Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Clin Sci (Lond) ; 138(14): 883-900, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38959295

RESUMO

Hypertension is a leading risk factor for disease burden worldwide. Vascular contraction and remodeling contribute to the development of hypertension. Glutathione S-transferase P1 (Gstp1) plays several critical roles in both normal and neoplastic cells. In this study, we investigated the effect of Gstp1 on hypertension as well as on vascular smooth muscle cell (VSMC) contraction and phenotypic switching. We identified the higher level of Gstp1 in arteries and VSMCs from hypertensive rats compared with normotensive rats for the first time. We then developed Adeno-associated virus 9 (AAV9) mediated Gstp1 down-regulation and overexpression in rats and measured rat blood pressure by using the tail-cuff and the carotid catheter method. We found that the blood pressure of spontaneously hypertensive rats (SHR) rose significantly with Gstp1 down-regulation and reduced apparently after Gstp1 overexpression. Similar results were obtained from the observations of 2-kidney-1-clip renovascular (2K1C) hypertensive rats. Gstp1 did not influence blood pressure of normotensive Wistar-Kyoto (WKY) rats and Sprague-Dawley (SD) rats. Further in vitro study indicated that Gstp1 knockdown in SHR-VSMCs promoted cell proliferation, migration, dedifferentiation and contraction, while Gstp1 overexpression showed opposite effects. Results from bioinformatic analysis showed that the Apelin/APLNR system was involved in the effect of Gstp1 on SHR-VSMCs. The rise in blood pressure of SHR induced by Gstp1 knockdown could be reversed by APLNR antagonist F13A. We further found that Gstp1 enhanced the association between APLNR and Nedd4 E3 ubiquitin ligases to induce APLNR ubiquitination degradation. Thus, in the present study, we discovered a novel anti-hypertensive role of Gstp1 in hypertensive rats and provided the experimental basis for designing an effective anti-hypertensive therapeutic strategy.


Assuntos
Pressão Sanguínea , Glutationa S-Transferase pi , Hipertensão , Músculo Liso Vascular , Ubiquitina-Proteína Ligases Nedd4 , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Ubiquitinação , Animais , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Glutationa S-Transferase pi/metabolismo , Glutationa S-Transferase pi/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Ratos , Proliferação de Células
2.
Sci Rep ; 14(1): 15848, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982159

RESUMO

E3 ubiquitin protein ligase encoded by ARIH2 gene catalyses the ubiquitination of target proteins and plays a crucial role in posttranslational modifications across various cellular processes. As prior documented, mutations in genes involved in the ubiquitination process are often associated with autism spectrum disorder (ASD) and/or intellectual disability (ID). In the current study, a de novo heterozygous mutation was identified in the splicing intronic region adjacent to the last exon of the ARIH2 gene using whole exome sequencing (WES). We hypothesize that this mutation, found in an ASD/ID patient, disrupts the protein Ariadne domain which is involved in the autoinhibition of ARIH2 enzyme. Predictive analyses elucidated the implications of the novel mutation in the splicing process and confirmed its autosomal dominant inheritance model. Nevertheless, we cannot exclude the possibility that other genetic factors, undetectable by WES, such as mutations in non-coding regions and polygenic risk in inter-allelic complementation, may contribute to the patient's phenotype. This work aims to suggest potential relationship between the detected mutation in ARIH2 gene and both ASD and ID, even though functional studies combined with new sequencing approaches will be necessary to validate this hypothesis.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Mutação , Ubiquitina-Proteína Ligases , Humanos , Transtorno do Espectro Autista/genética , Deficiência Intelectual/genética , Ubiquitina-Proteína Ligases/genética , Masculino , Sequenciamento do Exoma , Feminino , Predisposição Genética para Doença , Criança
3.
Transl Cancer Res ; 13(5): 2175-2186, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38881936

RESUMO

Background: Cervical cancer, one of the prevalent malignancies among females, is closely associated with human papillomavirus (HPV) infection. Homologous to the E6-AP carboxyl terminus (HECT) domain and ankyrin repeat containing E3 ubiquitin-protein ligase 1 (HACE1) plays pivotal roles in various cancers. This study aimed to elucidate the expression of HACE1 in cervical cancer and its correlation with clinical features. Methods: From The Cancer Genome Atlas Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (TCGA-CESC) and Gene Expression Omnibus (GEO, GSE6791) datasets, we obtained RNA-Seq profiles and associated clinical information. Differential gene analysis was conducted using the R "limma" package. Implications for HPV infection and the overall survival (OS) of cervical cancer were determined by performing differential expression analysis and the Cox proportional hazards regression model. Immunohistochemical analyses were used to validate the expression in cervical cancer and normal cervical tissue. Further, nomogram was constructed to predict OS in cervical cancer. Whether the model was credible was evaluated according to receiver operating characteristic (ROC) curves and concordance curves. To further evaluate the potential functions of HACE1, we conducted functional enrichment analysis. Finally, we assessed methylation levels in HPV+ and HPV- patients in the TCGA-CESC dataset. Results: Utilizing TCGA and GSE6791 datasets, we observed significant upregulation of HACE1 in cervical cancer patients, particularly linked to HPV infection. Immunohistochemical staining revealed enhanced HACE1 expression in tumor tissues. Further analysis demonstrated a significant positive correlation between elevated HACE1 and HPV-associated proteins (E1, E6, and E7). Moreover, high HACE1 expression was associated with adverse prognosis in cervical cancer patients. Multivariate Cox analysis indicated that HACE1 could serve as an independent prognostic factor. We developed a prognostic model integrating HPV subtypes, the International Federation of Gynecology and Obstetrics (FIGO) staging, and HACE1, exhibiting strong predictive efficacy for cervical cancer prognosis. Gene enrichment analysis indicated HACE1's potential involvement in multiple signaling pathways during cervical cancer progression, while the demethylation of cg03002526 in HPV-positive patients might contribute to HACE1 upregulation. Conclusions: Our study reveals that HACE1 upregulation is associated with cervical cancer, particularly in HPV-positive patients. HACE1 emerges as an independent prognostic factor, linked to unfavorable outcomes.

4.
Dev Dyn ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850245

RESUMO

BACKGROUND: The spinal cord is a crucial part of the vertebrate CNS, controlling movements and receiving and processing sensory information from the trunk and limbs. However, there is much we do not know about how this essential organ develops. Here, we describe expression of 21 transcription factors and one transcriptional regulator in zebrafish spinal cord. RESULTS: We analyzed the expression of aurkb, foxb1a, foxb1b, her8a, homeza, ivns1abpb, mybl2b, myt1a, nr2f1b, onecut1, sall1a, sall3a, sall3b, sall4, sox2, sox19b, sp8b, tsc22d1, wdhd1, zfhx3b, znf804a, and znf1032 in wild-type and MIB E3 ubiquitin protein ligase 1 zebrafish embryos. While all of these genes are broadly expressed in spinal cord, they have distinct expression patterns from one another. Some are predominantly expressed in progenitor domains, and others in subsets of post-mitotic cells. Given the conservation of spinal cord development, and the transcription factors and transcriptional regulators that orchestrate it, we expect that these genes will have similar spinal cord expression patterns in other vertebrates, including mammals and humans. CONCLUSIONS: Our data identify 22 different transcriptional regulators that are strong candidates for playing different roles in spinal cord development. For several of these genes, this is the first published description of their spinal cord expression.

6.
J Transl Int Med ; 12(1): 35-50, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38591063

RESUMO

Background and Objectives: Cardiac injury plays a critical role in contributing to the mortality associated with sepsis, a condition marked by various forms of programmed cell deaths. Previous studies hinted at the WW domain-containing E3 ubiquitin protein ligase 2 (WWP2) involving in heart failure and endothelial injury. However, the precise implications of WWP2 in sepsis-induced cardiac injury, along with the underlying mechanisms, remain enigmatic. Methods: Sepsis induced cardiac injury were constructed by intraperitoneal injection of lipopolysaccharide. To discover the function of WWP2 during this process, we designed and performed loss/gain-of-function studies with cardiac-specific vectors and WWP2 knockout mice. Combination experiments were performed to investigate the relationship between WWP2 and downstream signaling in septic myocardium injury. Results: The protein level of WWP2 was downregulated in cardiomyocytes during sepsis. Cardiac-specific overexpression of WWP2 protected heart from sepsis induced mitochondrial oxidative stress, programmed cell death and cardiac injury, while knockdown or knockout of WWP2 exacerbated this process. The protective potency of WWP2 was predominantly linked to its ability to suppress cardiomyocyte ferroptosis rather than apoptosis. Mechanistically, our study revealed a direct interaction between WWP2 and acyl-CoA synthetase long-chain family member 4 (FACL4), through which WWP2 facilitated the ubiquitin-dependent degradation of FACL4. Notably, we observed a notable reduction in ferroptosis and cardiac injury within WWP2 knockout mice after FACL4 knockdown during sepsis. Conclusions: WWP2 assumes a critical role in safeguarding the heart against injury induced by sepsis via regulating FACL4 to inhibit LPS-induced cardiomyocytes ferroptosis.

7.
Circ J ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631864

RESUMO

BACKGROUND: Foam cell formation is an important step for atherosclerosis (AS) progression. We investigated the mechanism by which the long non-coding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) regulates foam cell formation during AS progression.Methods and Results: An in vivo AS model was created by feeding ApoE-/-mice a high-fat diet. Oxidized low-density lipoprotein (ox-LDL)-stimulated macrophages were used as a cellular AS model. Interactions between NEAT1, miR-17-5p, itchy E3 ubiquitin protein ligase (ITCH) and liver kinase B1 (LKB1) were analyzed. NEAT1 and ITCH were highly expressed in clinical samples collected from 10 AS patients and in ox-LDL-treated macrophages, whereas expression of both miR-17-5p and LKB1 was low. ITCH knockdown inhibited ox-LDL-induced lipid accumulation and LDL uptake in macrophages. Mechanistically speakingly, ITCH promoted LDL uptake and lipid accumulation in macrophages by mediating LKB1 ubiquitination degradation. NEAT1 knockdown reduced LDL uptake and lipid accumulation in macrophages and AS progression in vivo. NEAT1 promoted ITCH expression in macrophages by acting as a sponge for miR-17-5p. Inhibition of miR-17-5p facilitated ox-LDL-induced increase in LDL uptake and lipid accumulation in macrophages, which was reversed by NEAT1/ITCH knockdown. CONCLUSIONS: NEAT1 accelerated foam cell formation during AS progression through the miR-17-5p/ITCH/LKB1 axis.

8.
bioRxiv ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38405913

RESUMO

Background: The spinal cord is a crucial part of the vertebrate CNS, controlling movements and receiving and processing sensory information from the trunk and limbs. However, there is much we do not know about how this essential organ develops. Here, we describe expression of 21 transcription factors and one transcriptional regulator in zebrafish spinal cord. Results: We analyzed the expression of aurkb, foxb1a, foxb1b, her8a, homeza, ivns1abpb, mybl2b, myt1a, nr2f1b, onecut1, sall1a, sall3a, sall3b, sall4, sox2, sox19b, sp8b, tsc22d1, wdhd1, zfhx3b, znf804a, and znf1032 in wild-type and MIB E3 ubiquitin protein ligase 1 zebrafish embryos. While all of these genes are broadly expressed in spinal cord, they have distinct expression patterns from one another. Some are predominantly expressed in progenitor domains, and others in subsets of post-mitotic cells. Given the conservation of spinal cord development, and the transcription factors and transcriptional regulators that orchestrate it, we expect that these genes will have similar spinal cord expression patterns in other vertebrates, including mammals and humans. Conclusions: Our data identify 22 different transcriptional regulators that are strong candidates for playing different roles in spinal cord development. For several of these genes, this is the first published description of their spinal cord expression.

9.
Oncol Lett ; 26(5): 476, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37809049

RESUMO

Osteopontin (OPN), a secreted phosphoglycoprotein, has important roles in tumor growth, invasion and metastasis in numerous types of cancers. Denticleless E3 ubiquitin protein ligase homolog (DTL), one of the CUL4-DDB1-associated factors (DCAFs), has also been associated with the invasion and metastasis of cancer cells. In the present study, OPN was found to induce DTL expression in liver cancer cells, and the results obtained using luciferase activity assays demonstrated that OPN could transcriptionally activate DTL expression in liver cancer cells. Furthermore, the results of the present study demonstrated that OPN could increase the expression of DTL via PI3K/AKT signaling. In conclusion, the present study demonstrated that OPN, as an extracellular matrix protein, is able to promote the growth and invasion of liver cancer cells through stimulation of the expression of DTL via the PI3K/AKT signaling pathway.

10.
Biomolecules ; 13(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37189394

RESUMO

The scaffolding protein Axin is an important regulator of the Wnt signaling pathway, and its dysfunction is closely related to carcinogenesis. Axin could affect the assembly and dissociation of the ß-catenin destruction complex. It can be regulated by phosphorylation, poly-ADP-ribosylation, and ubiquitination. The E3 ubiquitin ligase SIAH1 participates in the Wnt pathway by targeting various components for degradation. SIAH1 is also implicated in the regulation of Axin2 degradation, but the specific mechanism remains unclear. Here, we verified that the Axin2-GSK3 binding domain (GBD) was sufficient for SIAH1 binding by the GST pull-down assay. Our crystal structure of the Axin2/SIAH1 complex at 2.53 Å resolution reveals that one Axin2 molecule binds to one SIAH1 molecule via its GBD. These interactions critically depend on a highly conserved peptide 361EMTPVEPA368 within the Axin2-GBD, which forms a loop and binds to a deep groove formed by ß1, ß2, and ß3 of SIAH1 by the N-terminal hydrophilic amino acids Arg361 and Thr363 and the C-terminal VxP motif. The novel binding mode indicates a promising drug-binding site for regulating Wnt/ß-catenin signaling.


Assuntos
Quinase 3 da Glicogênio Sintase , Via de Sinalização Wnt , Humanos , Proteína Axina/genética , Proteína Axina/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , beta Catenina/metabolismo , Ubiquitinação
11.
PeerJ ; 11: e15385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187513

RESUMO

The interactions between plant viruses and insect vectors are very complex. In recent years, RNA sequencing data have been used to elucidate critical genes of Tomato spotted wilt ortho-tospovirus (TSWV) and Frankliniella occidentalis (F. occidentalis). However, very little is known about the essential genes involved in thrips acquisition and transmission of TSWV. Based on transcriptome data of F. occidentalis infected with TSWV, we verified the complete sequence of the E3 ubiquitin-protein ligase UBR7 gene (UBR7), which is closely related to virus transmission. Additionally, we found that UBR7 belongs to the E3 ubiquitin-protein ligase family that is highly expressed in adulthood in F. occidentalis. UBR7 could interfere with virus replication and thus affect the transmission efficiency of F. occidentalis. With low URB7 expression, TSWV transmission efficiency decreased, while TSWV acquisition efficiency was unaffected. Moreover, the direct interaction between UBR7 and the nucleocapsid (N) protein of TSWV was investigated through surface plasmon resonance and GST pull-down. In conclusion, we found that UBR7 is a crucial protein for TSWV transmission by F. occidentalis, as it directly interacts with TSWV N. This study provides a new direction for developing green pesticides targeting E3 ubiquitin to control TSWV and F. occidentalis.


Assuntos
Tisanópteros , Tospovirus , Animais , Tisanópteros/genética , Tospovirus/genética , Doenças das Plantas , Insetos , Ubiquitina-Proteína Ligases/genética
12.
Cytotechnology ; 75(3): 255-267, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37187949

RESUMO

Circular RNA-based competing endogenous RNA (ceRNA) networks contribute to the initiation and development of various types of cancer, including hepatocellular carcinoma (HCC). Although a novel circular RNA itchy E3 ubiquitin protein ligase (circITCH) is identified as a tumor suppressor in HCC, its detailed molecular mechanisms have not been fully delineated. The present study was designed to resolve this issue, and we firstly verified that circITCH suppressed the malignant phenotypes in HCC cells by regulating a novel miR-421/B-cell translocation gene 1 (BTG1) axis. Specifically, through performing the Real-Time qPCR analysis, we noticed that circITCH expression in HCC tumor tissues or cell lines were significantly lower than that in adjacent normal tissues or normal hepatocytes, and the expression levels of circITCH were negatively correlated with tumor size and TNM stage in HCC patients. Next, our functional experiments confirmed that overexpression of circITCH induced cell cycle arrest and apoptosis, and reduced cell viability and colony forming ability in Hep3B and Huh7 cells. Mechanically, bioinformatics analysis, RNA immunoprecipitation and luciferase reporter assay demonstrated that circITCH served as RNA sponges for miR-421 to elevate BTG1 levels in HCC cells. The rescuing experiments verified that upregulation of miR-421 promoted cell viability and colony formation, and reduced apoptosis, which were abrogated by overexpression of circITCH or BTG1. In conclusion, this study identified a novel circITCH/miR-421/BTG1 axis that restrained the development of HCC, and our findings provided novel biomarkers for the treatment of this disease.

13.
Mol Immunol ; 157: 186-194, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37054520

RESUMO

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease. This study aimed to investigate the role of SMAD specific E3 ubiquitin protein ligase 1 (SMURF1) in the Th17 and Th17.1 differentiation and Treg/Th17 imbalance, which are major factors contributing to the pathogenesis of SLE. SLE patients and healthy individuals were recruited to detect the SMURF1 levels in naïve CD4+ cells from peripheral blood. Purified and expanded naïve CD4+ T cells were employed to evaluate the effects of SMURF1 on Th17 and Th17.1 polarization in vitro. MRL/lpr lupus model was employed to explore the disease phenotype as well as Treg/Th17 balance in vivo. The results showed that SMURF1 was down-regulated in naïve CD4+ T cells in peripheral blood of patients with SLE and in spleen of MRL/lpr mice. SMURF1 overexpression suppressed the polarization of naïve CD4+ T cells toward Th17 and Th17.1 phenotype and down-regulated the expression of retinoid-related orphan receptor-gammat (RORγt). Subsequently, SMURF1 down-regulation aggravated the disease phenotype, inflammation, and the Treg/Th17 imbalance in MRL/lpr mice. Furthermore, we found that SMURF overexpression promoted the ubiquitination and decreases the stability of RORγt. In conclusion, SMURF1 inhibited the polarization of Th17 and Th17.1 cells and improved the Treg/Th17 imbalance in SLE, which was mediated as least partly by the ubiquitination of RORγt.


Assuntos
Lúpus Eritematoso Sistêmico , Linfócitos T Reguladores , Animais , Humanos , Camundongos , Camundongos Endogâmicos MRL lpr , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Células Th17 , Ubiquitinação
14.
Life Sci ; 320: 121555, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878279

RESUMO

BACKGROUND: Matrix metallopeptidases (MMPs) are critical matrix-degrading molecules and they are frequently overexpressed in degenerative discs. This study aimed to investigate the mechanism for MMP upregulation. METHODS: Immunoblot and RT-qPCR were used for detecting protein and gene expression levels. 4-month-old and 24-month-old C57BL/6 mice were used for evaluating intervertebral disc degeneration (IDD). An ubiquitination assay was used to determine protein modification. Immunoprecipitation and mass spectrometry were used for identifying protein complex members. RESULTS: We identified the elevation of 14 MMPs among 23 members in aged mice with IDD. Eleven of these 14 MMP gene promoters contained a Runx2 (runt-related transcription factor 2) binding site. Biochemical analyses revealed that Runx2 recruited a histone acetyltransferase p300 and a coactivator NCOA1 (nuclear receptor coactivator 1) to assemble a complex, transactivating MMP expression. The deficiency of an E3 ligase called HERC3 (HECT and RLD domain containing E3 ubiquitin-protein ligase 3) resulted in the accumulation of NCOA1 in the inflammatory microenvironment. High throughput screening of small molecules that specifically target the NCOA1-p300 interaction identified a compound SMTNP-191, which showed an inhibitory effect on suppressing MMP expression and attenuating the IDD process in aged mice. CONCLUSION: Our data support a model in which deficiency of HERC3 fails to ubiquitinate NCOA1, leading to the assembly of NCOA1-p300-Runx2 and causing the transactivation of MMPs. These findings offer new insight into inflammation-mediated MMP accumulation and also provide a new therapeutic strategy to retard the IDD process.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Camundongos , Animais , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Coativador 1 de Receptor Nuclear , Camundongos Endogâmicos C57BL , Matriz Extracelular/metabolismo , Metaloproteases/metabolismo , Disco Intervertebral/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-36528254

RESUMO

1-Stearoyl-2-docosahexaenoyl (18:0/22:6)-phosphatidic acid (PA) interacts with and activates Praja-1 E3 ubiquitin-protein ligase (full length: 615 aa) to ubiquitinate and degrade the serotonin transporter (SERT). SERT modulates serotonergic system activity and is a therapeutic target for depression, autism, obsessive-compulsive disorder, schizophrenia and Alzheimer's disease. Moreover, diacylglycerol kinase (DGK) δ2 (full length: 1214 aa) interacts with Praja-1 in addition to SERT and generates 18:0/22:6-PA, which binds and activates Praja-1. In the present study, we investigated the interaction of Praja-1 with 18:0/22:6-PA and DGKδ2 in more detail. We first found that the N-terminal one-third region (aa 1-224) of Praja-1 bound to 18:0/22:6-PA and that Lys141 in the region was critical for binding to 18:0/22:6-PA. In contrast, the C-terminal catalytic domain of Praja-1 (aa 446-615) interacted with DGKδ2. Additionally, the N-terminal half of the catalytic domain (aa 309-466) of DGKδ2 intensely bound to Praja-1. Moreover, the N-terminal region containing the pleckstrin homology and C1 domains (aa 1-308) and the C-terminal half of the catalytic domain (aa 762-939) of DGKδ2 weakly associated with Praja-1. Taken together, these results reveal new functions of the N-terminal (aa 1-224) and C-terminal (aa 446-615) regions of Praja-1 and the N-terminal half of the catalytic region (aa 309-466) of DGKδ2 as regulatory domains. Moreover, it is likely that the DGKδ2-Praja-1-SERT heterotrimer proximally arranges the 18:0/22:6-PA-producing catalytic domain of DGKδ2, the 18:0/22:6-PA-binding regulatory domain of Praja-1, the ubiquitin-protein ligase catalytic domain of Praja-1 and the ubiquitination acceptor site-containing SERT C-terminal region.


Assuntos
Diacilglicerol Quinase , Ácidos Docosa-Hexaenoicos , Diacilglicerol Quinase/metabolismo , Ácidos Fosfatídicos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121835, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36116412

RESUMO

Herein are reported the effects of photobiomodulation (PBM) on adenosine triphosphate (ATP) and reactive oxygen species (ROS) quantification and mitochondria membrane potential (MMP) of the mitochondria of diabetic adipose-derived stem cells (ADSCs) in vitro. Additionally, the expression of PTEN-induced kinase 1 (PINK1) and RBR E3 ubiquitin-protein ligase (PARKIN) genes, which are involved in mitochondrial quality, were quantified. First, type one diabetes was induced in 10 rats. The rats were then kept for 1 month, after which fat tissue was excised from subcutaneous regions, and stem cells were selected from the fat, characterized as ADSC, and cultivated and increased in elevated sugar conditions in vitro; these samples were considered diabetic-ADSC. Two groups were formed, namely, diabetic-control-ADSC and PBM-diabetic-ADSC. ATP, ROS quantification, and MMP of mitochondria of diabetic ADSCs in vitro were measured, and the expression of PINK1 and Parkin genes was quantified in vitro. The results revealed that PBM significantly increased ATP quantification (p = 0.05) and MMP activity (p = 0.000) in diabetic-ADSCs in vitro compared to the control diabetic-ADSCs; however, it significantly decreased ROS quantification (p = 0.002) and PINK1(p = 0.003) and PARKIN gene expression (p = 0.046) in diabetic-ADSCs. The current findings indicate for the first time that PBM has the potential to maintain the function and quality of mitochondrial diabetic-ADSCs by significantly increasing ATP quantification and MMP activity in diabetic-ADSCs in vitro while significantly decreasing ROS quantification and PINK1 and PARKIN gene expression, making PBM an attractive candidate for use in improving the efficacy of autologous stem cell remedies for diabetic patients with infected diabetic foot ulcers.


Assuntos
Diabetes Mellitus , Células-Tronco , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo , Trifosfato de Adenosina/metabolismo
17.
Rev. bras. med. esporte ; 29: e2021_0396, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1387939

RESUMO

ABSTRACT Objective To study the effects of contusion and exhaustive exercise on the expression of degradation-related factors MuRF1 and MAFbx in the skeletal muscle of rats and describe the repair mechanism of skeletal muscle injury. Methods Forty-two male SD rats were randomly divided into 7 groups. The rats in each group were killed at different time points (0h, 24h, 48h) after exhaustive exercise (E0, E24, E48) and contusion (D0, D24, D48), respectively, and in the resting state in control group (C). The right gastrocnemius muscles were resected and divided into two parts, one for the mRNAs of MuRF1 and MAFbx by real-time PCR, and the other for protein measurement by Western blotting. Results Compared with the control group, the MuRF1 mRNA and protein expression of the skeletal muscle in the E0 group was markedly increased (P <0.05) and followed by a downward trend in E24 the E48 groups. On the other hand, MuRF1 mRNA expression of the skeletal muscle in the D24 group was significantly upregulated (P <0.01), then decreased in the D48 group (P <0.01). Meanwhile, compared with the C group, MAFbx mRNA gene expression continued to be upregulated in D24 and D48 (P <0.05), but decreased in E24 and E48 (p<0.01). On the other hand, the NF-κB protein contents of the skeletal muscle in the D0, D24, and D48 groups, as well as in the E48 group, were markedly downregulated (P <0.05), and the one in E48 was also remarkably downregulated (P <0.05). Conclusion NF-κB may negatively regulate the process of protein degradation by the NF-κB / MuRF1 signal pathway. Level of evidence III; Therapeutic studies investigating the results of treatment.


RESUMEN Objetivo Estudiar los efectos de la contusión y del ejercicio exhaustivo sobre la expresión de los factores relacionados con la degradación MuRF1 y MAFbx en el músculo esquelético de ratas y describir el mecanismo de reparación de la lesión muscular esquelética. Métodos Cuarenta y dos ratas macho SD fueron divididas aleatoriamente en 7 grupos. Las ratas de cada grupo fueron sacrificadas en diferentes momentos (0h, 24h, 48h) después del ejercicio exhaustivo (E0, E24, E48) y de la contusión (D0, D24, D48), respectivamente, y en estado de reposo en el grupo de control (C). Se resecaron los músculos gastrocnemios derechos y se dividieron en dos partes, una para los ARNm de MuRF1 y MAFbx mediante PCR en tiempo real y la otra para la medición de proteínas mediante Western blot. Resultados En comparación con el grupo control, el ARNm de MuRF1 y la expresión proteica del músculo esquelético en el grupo E0 se incrementó notablemente (P <0,05) y fueron seguidos por una tendencia a la baja en los grupos E24 y E48. Por otra parte, la expresión del ARNm de MuRF1 del músculo esquelético en el grupo D24 fue significativamente regulada al alza (P <0,01), y luego disminuyó en el grupo D48 (P <0,01). Mientras tanto, en comparación con el grupo C, la expresión génica del ARNm de MAFbx permaneció regulada al alza en D24 y D48 (P <0,05), pero disminuyó en E24 y E48 (p<0,01). Por otro lado, el contenido de proteína NF-κB del músculo esquelético en los grupos D0, D24 y D48, así como en el grupo E48, se vio notablemente regulado a la baja (P <0,05), y el del grupo E48 también se vio notablemente regulado a la baja (P <0,05). Conclusión NF-κB puede regular negativamente el proceso de degradación de la proteína a través de la vía NF-κB / MuRF1. Nivel de evidencia III; Estudios terapéuticos que investigan los resultados del tratamiento.


RESUMO Objetivo Estudar os efeitos do trauma contuso e do exercício exaustivo na expressão dos fatores relacionados à degradação MuRF1 e MAFbx no músculo esquelético de ratos e descrever o mecanismo de reparo da lesão muscular esquelética. Métodos Quarenta e dois ratos SD machos foram divididos aleatoriamente em 7 grupos. Os ratos de cada grupo foram mortos em diferentes momentos (0h, 24h, 48h) após exercício exaustivo (E0, E24, E48) e trauma contuso (D0, D24, D48), respectivamente, e no estado de repouso no grupo controle (C). Os músculos gastrocnêmios direitos foram ressecados e divididos em duas partes, uma para os mRNAs de MuRF1 e MAFbx por PCR em tempo real e outra para a medição de proteínas a partir do Western blot. Resultados Em comparação com o grupo controle, o mRNA de MuRF1 e a expressão proteica do músculo esquelético no grupo E0 foram acentuadamente aumentados (P <0,05) e seguidos por uma tendência descendente nos grupos E24 e E48. Por outro lado, a expressão do mRNA de MuRF1 do músculo esquelético no grupo D24 foi significativamente regulada para cima (P <0,01), depois diminuiu no grupo D48 (P <0,01). Enquanto isso, em comparação com o grupo C, a expressão gênica do mRNA de MAFbx continuou regulada para cima em D24 e D48 (P <0,05), mas diminuiu em E24 e E48 (p<0,01). Por outro lado, os teores de proteína NF-κB do músculo esquelético nos grupos D0, D24 e D48, bem como no grupo E48, foram marcadamente regulados para baixo (P <0,05), e o do grupo E48 também foi notavelmente regulado para baixo (P <0,05). Conclusão NF-κB pode regular negativamente o processo de degradação da proteína pela via NF-κB / MuRF1. Nível de evidência III; Estudos terapêuticos que investigam os resultados do tratamento.

18.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1015663

RESUMO

It is known that SMAD specific E3 ubiquitin protein ligase 1 (SMURF1) mediates autophagy through its E3 ubiquitin ligase activity, but the ubiquitinated substrates of SMURF1 need to be further explored. In this paper, the interacting proteins of SMURF1 in THP-1 cells were captured and identified by co-immunoprecipitation (Co-IP) combined with mass spectrometry. It was found that SMURF1 could physically bind to 222 proteins in THP-1 cells, and Adenosine deaminase acting on RNA 1 (ADAR1) had a higher peptide binding score. SMURF1 overexpression vectors were constructed and transfected into HEK-293T cells, then Co-IP and Western blotting assays verified the interaction between exogenous SMURF1 and endogenous ADAR1. qRT-PCR and Western blotting assays were carried out after transfecting SMURF1 overexpression vectors in HEK-293T cells, which identified that overexpression of SMURF1 attenuated the protein levels of ADAR1 (P<0. 05). However, there was no significant difference in the mRNA level of ADAR1. HEK-293T cells with normal and overexpressing SMURF1 were treated with cycloheximide (CHX), respectively, and Western blotting assays showed a shortened half-life of ADAR1 after overexpression of SMURF1 (P < 0. 05). Furthermore, overexpression of SMURF1 increased the polyubiquitination level of ADAR1 as detected by Co-IP and Western blot (P<0. 05). After the proteasome inhibitor (MG132) treatment, the Western blotting assay was performed to demonstrate that the negative regulatory effect of SMURF1 on ADAR1 was weakened after the proteasome degradation pathway was attenuated (P<0. 05). This study shows that SMURF1 interacts with ADAR1, catalyzes the polyubiquitination of ADAR1 and mediates its degradation through the proteasome pathway, which provides a theoretical basis for exploring the various biological functions of SMURF1 by affecting the stability of ADAR1.

19.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166520, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985446

RESUMO

Despite the efficacy of trastuzumab in treating HER2-positive breast cancer patients, a significant proportion of patients relapse after treatment. The role of C-X-C chemokine receptor type 4 (CXCR4) in trastuzumab resistance was studied only in cell lines and the underlying mechanisms remain largely unclear. This study investigated the role of CXCR4 in trastuzumab resistance in breast cancer patients and explored the possible underlying mechanisms. The study was performed retrospectively on tissue samples from 62 breast cancer patients including 42 who were treated with trastuzumab and chemotherapy and 20 who received chemotherapy alone in adjuvant setting. Expression levels of CXCR4 and its regulators hypoxia-inducible factor 1-alpha (HIF-1α), tristetraprolin (TTP), human antigen R (HuR), itchy E3 ubiquitin protein ligase (ITCH), miR-302a and miR-494 were determined and their associations with tumor recurrence and disease-free survival were analyzed. In trastuzumab-treated patients, high CXCR4 expression was associated with recurrence and was an independent predictor of progression risk after therapy. CXCR4 correlated positively with its transcriptional regulator, HIF-1α, and negatively with its post-translational regulator, ITCH. HIF-1α, HuR and ITCH were significantly associated with clinical outcome. In chemotherapy-treated patients, neither CXCR4 nor any of its regulators were associated with recurrence or predicted disease progression risk after chemotherapy. In conclusion, this study suggests a potential role for CXCR4 in recurrence after trastuzumab-based therapy in human breast cancer that could be mediated, at least in part, by hypoxia and/or decreased ubiquitination. These findings highlight the potential utility of CXCR4 as a promising target for enhancing trastuzumab therapeutic outcome.


Assuntos
Neoplasias da Mama , MicroRNAs , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Humanos , Fator 1 Induzível por Hipóxia , MicroRNAs/genética , MicroRNAs/uso terapêutico , Receptores CXCR4/genética , Estudos Retrospectivos , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Tristetraprolina/uso terapêutico , Ubiquitina-Proteína Ligases/genética
20.
J Biol Chem ; 298(8): 102220, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35780838

RESUMO

WW domain-containing E3 Ubiquitin-protein ligase 2 (WWP2) has been found to positively regulate odontoblastic differentiation by monoubiquitinating the transcription factor Kruppel-like factor 5 (KLF5) in a cell culture system. However, the in vivo role of WWP2 in mouse teeth remains unknown. To explore this, here we generated Wwp2 knockout (Wwp2 KO) mice. We found that molars in Wwp2 KO mice exhibited thinner dentin, widened predentin, and reduced numbers of dentinal tubules. In addition, expression of the odontoblast differentiation markers Dspp and Dmp1 was decreased in the odontoblast layers of Wwp2 KO mice. These findings demonstrate that WWP2 may facilitate odontoblast differentiation and dentinogenesis. Furthermore, we show for the first time that phosphatase and tensin homolog (PTEN), a tumor suppressor, is expressed in dental papilla cells and odontoblasts of mouse molars and acts as a negative regulator of odontoblastic differentiation. Further investigation indicated that PTEN is targeted by WWP2 for degradation during odontoblastic differentiation. We demonstrate PTEN physically interacts with and inhibits the transcriptional activity of KLF5 on Dspp and Dmp1. Finally, we found WWP2 was able to suppress the interaction between PTEN and KLF5, which diminished the inhibition effect of PTEN on KLF5. Taken together, this study confirms the essential role of WWP2 and the WWP2-PTEN-KLF5 signaling axis in odontoblast differentiation and dentinogenesis in vivo.


Assuntos
Dentinogênese , Fatores de Transcrição Kruppel-Like , Odontoblastos , PTEN Fosfo-Hidrolase , Ubiquitina-Proteína Ligases , Animais , Diferenciação Celular , Dentina/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Knockout , Odontoblastos/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...