Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 124: 362-371, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35421576

RESUMO

Understanding the metabolic effects of fatty acids on fish intestine is critical to the substitution of fish oil with vegetable oils in aquaculture. In this study, the effects of eicosapentaenoic acid (EPA) and palmitic acid (PA) on fish intestine were evaluated in vitro and in vivo. As the first step for in vitro study, an intestinal cell line (SPIF) was established from silver pomfret (Pampus argenteus). Thereafter, the effects of EPA and PA on cell viability, prostaglandin E2 (PGE2) production, and the expression of genes related to heat shock response, inflammation, extracellular matrix (ECM) formation and degradation were examined in SPIF cells. Finally, these metabolic effects of EPA and PA on the intestine were examined in zebrafish (Danio rerio) larvae. Results showed that all tested fatty acids (PA, oleic acid, linoleic acid, α-linolenic acid, arachidonic acid, and docosahexaenoic acid) except EPA reduced SPIF viability to distinct degrees at the same concentrations. PA decreased SPIF viability accompanied by an increase in PGE2 level. Meanwhile, PA increased the expression of genes related to heat shock response (grp78, grp94, hsp70, and hsp90) and inflammation (nf-κb, il-1ß, and cox2). Furthermore, PA reduced the expression of collagen type I (col1a1a and col1a1b) and extracellular matrix (ECM) degradation-related gene mmp2, while up-regulating timp2 mRNA expression. In vivo, PA also increased hsp70, il-1ß, and cox2 mRNA levels and limited the expression of collagen type I in the larval zebrafish intestine. Interestingly, the combination of EPA and PA partially recovered the PA-induced changes in cell viability, PGE2 production, and mRNA expression in vitro and in vivo. These results suggest that PA may result in heat shock and inflammatory responses, as well as alter ECM formation and degradation in fish intestine, while EPA could at least partially mitigate these negative effects caused by PA.


Assuntos
Ácido Eicosapentaenoico , Peixe-Zebra , Animais , Colágeno Tipo I , Ciclo-Oxigenase 2 , Dinoprostona , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos/metabolismo , Óleos de Peixe/farmacologia , Resposta ao Choque Térmico , Inflamação/veterinária , Intestinos , Ácido Palmítico , RNA Mensageiro , Peixe-Zebra/metabolismo
2.
Tissue Eng Regen Med ; 14(2): 93-101, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30603466

RESUMO

In this paper we report the differentiating properties of platelet-rich plasma releasates (PRPr) on human chondrocytes within elastomeric polycaprolactone triol-citrate (PCLT-CA) porous scaffold. Human-derived chondrocyte cellular content of glycosaminoglycans (GAGs) and total collagen were determined after seeding into PCLT-CA scaffold enriched with PRPr cells. Immunostaining and real time PCR was applied to evaluate the expression levels of chondrogenic and extracellular gene markers. Seeding of chondrocytes into PCLT-CA scaffold enriched with PRPr showed significant increase in total collagen and GAGs production compared with chondrocytes grown within control scaffold without PRPr cells. The mRNA levels of collagen II and SOX9 increased significantly while the upregulation in Cartilage Oligomeric Matrix Protein (COMP) expression was statistically insignificant. We also report the reduction of the expression levels of collagen I and III in chondrocytes as a consequence of proximity to PRPr cells within the scaffold. Interestingly, the pre-loading of PRPr caused an increase of expression levels of following extracellular matrix (ECM) proteins: fibronectin, laminin and integrin ß over the period of 3 days. Overall, our results introduce the PCLT-CA elastomeric scaffold as a new system for cartilage tissue engineering. The method of PRPr cells loading prior to chondrocyte culture could be considered as a potential environment for cartilage tissue engineering as the differentiation and ECM formation is enhanced significantly.

3.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-649896

RESUMO

In this paper we report the differentiating properties of platelet-rich plasma releasates (PRPr) on human chondrocytes within elastomeric polycaprolactone triol–citrate (PCLT–CA) porous scaffold. Human-derived chondrocyte cellular content of glycosaminoglycans (GAGs) and total collagen were determined after seeding into PCLT–CA scaffold enriched with PRPr cells. Immunostaining and real time PCR was applied to evaluate the expression levels of chondrogenic and extracellular gene markers. Seeding of chondrocytes into PCLT–CA scaffold enriched with PRPr showed significant increase in total collagen and GAGs production compared with chondrocytes grown within control scaffold without PRPr cells. The mRNA levels of collagen II and SOX9 increased significantly while the upregulation in Cartilage Oligomeric Matrix Protein (COMP) expression was statistically insignificant. We also report the reduction of the expression levels of collagen I and III in chondrocytes as a consequence of proximity to PRPr cells within the scaffold. Interestingly, the pre-loading of PRPr caused an increase of expression levels of following extracellular matrix (ECM) proteins: fibronectin, laminin and integrin β over the period of 3 days. Overall, our results introduce the PCLT–CA elastomeric scaffold as a new system for cartilage tissue engineering. The method of PRPr cells loading prior to chondrocyte culture could be considered as a potential environment for cartilage tissue engineering as the differentiation and ECM formation is enhanced significantly.


Assuntos
Humanos , Plaquetas , Proteína de Matriz Oligomérica de Cartilagem , Cartilagem , Condrócitos , Colágeno , Elastômeros , Matriz Extracelular , Fibronectinas , Glicosaminoglicanos , Laminina , Métodos , Fenótipo , Plasma Rico em Plaquetas , Reação em Cadeia da Polimerase em Tempo Real , RNA Mensageiro , Engenharia Tecidual , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...