefore, the aim of this study was to investigate the presence of lipid metabolic reprogramming during LNM of GC as well as the role of LPL in this process. METHODS: Intracellular lipid levels were quantified using oil red O staining, BODIPY 493/503 staining, and flow cytometry. Lipidomics analysis was employed to identify alterations in intracellular lipid composition following LPL knockdown. Protein expression levels were assessed through immunohistochemistry, Western blotting, and enzyme-linked immunosorbent assays. The mouse popliteal LNM model was utilized to investigate differences in LNM. Immunoprecipitation and mass spectrometry were employed to examine protein associations. In vitro phosphorylation assays and Phos-tag sodium dodecyl-sulfate polyacrylamide gel electrophoresis assays were conducted to detect angiopoietin-like protein 4 (ANGPTL4) phosphorylation. RESULTS: We identified that an elevated intracellular lipid level represents a crucial characteristic of node-positive (N+) GC and further demonstrated that a high-fat diet can expedite LNM. LPL was found to be significantly overexpressed in N+ GC tissues and shown to facilitate LNM by mediating dietary lipid uptake within GC cells. Leptin, an obesity-related hormone, intercepted the effect exerted by ANGPTL4/Furin on LPL cleavage. Circulating leptin binding to the leptin receptor could induce the activation of inositol-requiring enzyme-1 (IRE1) kinase, leading to the phosphorylation of ANGPTL4 at the serine 30 residue and subsequently reducing its binding affinity with LPL. Moreover, our research revealed that LPL disrupted lipid homeostasis by elevating intracellular levels of arachidonic acid, which then triggered the cyclooxygenase-2/prostaglandin E2 (PGE2) pathway, thereby promoting tumor lymphangiogenesis. CONCLUSIONS: Leptin-induced phosphorylation of ANGPTL4 facilitates LPL-mediated lipid uptake and consequently stimulates the production of PGE2, ultimately facilitating LNM in GC.

20.
Acta Trop ; 257: 107283, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38955322

RESUMO

Toxoplasmosis, a zoonotic parasitic disease caused by Toxoplasma gondii (T. gondii), is prevalent worldwide. The fact should be emphasized that a considerable proportion of individuals infected with T. gondii may remain asymptomatic; nevertheless, the condition can have severe implications for pregnant women or immunocompromised individuals. The current treatment of toxoplasmosis primarily relies on medication; however, traditional anti-toxoplasmosis drugs exhibit significant limitations in terms of efficacy, side effects, and drug resistance. The life cycles of T. gondii are characterized by distinct stages and its body morphology goes through dynamic alterations during the growth cycle that are intricately governed by a wide array of post-translational modifications (PTMs). Ubiquitin (Ub) signaling and ubiquitin-like (Ubl) signaling are two crucial post-translational modification pathways within cells, regulating protein function, localization, stability, or interactions by attaching Ub or ubiquitin-like proteins (Ubls) to target proteins. While these signaling mechanisms share some functional similarities, they have distinct regulatory mechanisms and effects. T. gondii possesses both Ub and Ubls and plays a significant role in regulating the parasite's life cycle and maintaining its morphology through PTMs of substrate proteins. Investigating the role and mechanism of protein ubiquitination in T. gondii will provide valuable insights for preventing and treating toxoplasmosis. This review explores the distinctive characteristics of Ub and Ubl signaling in T. gondii, with the aim of inspiring research ideas for the identification of safer and more effective drug targets against toxoplasmosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...