Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Appl Stat ; 50(6): 1255-1282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025282

RESUMO

We introduce a new class of heteroscedastic partially linear model (PLM) with skew-normal distribution. Maximum likelihood estimation of the model parameters by the ECM algorithm (Expectation/Conditional Maximization) as well as influence diagnostics for the new model are investigated. In addition, a Likelihood Ratio test for assessing the homogeneity of the scale parameter is presented. Simulation studies for assessing the performance of the ECM algorithm and the Likelihood Ratio test statistics for homogeneity of variance are developed. Also, a study for misspecification of the structure function is considered. Finally, an application of the new heteroscedastic PLM to a real data set on ragweed pollen concentration is presented to show that it provides a better fit than the classic homocedastic PLM. We hope that the proposed model may attract applications in different areas of knowledge.

2.
J Multivar Anal ; 141: 104-117, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26190871

RESUMO

In biomedical studies on HIV RNA dynamics, viral loads generate repeated measures that are often subjected to upper and lower detection limits, and hence these responses are either left- or right-censored. Linear and non-linear mixed-effects censored (LMEC/NLMEC) models are routinely used to analyse these longitudinal data, with normality assumptions for the random effects and residual errors. However, the derived inference may not be robust when these underlying normality assumptions are questionable, especially the presence of outliers and thick-tails. Motivated by this, Matos et al. (2013b) recently proposed an exact EM-type algorithm for LMEC/NLMEC models using a multivariate Student's-t distribution, with closed-form expressions at the E-step. In this paper, we develop influence diagnostics for LMEC/NLMEC models using the multivariate Student's-t density, based on the conditional expectation of the complete data log-likelihood. This partially eliminates the complexity associated with the approach of Cook (1977, 1986) for censored mixed-effects models. The new methodology is illustrated via an application to a longitudinal HIV dataset. In addition, a simulation study explores the accuracy of the proposed measures in detecting possible influential observations for heavy-tailed censored data under different perturbation and censoring schemes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA