Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 527
Filtrar
1.
Front Immunol ; 15: 1425938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38953020

RESUMO

Introduction: P2X receptors are a family of homo- and heterotrimeric cation channels gated by extracellular ATP. The P2X4 and P2X7 subunits show overlapping expression patterns and have been involved in similar physiological processes, such as pain and inflammation as well as various immune cell functions. While formation of P2X2/P2X3 heterotrimers produces a distinct pharmacological phenotype and has been well established, functional identification of a P2X4/P2X7 heteromer has been difficult and evidence for and against a physical association has been found. Most of this evidence stems, however, from in vitro model systems. Methods: Here, we used a P2X7-EGFP BAC transgenic mouse model as well as P2X4 and P2X7 knock-out mice to re-investigate a P2X4-P2X7 interaction in mouse lung by biochemical and immunohistochemical experiments as well as quantitative expression analysis. Results: No detectable amounts of P2X4 could be co-purified from mouse lung via P2X7-EGFP. In agreement with these findings, immuno-histochemical analysis using a P2X7-specific nanobody revealed only limited overlap in the cellular and subcellular localizations of P2X4 and P2X7 in both the native lung tissue and primary cells. Comparison of P2X4 and P2X7 transcript and protein levels in the respective gene-deficient and wild type mice showed no mutual interrelation between their expression levels in whole lungs. However, a significantly reduced P2rx7 expression was found in alveolar macrophages of P2rx4 -/- mice. Discussion: In summary, our detailed analysis of the cellular and subcellular P2X4 and P2X7 localization and expression does not support a physiologically relevant direct association of P2X4 and P2X7 subunits or receptors in vivo.


Assuntos
Pulmão , Camundongos Knockout , Camundongos Transgênicos , Receptores Purinérgicos P2X4 , Receptores Purinérgicos P2X7 , Animais , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Camundongos , Pulmão/metabolismo , Pulmão/imunologia , Camundongos Endogâmicos C57BL , Ligação Proteica
2.
Artigo em Inglês | MEDLINE | ID: mdl-39021417

RESUMO

BACKGROUND: Sexually dimorphic spinal motoneurons (MNs) in the dorsomedial nucleus (DMN) and dorsolateral nucleus (DLN) as well as those in the cremaster nucleus are involved in reproductive behaviours, and the cremaster nucleus additionally contributes to testicular thermoregulation. It has been reported that MNs in DMN and DLN are extensively linked by gap junctions forming electrical synapses composed of connexin36 (Cx36) and there is evidence that subpopulation of MNs in the cremaster nucleus are also electrically coupled by these synapses. METHODOLOGY: We used immunofluorescence methods to detect enhanced green fluorescent protein (eGFP) reporter for Cx36 expression in these motor nuclei. RESULTS: We document in male mice that about half the MNs in each of DMN and DLN express eGFP, while the remaining half do not. Further, we found that the eGFP+ vs. eGFP- subsets of MNs in each of these motor nuclei innervate different target muscles; eGFP+ MNs in DMN and DLN project to sexually dimorphic bulbocavernosus and ischiocavernosus muscles, while the eGFP- subsets project to sexually non-dimorphic anal and external urethral sphincter muscles. Similarly, eGFP+ vs. eGFP- cremaster MNs were found to project to anatomically distinct portions of the cremaster muscle. By immunofluorescence, nearly all motoneurons in both DMN and DLN displayed punctate labelling for Cx36, including at eGFP+/eGFP+, eGFP+/eGFP- and eGFP-/eGFP- cell appositions. CONCLUSIONS: Most if not all motoneurons in DMN and DLN are electrically coupled, including sexually dimorphic and non-dimorphic motoneurons with each other, despite absence of eGFP reporter in the non-dimorphic populations in these nuclei that have selective projections to sexually non-dimorphic target muscles.

3.
J Comp Neurol ; 532(7): e25658, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987904

RESUMO

Spinal cord injury (SCI) disrupts coordination between the bladder and the external urinary sphincter (EUS), leading to transient or permanent voiding impairment, which is more severe in males. Male versus female differences in spinal circuits related to the EUS as well as post-SCI rewiring are essential for understanding of sex-/gender-specific impairments and possible recovery mechanisms. To quantitatively assess differences between EUS circuits in males versus females and in spinal intact (SI) versus SCI animals, we retrogradely traced and counted EUS-related neurons. In transgenic ChAT-GFP mice, motoneurons (MNs), interneurons (INs), and propriospinal neurons (PPNs) were retrogradely trans-synaptically traced with PRV614-red fluorescent protein (RFP) injected into EUS. EUS-MNs in dorsolateral nucleus (DLN) were separated from other GFP+ MNs by tracing them with FluoroGold (FG). We found two morphologically distinct cell types in DLN: FG+ spindle-shaped bipolar (SB-MNs) and FG- rounded multipolar (RM-MNs) cholinergic cells. Number of MNs of both types in males was twice as large as in females. SCI caused a partial loss of MNs in all spinal nuclei. After SCI, males showed a fourfold rise in the number of RFP-labeled cells in retro-DLN (RDLN) innervating hind limbs. This suggests (a) an existence of direct synaptic interactions between spinal nuclei and (b) a post-SCI increase of non-specific inputs to EUS-MNs from other motor nuclei. Number of INs and PPNs deferred between males and females: In SI males, the numbers of INs and PPNs were ∼10 times larger than in SI females. SCI caused a twofold decrease of INs and PPNs in males but not in females.


Assuntos
Camundongos Transgênicos , Caracteres Sexuais , Traumatismos da Medula Espinal , Uretra , Animais , Feminino , Masculino , Camundongos , Uretra/inervação , Uretra/fisiologia , Medula Espinal , Neurônios Motores/fisiologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Vias Neurais/fisiologia
4.
Cell Rep ; 43(7): 114509, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003735

RESUMO

Midbrain dopaminergic neurons (DANs) are subject to extensive metabotropic regulation, but the repertoire of G protein-coupled receptors (GPCRs) present in these neurons has not been mapped. Here, we isolate DANs from Dat-eGFP mice to generate a GPCR atlas by unbiased qPCR array expression analysis of 377 GPCRs. Combined with data mining of scRNA-seq databases, we identify multiple receptors in DAN subpopulations with 38 of these receptors representing the majority of transcripts. We identify 41 receptors expressed in midbrain DANs but not in non-DAN midbrain cells, including the free fatty acid receptor 4 (FFAR4). Functional expression of FFAR4 is validated by ex vivo Ca2+ imaging, and in vivo experiments support that FFAR4 negatively regulates food and water intake and bodyweight. In addition to providing a critical framework for understanding metabotropic DAN regulation, our data suggest fatty acid sensing by FFAR4 as a mechanism linking high-energy intake to the dopamine-reward pathway.

5.
Anal Biochem ; 694: 115599, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964699

RESUMO

A novel bacterial display vector based on Escherichia coli has been engineered for recombinant protein production and purification. Accordingly, a construct harboring the enhanced green fluorescent protein (EGFP) and the ice nucleation protein (INP) was designed to produce EGFP via the surface display in E. coli cells. The fusion EGFP-expressed cells were then investigated using fluorescence measurement, SDS- and native-PAGE before and after TEV protease digestion. The displayed EGFP was obtained with a recovery of 57.7 % as a single band on SDS-PAGE. Next, the efficiency of the cell surface display for mutant EGFP (EGFP S202H/Q204H) was examined in sensing copper ions. Under optimal conditions, a satisfactorily linear range for copper ions concentrations up to 10 nM with a detection limit of 0.073 nM was obtained for cell-displayed mutant EGFP (mEGFP). In the presence of bacterial cell lysates and purified mEGFP, response to copper was linear in the 2-10 nM and 0.1-2 µM concentration range, respectively, with a 1.3 nM and 0.14 µM limit of detection. The sensitivity of bacterial cell lysates and surface-displayed mEGFP in the detection of copper ions is higher than the purified mEGFP.

6.
MethodsX ; 13: 102807, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39036607

RESUMO

The method presented herein is associated with the Lab Resource article titled "Generation of αMHC-EGFP knock-in in human pluripotent stem cell line, SNUe003-A-3, using CRISPR/CAS9-based gene targeting" [1]. The cardiac muscle-specific protein, α-myosin heavy chain (αMHC), is encoded by the human MYH6 gene, which is expressed in both the atria and ventricles during embryonic development and is predominantly expressed in the atria after birth [2]. Herein, the methods used to achieve CRISPR/SpCas9-mediated introduction of an EGFP reporter into αMHC, the target locus in human pluripotent stem cells (hPSCs) for cardiac lineage tracing and clinical cell sorting are described. The CRISPR-Cas9 system enables efficient replacement of the stop codon in the last exon of αMHC with a 2A non-joining peptide (T2A)-EGFP cassette. First, hPSCs are transfected with the donor construct and Cas9/sgRNA plasmids via electroporation and selected with neomycin for approximately 3 weeks. Thereafter, the established cell line exhibits typical characteristics of human embryonic stem cells (hESCs). When these cells differentiate into cardiomyocytes, the expression of EGFP is confirmed using confocal microscopy, flow cytometry analysis, and immunostaining.•The line enables monitoring of cell maturation events during human cardiac development.•The line is a valuable platform for cardiotoxicity tests and drug screening.•This method has already been employed in two original studies, as previously reported for reporter cell line generation using CRISPR/Cas9.

8.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38928060

RESUMO

At present, the magnetic selection of genetically modified cells is mainly performed with surface markers naturally expressed by cells such as CD4, LNGFR (low affinity nerve growth factor receptor), and MHC class I molecule H-2Kk. The disadvantage of such markers is the possibility of their undesired and poorly predictable expression by unmodified cells before or after cell manipulation, which makes it essential to develop new surface markers that would not have such a drawback. Earlier, modified CD52 surface protein variants with embedded HA and FLAG epitope tags (CD52/FLAG and CD52/HA) were developed by the group of Dr. Mazurov for the fluorescent cell sorting of CRISPR-modified cells. In the current study, we tested whether these markers can be used for the magnetic selection of transduced cells. For this purpose, appropriate constructs were created in MigR1-based bicistronic retroviral vectors containing EGFP and DsRedExpress2 as fluorescent reporters. Cytometric analysis of the transduced NIH 3T3 cell populations after magnetic selection evaluated the efficiency of isolation and purity of the obtained populations, as well as the change in the median fluorescence intensity (MFI). The results of this study demonstrate that the surface markers CD52/FLAG and CD52/HA can be effectively used for magnetic cell selection, and their efficiencies are comparable to that of the commonly used LNGFR marker. At the same time, the significant advantage of these markers is the absence of HA and FLAG epitope sequences in cellular proteins, which rules out the spurious co-isolation of negative cells.


Assuntos
Antígeno CD52 , Proteínas Recombinantes de Fusão , Animais , Camundongos , Células NIH 3T3 , Antígeno CD52/metabolismo , Antígeno CD52/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Humanos , Citometria de Fluxo/métodos , Separação Celular/métodos , Biomarcadores
9.
Curr Protoc ; 4(6): e1091, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923413

RESUMO

This article describes a step-by-step process of lumbar intrathecal injection of Evans blue dye and AAV9-EGFP in adult (2-month-old) and neonatal (postnatal day 10) mice. Intrathecal injection is a clinically translatable technique that has already been extensively applied in humans. In mice, intrathecal injection is considered a challenging procedure that requires a trained and experienced researcher. For both adult and neonatal mice, lumbar intrathecal injection is directed into the L5-L6 intervertebral space. Intrathecally injected material enters the cerebrospinal fluid (CSF) within the intrathecal space from where it can directly access the central nervous system (CNS) parenchyma. Simultaneously, intrathecally injected material exits the CSF with pressure gradient and enters the endoneurial fluid and ultimately the peripheral nerves. While in the CSF, the injectable material also enters the bloodstream and systemic circulation through the arachnoid villi. A successful lumbar intrathecal injection results in adequate biodistribution of the injectable material in the CNS, PNS, and peripheral organs. When correctly applied, this technique is considered as minimally invasive and non-disruptive and can be used for the lumbar delivery of any solute. © 2024 Wiley Periodicals LLC. Basic Protocol 1: C57BL/6 adult and P10 mice lumbar intrathecal injection Basic Protocol 2: Tissue collection and preparation for evaluating Evans blue dye diffusion Basic Protocol 3: Tissue collection and preparation for immunohistochemistry staining Basic Protocol 4: Tissue collection and vector genome copy number analysis.


Assuntos
Animais Recém-Nascidos , Injeções Espinhais , Camundongos Endogâmicos C57BL , Animais , Camundongos , Azul Evans/administração & dosagem , Azul Evans/farmacocinética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Dependovirus/genética , Vetores Genéticos/administração & dosagem
10.
J Med Life ; 17(1): 24-27, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38737662

RESUMO

Neurological disorders, ranging from acute forms such as stroke and traumatic brain injury to neurodegenerative diseases like dementia, are the leading cause of disability-adjusted life years (DALYs) worldwide. A promising approach to address these conditions and promote nervous system regeneration is the use of the neuropeptide preparation Cerebrolysin, which has been shown to be effective in both clinical and preclinical studies. Despite claims of similar clinical efficacy and safety by several peptide preparations, concerns regarding their generic composition and efficacy have been previously raised. Based on these reports, we analyzed the peptide composition and neurotrophic activity of several peptide preparations allegedly similar to Cerebrolysin and approved in some countries for treating neurological diseases. Our results demonstrate that these preparations lack relevant biological activity and that the peptide composition is significantly different from Cerebrolysin. peptide.


Assuntos
Aminoácidos , Peptídeos , Aminoácidos/farmacologia , Humanos , Peptídeos/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais
11.
Environ Res ; 256: 119180, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38795948

RESUMO

The main focus of anticancer drug discovery is on developing medications that are gentle on normal cells and should have the ability to target multiple anti-cancer pathways. Liver cancer is becoming a worldwide epidemic due to the highest occurring and reoccurring rate in some countries. Calotropis procera is a xerophytic herbal plant growing wildly in Saudi Arabia. Due to its anti-angiogenic and anticancer capabilities, "C. procera" is a viable option for developing innovative anticancer medicines. However, no study has been done previously, to discover angiogenic and anti-cancer targets which are regulated by C. procera in liver cancer. In this study, leaves, stems, flowers, and seeds of C. procera were used to prepare crude extracts and were fractionated into four solvents of diverse polarities. These bioactivity-guided solvent fractions helped to identify useful compounds with minimal side effects. The phytoconstituents present in the leaves and stem were identified by GC-MS. In silico studies were done to predict the anti-cancer targets by major bioactive constituents present in leaves and stem extracts. A human angiogenesis antibody array was performed to profile novel angiogenic targets. The results from this study showed that C. procera extracts are an ideal anti-cancer remedy with minimum toxicity to normal cells as revealed by zebrafish in vivo toxicity screening assays. The novel antiangiogenic and anticancer targets identified in this study could be explored to design medication against liver cancer.


Assuntos
Calotropis , Neoplasias Hepáticas , Extratos Vegetais , Peixe-Zebra , Calotropis/química , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Neoplasias Hepáticas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Folhas de Planta/química , Feminino , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/química , Simulação por Computador , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/análise , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/análise
12.
Methods Mol Biol ; 2799: 201-223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38727909

RESUMO

Neuronal N-methyl-D-aspartate (NMDA) receptors are well known for their pivotal role in memory formation. Originally, they were thought to be exclusive to neurons. However, numerous studies revealed their functional expression also on various types of glial cells in the nervous system. Here, the methodology on how to study the physiology of NMDA receptors selectively on astrocytes will be described in detail. Astrocytes are the main class of neuroglia that control transmitter and ion homeostasis, which link cerebral blood flow and neuronal energy demands, but also affect synaptic transmission directly.


Assuntos
Astrócitos , Receptores de N-Metil-D-Aspartato , Astrócitos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Camundongos , Técnicas de Patch-Clamp/métodos , Células Cultivadas , Neurônios/metabolismo , Ratos
13.
Microb Pathog ; 191: 106661, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657711

RESUMO

Senecavirus A (SVA) belongs to the genus Senecavirus in the family Picornaviridae. This virus possesses a positive-sense, single-stranded RNA genome, approximately 7200 nt in length, composed of a single 5' untranslated region, encoding region and 3' untranslated region. In this study, a recombinant SVA tagged with enhanced green fluorescent protein (eGFP) sequence, rSVA-eGFP, was rescued from its cDNA clone using reverse genetics. The passage-5 (P5) rSVA-eGFP was totally subjected to 55 rounds of consecutive fluorescent plaque-to-fluorescent plaque (FP-FP) transfers, and one extra common passaging in vitro. The P61 viral stock was analyzed by next-generation sequencing. The result showed ten single-nucleotide mutations (SNMs) in the rSVA-eGFP genome, including nine transitions and only one transversion. The P61 progeny still showed a complete eGFP sequence, indicating no occurrence of copy-choice recombination within the eGFP region during serial FP-FP transfers. In other words, this progeny was genetically deficient in the recombination of eGFP sequence (RES), namely, an RES-deficient strain. Out of ten SNMs, three were missense mutations, leading to single-amino acid mutations (SAAMs): F15V in L protein, A74T in VP2, and E53R in 3D protein. The E53R was predicted to be spatially adjacent to the RNA channel of 3D protein, perhaps involved in the emergence of RES-deficient strain. In conclusion, this study uncovered a global landscape of rSVA-eGFP genome after serial FP-FP transfers, and moreover shed light on a putative SAAM possibly related to the RES-deficient mechanism.


Assuntos
Genoma Viral , Proteínas de Fluorescência Verde , Picornaviridae , Proteínas de Fluorescência Verde/genética , Genoma Viral/genética , Picornaviridae/genética , Genética Reversa/métodos , RNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Recombinação Genética , Ensaio de Placa Viral
14.
Stem Cell Res Ther ; 15(1): 107, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637896

RESUMO

BACKGROUND: The detailed transcriptomic profiles during human serotonin neuron (SN) differentiation remain elusive. The establishment of a reporter system based on SN terminal selector holds promise to produce highly-purified cells with an early serotonergic fate and help elucidate the molecular events during human SN development process. METHODS: A fifth Ewing variant (FEV)-EGFP reporter system was established by CRISPR/Cas9 technology to indicate SN since postmitotic stage. FACS was performed to purify SN from the heterogeneous cell populations. RNA-sequencing analysis was performed for cells at four key stages of differentiation (pluripotent stem cells, serotonergic neural progenitors, purified postmitotic SN and purifed mature SN) to explore the transcriptomic dynamics during SN differentiation. RESULTS: We found that human serotonergic fate specification may commence as early as day 21 of differentiation from human pluripotent stem cells. Furthermore, the transcriptional factors ZIC1, HOXA2 and MSX2 were identified as the hub genes responsible for orchestrating serotonergic fate determination. CONCLUSIONS: For the first time, we exposed the developmental transcriptomic profiles of human SN via FEV reporter system, which will further our understanding for the development process of human SN.


Assuntos
Serotonina , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Neurônios , Genes Reporter
15.
Biosensors (Basel) ; 14(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38667186

RESUMO

The release of endocrine-disrupting compounds (EDCs) to the environment poses a health hazard to both humans and wildlife. EDCs can activate or inhibit endogenous endocrine functions by binding hormone receptors, leading to potentially adverse effects. Conventional analytical methods can detect EDCs at a high sensitivity and precision, but are blind to the biological activity of the detected compounds. To overcome this limitation, yeast-based bioassays have previously been developed as a pre-screening method, providing an effect-based overview of hormonal-disruptive activity within the sample prior to the application of analytical methods. These yeast biosensors express human endocrine-specific receptors, co-transfected with the relevant response element fused to the specific fluorescent protein reporter gene. We describe several molecular manipulations of the sensor/reporter circuit in a Saccharomyces cerevisiae bioreporter strain that have yielded an enhanced detection of estrogenic-like compounds. Improved responses were displayed both in liquid culture (96-well plate format) as well as in conjunction with sample separation using high-performance thin-layer chromatography (HPTLC). The latter approach allows for an assessment of the biological effect of individual sample components without the need for their chemical identification at the screening stage.


Assuntos
Técnicas Biossensoriais , Estrogênios , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Humanos , Disruptores Endócrinos/análise , Engenharia Genética
16.
Endocrinology ; 165(6)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679471

RESUMO

The glycoprotein receptors, members of the large G protein-coupled receptor family, are characterized by a large extracellular domains responsible for binding their glycoprotein hormones. Hormone-receptor interactions are traditionally analyzed by ligand-binding assays, most often using radiolabeling but also by thermal shift assays. Despite their high sensitivity, these assays require appropriate laboratory conditions and, often, purified plasma cell membranes, which do not provide information on receptor localization or activity because the assays typically focus on measuring binding only. Here, we apply bioluminescence resonance energy transfer in living cells to determine hormone-receptor interactions between a Gaussia luciferase (Gluc)-luteinizing hormone/chorionic gonadotropin receptor (LHCGR) fusion and its ligands (human chorionic gonadotropin or LH) fused to the enhanced green fluorescent protein. The Gluc-LHCGR, as well as other Gluc-G protein-coupled receptors such as the somatostatin and the C-X-C motif chemokine receptors, is expressed on the plasma membrane, where luminescence activity is equal to membrane receptor expression, and is fully functional. The chimeric enhanced green fluorescent protein-ligands are properly secreted from cells and able to bind and activate the wild-type LHCGR as well as the Gluc-LHCGR. Finally, bioluminescence resonance energy transfer was used to determine the interactions between clinically relevant mutations of the hormones and the LHCGR that show that this bioassay provides a fast and effective, safe, and cost-efficient tool to assist the molecular characterization of mutations in either the receptor or ligand and that it is compatible with downstream cellular assays to determine receptor activation/function.


Assuntos
Proteínas de Fluorescência Verde , Ligação Proteica , Humanos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Receptores do LH/metabolismo , Receptores do LH/genética , Luciferases/metabolismo , Luciferases/genética , Animais , Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Gonadotropina Coriônica/metabolismo , Células HEK293 , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Transferência de Energia , Glicoproteínas/metabolismo , Medições Luminescentes/métodos
17.
Methods Mol Biol ; 2770: 3-13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38351442

RESUMO

In all organisms with sexual reproduction, sperm and oocytes derive from embryonic precursors termed primordial germ cells (PGCs) which pass on genetic information to subsequent generations. Studies aimed to unravel PGC development at molecular level in mammals can be traced at the early 1980s and were hampered by the difficulty in obtaining both sufficient quantities and purity of PGCs. For many laboratories, the isolation and purification methods of PGCs at different stages from embryos are the most shortcut and affordable tool to study many aspects of their development at cellular and molecular levels. In the present chapter, I focus on immunomagnetic cell sorting (MACS) and fluorescence-activated cell sorting (FACS) methods used in my laboratory for the purification of mouse PGCs from 10.5 to 12.5 dpc embryos before their differentiation in oogonia/oocytes in female and prospermatogonia in male.


Assuntos
Células Germinativas , Sêmen , Animais , Masculino , Feminino , Camundongos , Separação Imunomagnética/métodos , Diferenciação Celular , Citometria de Fluxo , Mamíferos
18.
Methods Mol Biol ; 2741: 239-254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217657

RESUMO

Regulation of gene expression at the level of RNA and/or by regulatory RNA is an integral part of the regulatory circuits in all living cells. In bacteria, transcription and translation can be coupled, enabling regulation by transcriptional attenuation, a mechanism based on mutually exclusive structures in nascent mRNA. Transcriptional attenuation gives rise to small RNAs that are well suited to act in trans by either base pairing or ligand binding. Examples of 5'-UTR-derived sRNAs in the alpha-proteobacterium Sinorhizobium meliloti are the sRNA rnTrpL of the tryptophan attenuator and SAM-II riboswitch sRNAs. Analyses addressing RNA-based gene regulation often include measurements of steady-state levels and of half-lives of specific sRNAs and mRNAs. Using such measurements, recently we have shown that the tryptophan attenuator responds to translation inhibition by tetracycline and that SAM-II riboswitches stabilize RNA. Here we discuss our experience in using alternative RNA purification methods for analysis of sRNA and mRNA of S. meliloti. Additionally, we show that other translational inhibitors (besides tetracycline) also cause attenuation giving rise to the rnTrpL sRNA. Furthermore, we discuss the importance of considering RNA stability changes under different conditions and describe in detail a robust and fast method for mRNA half-life determination. The latter includes rifampicin treatment, RNA isolation using commercially available columns, and mRNA analysis by reverse transcription followed by quantitative PCR (RT-qPCR). The latter can be performed as a one-step procedure or in a strand-specific manner using the same commercial kit and a spike-in transcript as a reference.


Assuntos
Pequeno RNA não Traduzido , Sinorhizobium meliloti , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Triptofano/metabolismo , Meia-Vida , Pequeno RNA não Traduzido/metabolismo , Tetraciclinas/metabolismo , RNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica
19.
Poult Sci ; 103(1): 103204, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939587

RESUMO

The recombinant plasmid pCI-IL-4-IL-2-EGFP containing fusion genes of chicken IL-4 and IL-2 can be used as an adjuvant to enhance the anticoccidiosis effect of the chicken coccidia live vaccine. The chickens were divided into 3 groups: blank control group, vaccine + pCI-IL-4-IL-2-EGFP adjuvant coimmunization group, and vaccine-only group to investigate the immune synergy mechanism of recombinant plasmid adjuvant pCI-IL-4-IL-2-EGFP. The expressions of IL-2, IL-4, TNF-α, and IFN-γ in chicken sera and tissues were detected by ELISA and RT-qPCR, and the proliferation of T and B lymphocytes and antigen presenting cells (APC) in chicken immune organs and intestines were detected by acid alpha-naphthalase (ANAE) staining, methyl green pyronine (MGP) staining, and immunofluorescence (IF) staining, respectively. Results showed that the mRNA expression of IL-2, IL-4, IFN-γ and the number of activated T and B lymphocytes were significantly upregulated in the spleen and cecum tonsils of chickens in vaccine + pCI-IL-4-IL-2-EGFP group compared with the vaccine-only group on 7 d after vaccination (P < 0.05). Protein contents of IL-2, IL-4 and TNF-α in vaccine + pCI-IL-4-IL-2-EGFP group were significantly increased compared to vaccine-only group on 28 d of inoculation (P < 0.05). The number of T and B lymphocytes and APC in chickens of the vaccine+ pCI-IL-4-IL-2-EGFP group was significantly higher than that of the vaccine-only group in cecum tonsils, thymus and spleen after 14 and 28 d of inoculation (P < 0.05). All results revealed that pCI-IL-4-IL-2-EGFP adjuvant enhanced the immune response of chicken coccidia live vaccine by upregulating the expression of IL-2, IL-4, TNF-α, and IFN-γ and promoting the proliferation of T, B lymphocytes and APCs in chicken intestines and immune organ sites. Moreover, our study provides a theoretical basis for the clinical application of cytogenic plasmids as adjuvants.


Assuntos
Galinhas , Coccídios , Animais , Galinhas/genética , Interleucina-2/genética , Interleucina-4/genética , Fator de Necrose Tumoral alfa/genética , Coccídios/genética , Coccídios/metabolismo , Adjuvantes Imunológicos , Plasmídeos/genética
20.
Int J Mol Sci ; 24(23)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38069090

RESUMO

Chinese hamster ovary (CHO) cells are a popular choice in biopharmaceuticals because of their beneficial traits, including high-density suspension culture, safety, and exogenously produced proteins that closely resemble natural proteins. Nevertheless, a decline in the expression of exogenous proteins is noted as culture time progresses. This is a consequence of foreign gene recombination into chromosomes by random integration. The current investigation employs CRISPR-Cas9 technology to integrate foreign genes into a particular chromosomal location for sustained expression. Results demonstrate the successful integration of enhanced green fluorescent protein (EGFP) and human serum albumin (HSA) near base 434814407 on chromosome NC_048595.1 of CHO-K1 cells. Over 60 successive passages, monoclonal cell lines were produced that consistently expressed all relevant external proteins without discernible variation in expression levels. In conclusion, the CHO-K1 cell locus, NC_048595.1, proves an advantageous locus for stable exogenous protein expression. This study provides a viable approach to establishing a CHO cell line capable of enduring reliable exogenous protein expression.


Assuntos
Sistemas CRISPR-Cas , Albumina Sérica Humana , Cricetinae , Animais , Humanos , Células CHO , Cricetulus , Proteínas Recombinantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...