Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Biomed Pharmacother ; 177: 116970, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38897160

RESUMO

Burkitt's lymphoma (BL) is a rare and highly aggressive B-cell non-Hodgkin lymphoma. Although the outcomes of patients with BL have greatly improved, options for patients with relapsed and refractory BL are limited. Therefore, there is an urgent need to improve BL therapeutics and to develop novel drugs with reduced toxicity. In this study, we demonstrated that enolase 1 (ENO1) is a potential novel drug target for BL treatment. We determined that ENO1 was aberrantly upregulated in BL, which was closely related to its invasiveness and poor clinical outcomes. Furthermore, using RNA interference, we demonstrated that ENO1 depletion significantly inhibited cell proliferation and invasion both in vitro and in vivo. Mechanistically, we established that ENO1 knockdown suppressed the PI3K-AKT and epithelial-mesenchymal transition (EMT) signaling pathways by reducing plasminogen (PLG) recruitment, plasmin (PL) generation, and TGF-ß1 activation. Addition of activated TGF-ß1 protein to the culture medium of shENO1 cells reversed the inhibitory effects on cell proliferation and invasion, as well as those on the PI3K-AKT and EMT signaling pathways. Notably, our research led to the discovery of a novel ENO1-PLG interaction inhibitor, Ciwujianoside E (L-06). L-06 effectively disrupts the interaction between ENO1 and PLG, consequently reducing PL generation and suppressing TGF-ß1 activation. In both in vitro and in vivo experiments, L-06 exerted impressive antitumor effects. In summary, our study elucidated the critical role of ENO1 in BL cell proliferation and invasion and introduced a novel ENO1 inhibitor, which holds promise for improving the treatment of patients with BL in the future.

2.
Cancer Lett ; 595: 217002, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-38823761

RESUMO

The mechanism underlying N6-methyladenosine (m6A) modification in bladder cancer (BC) remains elusive. We identified that the RBM15/METTL3 complex enhances m6A modification and promotes the ENO1 protein translation efficiency through its 359A site by depending on YTHDF1 in BC cells. In the tumor microenvironment, TGF-ß effectively stimulates RBM15/METTL3 expression to improve ENO1 mRNA m6A modification through the Smad2/3 pathway. Reduced ENO1 m6A levels hamper tumor proliferation both in vitro and in vivo. Mechanistically, ENO1 augments PCNA protein stability by reducing its K48-linked ubiquitination and thus prevents protein degradation through the endoplasmic reticulum-associated degradation pathway. According to the subsequent experiments, the ENO1 inhibitor significantly reduced tumor proliferation both in vitro and in vivo. Our study highlights the significance of RBM15/METTL3 complex-mediated ENO1 mRNA m6A modification in ENO1 expression. It also reveals a novel mechanism by which ENO1 promotes BC progression, thereby suggesting that ENO1 can be a therapeutic target for BC.


Assuntos
Adenosina , Proliferação de Células , Proteínas de Ligação a DNA , Progressão da Doença , Fosfopiruvato Hidratase , Proteínas de Ligação a RNA , Proteínas Supressoras de Tumor , Ubiquitinação , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Humanos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Fosfopiruvato Hidratase/metabolismo , Fosfopiruvato Hidratase/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Camundongos , Metiltransferases/metabolismo , Metiltransferases/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Camundongos Nus , Biomarcadores Tumorais , Antígeno Nuclear de Célula em Proliferação
3.
Adv Sci (Weinh) ; : e2309840, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769664

RESUMO

The RNA modification, 5-methylcytosine (m5C), has recently gained prominence as a pivotal post-transcriptional regulator of gene expression, intricately intertwined with various tumorigenic processes. However, the exact mechanisms governing m5C modifications during the onset and progression of colorectal cancer (CRC) remain unclear. Here, it is determined that the m5C methyltransferase NSUN2 exhibits significantly elevated expression and exerts an oncogenic function in CRC. Mechanistically, NSUN2 and YBX1 are identified as the "writer" and "reader" of ENO1, culminating in the reprogramming of the glucose metabolism and increased production of lactic acid in an m5C-dependent manner. The accumulation of lactic acid derived from CRC cells, in turn, activates the transcription of NSUN2 through histone H3K18 lactylation (H3K18la), and induces the lactylation of NSUN2 at the Lys356 residue (K356), which is crucial for capturing target RNAs. Together, these findings reveal an intriguing positive feedback loop involving the NSUN2/YBX1/m5C-ENO1 signaling axis, thereby bridging the connection between metabolic reprogramming and epigenetic remodeling, which may shed light on the therapeutic potential of combining an NSUN2 inhibitor with immunotherapy for CRC.

4.
Open Life Sci ; 19(1): 20220785, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585644

RESUMO

Endometriosis is increasingly affecting women worldwide and research is focusing on identifying key targets in its pathogenesis. Changes in succinylation genes regulate the function of this protein and further influence the development of the disease. However, the role of succinylation genes in endometriosis is not clear from current studies. The expression of succinylation genes was determined in ectopic endometrium (EC) and ectopic patients with uterine fibroids (EN) by real-time quantitative PCR (qRT-PCR) and Western blot. Cell Counting Kit-8, transwell assays, and flow cytometry were used to assess endometrial stromal cells (ESCs) proliferation, apoptosis, migration, and invasion. KAT2A and ENO1 association was detected by qRT-PCR, immunofluorescence, and CoIP. We found that gene and protein levels of KAT2A were significantly increased in the EC group compared to EN group tissues. KAT2A silencing inhibited cell proliferation, migration, and invasion and promoted apoptosis. Western blot results showed that the expression of ENO1 and its succinylation was significantly upregulated in ECSc after KAT2A overexpression. CoIP results showed that KAT2A is positively bound to ENO1. Immunofluorescence also showed co-localized expression of KAT2A with ENO1. Furthermore, ENO1 overexpression reversed the effects of KAT2A silencing on the malignant behavior of ESCs. In summary, we found that succinylation of ENO1 mediated by KAT2A played a role in promoting the progression of endometriosis.

5.
FASEB J ; 38(8): e23631, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38661062

RESUMO

Recurrent miscarriage (RM) is related to the dysfunction of extravillous trophoblast cells (EVTs), but the comprehensive mechanisms remain largely unexplored. We analyzed single-cell RNA sequencing (scRNA-seq), bulk RNA sequencing and microarray datasets obtained from Gene Expression Omnibus (GEO) database to explore the hub genes in the mechanisms of RM. We identified 1724 differentially expressed genes (DEGs) in EVTs from the RM, and they were all expressed along the trajectory of EVTs. These DEGs were associated with hypoxia and glucose metabolism. Single-cell Regulatory Network Inference and Clustering (SCENIC) analysis revealed that E2F transcription factor (E2F) 8 (E2F8) was a key transcription factor for these DEGs. And the expression of ENO1 can be positively regulated by E2F8 via RNA sequencing analysis. Subsequently, we performed immunofluorescence assay (IF), plasmid transfection, western blotting, chromatin immunoprecipitation (ChIP), real-time quantitative polymerase chain reaction (qRT-PCR), and transwell assays for validation experiments. We found that the expression of alpha-Enolase 1 (ENO1) was lower in the placentas of RM. Importantly, E2F8 can transcriptionally regulate the expression of ENO1 to promote the invasion of trophoblast cells by inhibiting secreted frizzled-related protein 1/4 (SFRP1/4) to activate Wnt signaling pathway. Our results suggest that ENO1 can promote trophoblast invasion via an E2F8-dependent manner, highlighting a potential novel target for the physiological mechanisms of RM.


Assuntos
Aborto Habitual , Proteínas de Ligação a DNA , Proteínas Repressoras , Trofoblastos , Adulto , Feminino , Humanos , Gravidez , Aborto Habitual/metabolismo , Aborto Habitual/genética , Aborto Habitual/patologia , Movimento Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fosfopiruvato Hidratase/metabolismo , Fosfopiruvato Hidratase/genética , Trofoblastos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Repressoras/metabolismo
6.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38675491

RESUMO

Interleukin (IL)-32 is produced by T lymphocytes, natural killer cells, monocytes, and epithelial cells. IL-32 induces the production of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, IL-1ß, IL-6, and IL-8, and IL-32 expression is highly increased in rheumatoid arthritis (RA) patients. Enolase-1 (ENO1) is a glycolytic enzyme and the stimulation of ENO1 induces high levels of pro-inflammatory cytokines in concanavalin A (Con A)-activated peripheral blood mononuclear cells (PBMCs) and macrophages in RA patients. In addition, there are many reports that anti-ENO1 antibody is correlated with the disease progression of RA. It implies that ENO1 could regulate IL-32 production during inflammation related to the pathogenesis of RA. Therefore, we investigated the role of ENO1 in IL-32 production using Con A-activated PBMCs and RA PBMCs. IL-32 expression is increased by ENO1 stimulation using real-time PCR and ELISA. In addition, we confirmed that IL-32 production was decreased in Con A-activated PBMCs and RA PBMCs pre-treated with NF-κB or p38 MAPK pathway inhibitors. Taken together, these results suggest that ENO1 plays an important role in inflammation through the induction of IL-32 production by the activation of the NF-κB and p38 MAPK pathways.

7.
Biochem Pharmacol ; 224: 116220, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641307

RESUMO

Alpha-enolase (ENO1), a multifunctional protein with carcinogenic properties, has emerged as a promising cancer biomarker because of its differential expression in cancer and normal cells. On the basis of this characteristic, we designed a cell-targeting peptide that specifically targets ENO1 and connected it with the drug doxorubicin (DOX) by aldehyde-amine condensation. A surface plasmon resonance (SPR) assay showed that the affinity for ENO1 was stronger (KD = 2.5 µM) for the resulting cell-targeting drug, DOX-P, than for DOX. Moreover, DOX-P exhibited acid-responsive capabilities, enabling precise release at the tumor site under the guidance of the homing peptide and alleviating DOX-induced cardiotoxicity. An efficacy experiment confirmed that, the targeting ability of DOX-P toward ENO1 demonstrated superior antitumor activity against colorectal cancer than that of DOX, while reducing its toxicity to cardiomyocytes. Furthermore, in vivo metabolic distribution results indicated low accumulation of DOX-P in nontumor sites, further validating its targeting ability. These results showed that the ENO1-targeted DOX-P peptide has great potential for application in targeted drug-delivery systems for colorectal cancer therapy.


Assuntos
Antibióticos Antineoplásicos , Neoplasias Colorretais , Doxorrubicina , Sistemas de Liberação de Medicamentos , Fosfopiruvato Hidratase , Proteínas Supressoras de Tumor , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Fosfopiruvato Hidratase/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Animais , Proteínas Supressoras de Tumor/metabolismo , Humanos , Camundongos , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/administração & dosagem , Camundongos Endogâmicos BALB C , Camundongos Nus , Masculino , Linhagem Celular Tumoral , Células HCT116 , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Biomarcadores Tumorais
8.
Mol Carcinog ; 63(7): 1221-1234, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38517039

RESUMO

Pancreatic cancer (PC), a leading cause of cancer-related deaths, has a 5-year survival rate of approximately 10%. α-Enolase (ENO1) is a junction channel protein involved in tumor cell apoptosis and chemoresistance. However, the role of ENO1 in PC remains unclear. The expression and prognosis of ENO1 levels were determined in PC using public databases based on The Cancer Genome Atlas (TCGA) data sets. Cell viability, half maximal inhibitory concentration (IC50), autophagy, apoptosis, and autophagy markers were examined using cell counting kit-8 (CCK-8), transmission electron microscope, flow cytometry assays, and immunoblot, respectively. Using the Gene Expression Omnibus (GEO) and TCGA data sets, we found that ENO1 was significantly enriched in PC tumor tissues, and high expression levels of ENO1 were associated with an unfavorable prognosis. Whereas ENO1 silencing suppressed proliferation, autophagy, and induced cell apoptosis in PC cells, and inhibited tumor growth in vivo. Mechanistically, knockdown of ENO1 enhanced cellular cytotoxicity of gemcitabine (GEM), as well as reducing the expression of yes-associated protein 1 (YAP1), a major downstream effector of the Hippo pathway in vitro. YAP1 promoted autophagy and protected PC cells from GEM-induced apoptotic cell death. Furthermore, YAP1 overexpression attenuated the inhibition effects of ENO1 silencing. Our results suggest that ENO1 overexpression promotes cell growth and tumor progression by increasing the expression of YAP1 in PC. Further studies are required to understand the detailed mechanisms between ENO1 and YAP1 in PC.


Assuntos
Apoptose , Proteínas de Ligação a DNA , Desoxicitidina , Resistencia a Medicamentos Antineoplásicos , Gencitabina , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas , Fosfopiruvato Hidratase , Transdução de Sinais , Fatores de Transcrição , Proteínas Supressoras de Tumor , Proteínas de Sinalização YAP , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Proteínas de Sinalização YAP/metabolismo , Animais , Transdução de Sinais/efeitos dos fármacos , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Linhagem Celular Tumoral , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Prognóstico , Proliferação de Células/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Autofagia/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Masculino , Feminino , Antimetabólitos Antineoplásicos/farmacologia , Biomarcadores Tumorais
9.
PeerJ ; 12: e16817, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515460

RESUMO

Background: Antibody-based platforms (i.e., ADC) have emerged as one of the most encouraging tools for the cancer resistance caused by cancer stem cells (CSCs) enrichment. Our study might provide a promising therapeutic direction against drug resistance and serve as a potential precursor platform for screening ADC. Methods: The cell migration, invasion, drug resistance, and self-renewal were assessed by the cell invasion and migration assay, wound healing assay, CCK-8 assay, colony formation assay, and sphere formation assay, respectively. The expression profiles of CSCs (ALDH+ and CD44+) subpopulations were screened by flow cytometry. The western blot and cell immunofluorescence assay were used to evaluate pathway-related protein expression in both anti-ENO1 antibody, MET combined with DPP/CTX-treated CSCs. Results: In the present study, western blot and flow cytometry verified that anti-ENO1 antibody target the CD44+ subpopulation by inhibiting the PI3K/AKT pathway, while metformin might target the ALDH+ subpopulation through activation of the AMPK pathway and thus reverse drug resistance to varying degrees. Subsequently, in vitro investigation indicated that anti-ENO1 antibody, metformin combined with cisplatin/cetuximab could simultaneously target ALDH+ and CD44+ subpopulations. The combination also inhibited the CSCs proliferation, migration, invasion, and sphere formation; which may result in overcoming the drug resistance. Then, molecular mechanism exploration verified that the anti-ENO1 antibody, metformin combined with cisplatin/cetuximab inhibited the Wnt/ß-catenin signaling. Conclusions: The study preliminarily revealed anti-ENO1 antibody combined with metformin could overcome drug resistance against CSCs by inhibiting the Wnt//ß-catenin pathway and might serve as a potential precursor platform for screening ADC. More importantly, it is reasonably believed that antibody-based drug combination therapy might function as an encouraging tool for oncotherapy.


Assuntos
Metformina , Metformina/farmacologia , Cisplatino/farmacologia , beta Catenina/metabolismo , Linhagem Celular Tumoral , Cetuximab , Fosfatidilinositol 3-Quinases/metabolismo
10.
Autoimmun Rev ; 23(5): 103535, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552995

RESUMO

Deposition of autoantibodies in glomeruli is a key factor in the development of lupus nephritis (LN). For a long time, anti-dsDNA and anti-C1q antibodies were thought to be the main cause of the kidney damage. However, recent studies have shown that the list of autoantibidies that have renal tropism and deposit in the kidney in LN is increasing and the link between anti-dsDNA and renal pathology is weak due to potential confounders. Aspecific bindings of dsDNA with cationic antibodies and of anti-dsDNA with several renal antigens such as actinin, laminin, entactin, and annexinA2 raised doubts about the specific target of these antibodies in the kidney. Moreover, the isotype of anti-dsDNA in SLE and LN has never received adequate interest until the recent observation that IgG2 are preponderant over IgG1, IgG3 and IgG4. Based on the above background, recent studies investigated the involvement of anti-dsDNA IgG2 and of other antibodies in LN. It was concluded that circulating anti-dsDNA IgG2 levels do not distinguish between LN versus non-renal SLE, and, in patients with LN, their levels do not change over time. Circulating levels of other antibodies such as anti-ENO1 and anti-H2 IgG2 were, instead, higher in LN vs non-renal SLE at the time of diagnosis and decreased following therapies. Finally, new classes of renal antibodies that potentially modify the anti-inflammatory response in the kidney are emerging as new co-actors in the pathogenetic scenario. They have been defined as 'second wave antibodies' for the link with detoxifying mechanisms limiting the oxidative stress in glomeruli that are classically stimulated in a second phase of inflammation. These findings have important clinical implications that may modify the laboratory approach to LN. Serum levels of anti-ENO1 and anti-H2 IgG2 should be measured in the follow up of patients for designing the length of therapies and identify those patients who respond to treatments. Anti-SOD2 could help to monitor and potentiate the anti-inflammatory response in the kidney.


Assuntos
Autoanticorpos , Nefrite Lúpica , Nefrite Lúpica/imunologia , Nefrite Lúpica/diagnóstico , Humanos , Autoanticorpos/imunologia , Autoanticorpos/sangue , Animais , Anticorpos Antinucleares/imunologia , Anticorpos Antinucleares/sangue , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Autoantígenos/imunologia
11.
Parasit Vectors ; 17(1): 146, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504274

RESUMO

BACKGROUND: Cryptosporidium parvum is an apicomplexan zoonotic parasite causing the diarrheal illness cryptosporidiosis in humans and animals. To invade the host intestinal epithelial cells, parasitic proteins expressed on the surface of sporozoites interact with host cells to facilitate the formation of parasitophorous vacuole for the parasite to reside and develop. The gp40 of C. parvum, named Cpgp40 and located on the surface of sporozoites, was proven to participate in the process of host cell invasion. METHODS: We utilized the purified Cpgp40 as a bait to obtain host cell proteins interacting with Cpgp40 through the glutathione S-transferase (GST) pull-down method. In vitro analysis, through bimolecular fluorescence complementation assay (BiFC) and coimmunoprecipitation (Co-IP), confirmed the solid interaction between Cpgp40 and ENO1. In addition, by using protein mutation and parasite infection rate analysis, it was demonstrated that ENO1 plays an important role in the C. parvum invasion of HCT-8 cells. RESULTS: To illustrate the functional activity of Cpgp40 interacting with host cells, we identified the alpha-enolase protein (ENO1) from HCT-8 cells, which showed direct interaction with Cpgp40. The mRNA level of ENO1 gene was significantly decreased at 3 and 24 h after C. parvum infection. Antibodies and siRNA specific to ENO1 showed the ability to neutralize C. parvum infection in vitro, which indicated the participation of ENO1 during the parasite invasion of HCT-8 cells. In addition, we further demonstrated that ENO1 protein was involved in the regulation of cytoplasmic matrix of HCT-8 cells during C. parvum invasion. Functional study of the protein mutation illustrated that ENO1 was also required for the endogenous development of C. parvum. CONCLUSIONS: In this study, we utilized the purified Cpgp40 as a bait to obtain host cell proteins ENO1 interacting with Cpgp40. Functional studies illustrated that the host cell protein ENO1 was involved in the regulation of tight junction and adherent junction proteins during C. parvum invasion and was required for endogenous development of C. parvum.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Humanos , Animais , Cryptosporidium parvum/genética , Criptosporidiose/parasitologia , Esporozoítos/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Membrana/metabolismo , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Proteínas de Ligação a DNA/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas Supressoras de Tumor/metabolismo
12.
Transl Cancer Res ; 13(2): 833-846, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38482406

RESUMO

Background: B7-H3 (CD276) is overexpressed in diverse malignant tumors and plays critical roles in tumorigenesis and metastasis. However, the mechanism of B7-H3 in lung cancer remains unclear. This study aimed to explore the mechanism of interaction between B7-H3 and α-enolase (ENO1) in lung cancer progression. Methods: Tumor Immune Estimation Resource 2.0 (TIMER 2.0) and Gene Expression Profiling Interactive Analysis 2 (GEPIA 2) databases were used to analyze the B7-H3 messenger RNA (mRNA) expression levels in lung cancer. The Kaplan-Meier (KM) plotter was used to analyze the correlation between B7-H3 and prognosis. Immunoprecipitation and glutathione S-transferase (GST) pull-down were used to verify the B7-H3 and ENO1 interaction. Cell counting kit-8 (CCK-8) and wound healing assays were used to investigate the effect of B7-H3 on the lung cancer growth. Results: Based on the public databases, the analysis showed that B7-H3 mRNA expression levels were up-regulated and correlated with patient prognosis in lung cancer. By using B7-H3 gain and off cell model, we concluded that B7-H3 overexpression promoted proliferation and migration of SBC5 cells. Subsequently, we found that both B7-H3 and ENO1 knockdown could inhibit cell proliferation and migration, in the meanwhile, and the phosphorylation levels of PI3K-p85α, and AKT were significantly reduced. Interestingly, we determined that B7-H3 regulated ENO1 activity rather than changing its expression levels. Furthermore, we used an AP-III-a4 to block ENO1 activity in the experiments, which attenuated the roles of B7-H3 not only on phosphorylation levels of those molecules, but also on cell growth and migration. Conclusions: B7-H3 directly interacts with ENO1 in lung cancer cells. B7-H3 can promote proliferation and migration of lung cancer cells by modulating PI3K/AKT pathway via ENO1 activity.

13.
Cancers (Basel) ; 16(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473245

RESUMO

In solid tumours, high expression of the glycolytic enzyme, α-enolase (ENO1), predicts for poor patient overall survival (OS), and circulating autoantibodies to ENO1 correlate positively with diagnosis and negatively with advanced disease. Although ENO1 is one of the most highly expressed genes in acute myeloid leukaemia (AML), its potential role as a biomarker in AML or its precursor, myelodysplastic neoplasms (MDS), has not been investigated. A meta-analysis of nine AML online datasets (n = 1419 patients) revealed that high ENO1 expression predicts for poor OS (HR = 1.22, 95% CI: 1.10-1.34, p < 0.001). Additionally, when compared to AML in remission (n = 5), ENO1 protein detected by immunohistochemistry was significantly higher at diagnosis in bone marrow from both AML (n = 5, p < 0.01) and MDS patients (n = 12, p < 0.05), and did not correlate with percentage of blasts (r = 0.28, p = 0.21). AML patients (n = 34) had lower circulating levels of ENO1 autoantibodies detected by ELISA compared to 26 MDS and 18 controls (p = 0.003). However, there was no difference in OS between AML patients with high vs. low levels of anti-ENO1 autoantibodies (p = 0.77). BM immunostaining for ENO1 and patient monitoring of anti-ENO1 autoantibody levels may be useful biomarkers for MDS and AML.

14.
Int Immunopharmacol ; 130: 111707, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38387194

RESUMO

Lung cancer is the leading cause of cancer-related morbidity and mortality in China. However, the effect of traditional cancer treatment is limited. Herein, we designed a therapeutic cancer vaccine based on the tumor-associated antigen mENO1, which can prevent lung cancer growth in vivo, and explored the underlying mechanism of Ag85B-ENO146-82 therapy. Lewis lung carcinoma (LLC) tumor-bearing immunocompetent C57BL/6 mice that received Ag85B-ENO146-82 treatment showed antitumor effect. Further, we detected CD8+ T, CD4+ T in LLC-bearing C57BL/6 mice to understand the impact of Ag85B-ENO146-82 therapy on antitumor capacity. The Ag85B-ENO146-82 therapy induced intensive infiltration of CD4+ and CD8+ T cells in tumors, increased tumor-specific IFN-γ and TNF-α secretion by CD8+ T cells and promoted macrophage polarization toward M1 phenotype. Flow cytometric analysis revealed that CD8+ T effector memory (TEM) cells and central memory (TCM) cells were upregulated. qPCR and ELISA analysis showed that the expression of IFN-γ and TNF-α were upregulated, whereas of IL1ß, IL6 and IL10 were downregulated. This study demonstrated that Ag85B-ENO146-82 vaccine augmented antitumor efficacy, which was CD8+ T cells dependent. Our findings paved the way for therapeutic tumor-associated antigen peptide vaccines to enhance anti-tumor immunotherapy for treatment of cancer.


Assuntos
Vacinas Anticâncer , Carcinoma Pulmonar de Lewis , Neoplasias Pulmonares , Animais , Camundongos , Linfócitos T CD8-Positivos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/farmacologia , Microambiente Tumoral
15.
Int Immunopharmacol ; 128: 111476, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38185035

RESUMO

Streptococcus pneumoniae is a clinically relevant pathogen notorious for causing pneumonia, meningitis, and otitis media in immunocompromised patients. Currently, antibiotic therapy is the most efficient treatment for fighting pneumococcal infections. However, an arise in antimicrobial resistance in S. pneumoniae has become a serious health issue globally. To resolve the problem, alternative and cost-effective strategies, such as monoclonal antibody-based targeted therapy, are needed for combating bacterial infection. S. pneumoniae alpha-enolase (spEno1), which is thought to be a great target, is a surface protein that binds and converts human plasminogen to plasmin, leading to accelerated bacterial infections. We first purified recombinant spEno1 protein for chicken immunization to generate specific IgY antibodies. We next constructed two single-chain variable fragments (scFv) antibody libraries by phage display technology, containing 7.2 × 107 and 4.8 × 107 transformants. After bio-panning, ten scFv antibodies were obtained, and their binding activities to spEno1 were evaluated on ELISA, Western blot and IFA. The epitopes of spEno1 were identified by these scFv antibodies, which binding affinities were determined by competitive ELISA. Moreover, inhibition assay displayed that the scFv antibodies effectively inhibit the binding between spEno1 and human plasminogen. Overall, the results suggested that these scFv antibodies have the potential to serve as an immunotherapeutic drug against S. pneumoniae infections.


Assuntos
Fosfopiruvato Hidratase , Anticorpos de Cadeia Única , Streptococcus pneumoniae , Animais , Humanos , Galinhas , Biblioteca de Peptídeos , Fosfopiruvato Hidratase/imunologia , Plasminogênio , Proteínas Recombinantes , Anticorpos de Cadeia Única/imunologia , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/imunologia
16.
Mol Ther Oncolytics ; 31: 100750, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38075246

RESUMO

Aerobic glycolysis is a hallmark property of cancer metabolism. Enolase is a glycolytic enzyme that catalyzes the conversion of 2-phosphoglycerate into phosphoenolpyruvate. In mammals, enolases exist in three isoforms, encoded by the genes ENO1, ENO2, and ENO3. The altered expression of enolases is a common occurrence in various types of cancer. Although most published studies on enolases have predominantly focused on the role of ENO1 in cancer, ENO2 and ENO3 have recently emerged as crucial regulatory molecules in cancer development. Significant progress has been made in understanding their multifaceted roles in oncogenesis. In this comprehensive review, we provide an overview of the structure, subcellular localization, diagnostic and prognostic significance, biological functions, and molecular mechanisms of ENO2 and ENO3 in cancer progression. The importance of enolase in cancer development makes it a novel therapeutic target for clinical applications. Furthermore, we discuss anticancer agents designed to target enolases and summarize their anticancer efficacy in both in vitro and in vivo studies.

17.
Mol Biotechnol ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966664

RESUMO

Disorders of glucose and lipid metabolism are an important cause of type 2 diabetes mellitus (T2DM). Identifying the molecular mechanism of metabolic disorders is key to the treatment of T2DM. The study was to investigate the effect of circRNA PIP5K1A (circPIP5K1A) on glucose and lipid metabolism and inflammation in T2DM rats. A T2DM rat model was established, and then the T2DM rats were injected with lentiviral vectors that interfere with circPIP5K1A, miR-552-3p, or ENO1 expression. Fasting blood glucose (FBG) and fasting insulin (FINS) levels of rats were detected by an automatic analyzer and insulin detection kit, and HOMA-IR was calculated. Lipid metabolism was assessed by measuring serum levels of TG, TC, LDL-C, leptin, and resistin. Serum levels of inflammatory factors (TNF-α and IL-6) were detected by ELISA. The pathological conditions of pancreatic tissue were observed by HE staining. circPIP5K1A, miR-552-3p and ENO1 levels were recorded. The experimental results showed that circPIP5K1A and ENO1 were up-regulated, and miR-552-3p was down-regulated in T2DM rats. Down-regulating circPIP5K1A or up-regulating miR-552-3p reduced blood glucose and lipid levels, inhibited inflammation, and improved pancreatic histopathological changes in T2DM rats. In addition, up-regulating ENO1 rescued the ameliorating effects of down-regulated circPIP5K1A on T2DM rats. In general, downregulating circPIP5K1A improves insulin resistance and lipid metabolism disorders and inhibits inflammation by targeting miR-552-3p to mediate ENO1 expression.

18.
Molecules ; 28(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37959729

RESUMO

Cinnamaldehyde (CA) showed potent activity against melanoma in our previous study, and the structure of unsaturated aldehydes is envisaged to play a role. Nevertheless, its limited drug availability restricts its clinical application. Therefore, a series of CA analogues were synthesized to evaluate their anti-melanoma activities across various melanoma cell lines. These compounds were also tested for their toxicity against the different normal cell lines. The compound with the most potential, CAD-14, exhibited potent activity against the A375, A875 and SK-MEL-1 cells, with IC50 values of 0.58, 0.65, and 0.82 µM, respectively. A preliminary molecular mechanism study of CAD-14 indicated that it could inhibit the p38 pathway to induce apoptosis, and suppress tumor growth by inhibiting the expression of ENO1. Furthermore, an acute toxicity study depicted that CAD-14 has better safety and tolerability than CA in vivo. These findings indicate that CAD-14 might be a lead compound for exploring effective anti-melanoma drugs.


Assuntos
Antineoplásicos , Melanoma , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Melanoma/metabolismo , Acroleína/farmacologia , Acroleína/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células
19.
Biol Direct ; 18(1): 64, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37807062

RESUMO

BACKGROUND: Despite improvements in prognosis due to advances in treatment, including surgery, genetic screening, and molecular targeted therapy, the outcomes of ovarian cancer (OC) remain unsatisfactory. Internal mRNA modifications are extremely common in eukaryotes; N6-methyladenosine (m6A) alteration has significant effects on mRNA stability and translation, and it is involved in the pathophysiology of numerous diseases related to cancer. METHODS: Bioinformatics analysis, quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of vir-like m6A methyltransferase associated (KIAA1429) in OC tissues and cell lines. Several different cell models and animal models were established to determine the role of KIAA1429 in glucose metabolism reprogramming and the underlying molecular mechanism of OC. The mechanism of oncology functional assays, co-immunoprecipitation and a luciferase reporter gene was employed to ascertain how KIAA1429 interacts with important molecular targets. RESULTS: We reported that KIAA1429 was overexpressed in OC and predicted a poor prognosis. Functionally, KIAA1429 promoted cell growth by inducing proliferation and inhibiting necrosis. Mechanistically, KIAA1429 promoted tumor progression and glycolysis via stabilizing ENO1 mRNA in a way dependent on m6A. Furthermore, we investigated that the SPI1 transcription factor is the main transcription factor that regulates KIAA1429 transcription in OC. CONCLUSION: Our findings revealed that SPI1/KIAA1429/ENO1 signaling is a novel molecular axis and raises awareness of the vital functions of the changes in KIAA1429 and m6A changes in the metabolic reprogramming of OC. These results identified new potential biomarkers and treatment targets for OC.


Assuntos
Neoplasias Ovarianas , Animais , Feminino , Humanos , Neoplasias Ovarianas/genética , Glicólise , RNA Mensageiro , Fatores de Transcrição , Proteínas de Ligação a DNA , Fosfopiruvato Hidratase/genética , Biomarcadores Tumorais/genética , Proteínas Supressoras de Tumor/genética
20.
PeerJ ; 11: e16140, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810778

RESUMO

Background: Metabolic reprogramming is a key marker in the occurrence and development of tumors. This process generates more reactive oxygen species (ROS), promoting the development of oxidative stress. To prevent ROS from harming tumor cells, tumor cells can increase the production of reducing agents to counteract excessive ROS. NMRAL2P has been shown to promote the production of reductive mRNA and plays an important role in the process of oxidative stress. Methods: In this study, the clinical data and RNA sequencing of head and neck tumors were obtained from The Cancer Genome Atlas data set. The long non-coding RNA (LncRNA) related to oxidative stress were then identified using differential and correlation analyses. The differential expression and prognosis of the identified lncRNA were then verified using samples from the library of the Second Hospital of Hebei Medical University. Only NMRAL2P was substantially expressed in cancer tissues and predicted a poor prognosis. The tumor-promoting impact of NMRAL2P was then confirmed using in vitro functional assays. The data set was then split into high- and low-expression subgroups based on the median gene expression of NMRAL2P to obtain the mRNA that had a large difference between the two groups, and examine the mechanism of NMRAL2P on GPX2 using quantitative real-time PCR, RNA binding protein immunoprecipitation assay, and chromatin immunoprecipitation. Mass spectrometry was used to identify NMRAL2P-binding proteins and western blotting was used to investigate probable mechanisms. Results: The lncRNA NMRAL2P is associated with oxidative stress in head and neck tumors. In vitro functional assays showed that the gene has a cancer-promoting effect, increasing lactic acid and superoxide dismutase production, and reducing the production of ROS and malondialdehyde. NMRAL2P promotes the transcription of GPX2 by binding to transcription factor Nrf2. The gene also inhibits the degradation of ENO1, a crucial enzyme in glycolysis, by binding to protein ENO1. Conclusions: This study shows that NMRAL2P can promote glycolysis and reduce the harm to tumor cells caused by ROS. The gene can also be used as a possible target for the treatment of head and neck tumors.


Assuntos
Glutationa Peroxidase , Neoplasias de Cabeça e Pescoço , RNA Longo não Codificante , Espécies Reativas de Oxigênio , Humanos , Biomarcadores Tumorais/genética , Proteínas de Ligação a DNA/genética , Glutationa Peroxidase/genética , Glicólise/genética , Neoplasias de Cabeça e Pescoço/genética , Fosfopiruvato Hidratase/genética , Espécies Reativas de Oxigênio/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/metabolismo , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...