Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
J Lipid Res ; : 100640, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39244035

RESUMO

Ecdysteroids represent a large class of polyhydroxylated steroids which, due to their anabolic properties, are marketed as dietary supplements. Some ecdysteroids also act as important hormones in arthropods, where they regulate molting, development, and reproduction and many of these insects are miniature organisms that contain submicroliter levels of circulating biofluids Analysis of ecdysteroids is further complicated by their very low abundance, large fluctuations during development, and difficult access to a pooled sample, which is important for quantitative measurements. In this work, we propose a new method that overcomes the described difficulties and allows validated quantification of four ecdysteroids in minimal amounts of biological material. After methanolic extraction, detectability of the ecdysteroids is increased 16- to 20-fold by conversion to their 14,15-anhydrooximes. These are further purified by pipette tip solid phase extraction (PT-SPE) on a three-layer sorbent and subjected to HPLC-MS/MS analysis. Full validation was achieved using hemolymph from larvae of the firebug Pyrrhocoris apterus as a blank matrix and by the determination of ecdysteroids in a single Drosophila larva. The LLOQs for the four target ecdysteroids (20-hydroxyecdysone, ecdysone, makisterone A, and 2-deoxyecdysone) were 0.01; 0.1; 0.05; 0.025 pg·mL-1 (20; 200; 100; 50 fmol·mL-1) respectively, with very good accuracy, precision (RSD < 15%) and recoveries (96% - 119.9%).The general suitability of the new method was demonstrated by quantification of ecdysteroids in various biological materials including human serum.

2.
Biology (Basel) ; 13(8)2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39194568

RESUMO

The neuropeptide corazonin (Crz) exerts diverse physiological effects in insects, yet its role in crustaceans remains elusive. The abundant expression of Crz receptor (CrzR) in the Y-organs of several crustaceans suggests a potential involvement of Crz in regulating ecdysteroid synthesis. In this study, we examined the effects of PtCrz on ecdysteroid synthesis during the molting period of Portunus trituberculatus through PtCrz treatments and PtCrzR silencing. Our results showed that PtCrz peptide stimulates ecdysteroid levels and the gene expression involved in ecdysteroidogenesis both in vitro and in vivo, whereas dsPtCrzR treatments had opposite effects on ecdysteroid levels and associated gene expression. Thus, our study suggests that PtCrz may modulate ecdysteroid synthesis via Y-organ-expressed PtCrzR. Furthermore, we also discovered the involvement of PtCrz/PtCrzR signaling in regulating PtETH expression. Notably, the inhibitory effect of dsPtCrzR on ecdysteroid synthesis or PtETH expression can be reversed by PtCrz treatment, suggesting the potential existence of multiple receptors for PtCrz. This study provides new insights into the function of crustacean Crz and, for the first time, elucidates the presence of a neuropeptide that can stimulate ecdysteroid synthesis in crustaceans.

3.
Pest Manag Sci ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837657

RESUMO

BACKGROUND: Entomopathogenic fungi, such as Beauveria bassiana, hold promise as biological control agents against insect pests. However, the efficacy of these fungi can be hindered by insect immune responses. One strategy to enhance fungal virulence is to manipulate host immune by targeting key regulatory molecules like 20-hydroxyecdysone (20E). RESULTS: In this study, we engineered B. bassiana strains to constitutively express the enzyme ecdysteroid UDP-glucosyltransferase (EGT), which inactivates 20E, a crucial insect molting hormone. The engineered strain Bb::EGT-1 exhibited robust expression of EGT, leading to a significant reduction in insect 20E levels upon infection. Moreover, infection with Bb::EGT-1 resulted in accelerated larval mortality. Immune responses analysis revealed repression of insect immune response genes and decreased phenoloxidase (PO) activity in larvae infected with Bb::EGT-1. Microbiome analysis indicated alterations in bacterial composition within infected insects, with increased abundance observed during infection with Bb::EGT-1. Additionally, the presence of bacteria hindered hyphal emergence from insect cadavers, suggesting a role for microbial competition in fungal dissemination. CONCLUSIONS: Constitutive expression of EGT in B. bassiana enhances fungal virulence by reducing insect 20E levels, suppressing immune responses, and altering the insect microbiome. These findings highlighted the potential of engineered fungi as effective biocontrol agents against insect pests and provide insights into the complex interactions between entomopathogenic fungi, their hosts, and associated microbes. © 2024 Society of Chemical Industry.

4.
Gen Comp Endocrinol ; 355: 114548, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38761872

RESUMO

Ecdysteroid molting hormones coordinate arthropod growth and development. Binding of 20-hydroxyecdysone (20E) to ecdysteroid receptor EcR/RXR activates a cascade of nuclear receptor transcription factors that mediate tissue responses to hormone. Insect ecdysteroid responsive and Forkhead box class O (FOXO) transcription factor gene sequences were used to extract orthologs from blackback land crab (Gecarcinus lateralis) Y-organ (YO) transcriptome: Gl-Ecdysone Receptor (EcR), Gl-Broad Complex (Br-C), Gl-E74, Gl-Hormone Receptor 3 (HR3), Gl-Hormone Receptor 4 (HR4), Gl-FOXO, and Gl-Fushi tarazu factor-1 (Ftz-f1). Quantitative polymerase chain reaction quantified mRNA levels in tissues from intermolt animals and in YO of animals induced to molt by multiple limb autotomy (MLA) or eyestalk ablation (ESA). Gl-EcR, Gl-Retinoid X Receptor (RXR), Gl-Br-C, Gl-HR3, Gl-HR4, Gl-E74, Gl-E75, Gl-Ftz-f1, and Gl-FOXO were expressed in all 10 tissues, with Gl-Br-C, Gl-E74, Gl-E75, and Gl-HR4 mRNA levels in the YO lower than those in most of the other tissues. In MLA animals, molting had no effect on Gl-Br-C, Gl-E74, and Gl-Ftz-f1 mRNA levels and little effect on Gl-EcR, Gl-E75, and Gl-HR4 mRNA levels. Gl-HR3 and Gl-FOXO mRNA levels were increased during premolt stages, while Gl-RXR mRNA level was highest during intermolt and premolt stages and lowest at postmolt stage. In ESA animals, YO mRNA levels were not correlated with hemolymph ecdysteroid titers. ESA had no effect on Gl-EcR, Gl-E74, Gl-HR3, Gl-HR4, Gl-Ftz-f1, and Gl-FOXO mRNA levels, while Gl-RXR, Gl-Br-C, and Gl-E75 mRNA levels were decreased at 3 days post-ESA. These data suggest that transcriptional up-regulation of Gl-FOXO and Gl-HR3 contributes to increased YO ecdysteroidogenesis during premolt. By contrast, transcriptional regulation of ecdysteroid responsive genes and ecdysteroidogenesis were uncoupled in the YO of ESA animals.


Assuntos
Ecdisteroides , Muda , Animais , Muda/genética , Ecdisteroides/metabolismo , Ecdisteroides/genética , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Ecdisterona/metabolismo , Braquiúros/genética , Braquiúros/metabolismo , Braquiúros/crescimento & desenvolvimento , Glândulas Endócrinas/metabolismo
5.
Zoolog Sci ; 41(1): 4-13, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38587512

RESUMO

The past few decades have witnessed increasing research clarifying the role of endocrine signaling in the regulation of aging in both vertebrates and invertebrates. Studies using the model organism fruit fly Drosophila melanogaster have largely advanced our understanding of evolutionarily conserved mechanisms in the endocrinology of aging and anti-aging. Mutations in single genes involved in endocrine signaling modify lifespan, as do alterations of endocrine signaling in a tissue- or cell-specific manner, highlighting a central role of endocrine signaling in coordinating the crosstalk between tissues and cells to determine the pace of aging. Here, we review the current landscape of research in D. melanogaster that offers valuable insights into the endocrine-governed mechanisms which influence lifespan and age-related physiology.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila melanogaster/genética , Envelhecimento , Longevidade , Mutação
6.
BMC Genomics ; 25(1): 327, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565997

RESUMO

Food security is important for the ever-growing global population. Soybean, Glycine max (L.) Merr., is cultivated worldwide providing a key source of food, protein and oil. Hence, it is imperative to maintain or to increase its yield under different conditions including challenges caused by abiotic and biotic stresses. In recent years, the soybean pod-sucking stinkbug Riptortus pedestris has emerged as an important agricultural insect pest in East, South and Southeast Asia. Here, we present a genomics resource for R. pedestris including its genome assembly, messenger RNA (mRNA) and microRNA (miRNA) transcriptomes at different developmental stages and from different organs. As insect hormone biosynthesis genes (genes involved in metamorphosis) and their regulators such as miRNAs are potential targets for pest control, we analyzed the sesquiterpenoid (juvenile) and ecdysteroid (molting) hormone biosynthesis pathway genes including their miRNAs and relevant neuropeptides. Temporal gene expression changes of these insect hormone biosynthesis pathways were observed at different developmental stages. Similarly, a diet-specific response in gene expression was also observed in both head and salivary glands. Furthermore, we observed that microRNAs (bantam, miR-14, miR-316, and miR-263) of R. pedestris fed with different types of soybeans were differentially expressed in the salivary glands indicating a diet-specific response. Interestingly, the opposite arms of miR-281 (-5p and -3p), a miRNA involved in regulating development, were predicted to target Hmgs genes of R. pedestris and soybean, respectively. These observations among others highlight stinkbug's responses as a function of its interaction with soybean. In brief, the results of this study not only present salient findings that could be of potential use in pest management and mitigation but also provide an invaluable resource for R. pedestris as an insect model to facilitate studies on plant-pest interactions.


Assuntos
Heterópteros , Hormônios de Inseto , MicroRNAs , Animais , Glycine max/genética , Heterópteros/genética , Transcriptoma , MicroRNAs/genética , Perfilação da Expressão Gênica
7.
Pestic Biochem Physiol ; 200: 105827, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582591

RESUMO

In addition to the acute lethal toxicity, insecticides might affect population dynamics of insect pests by inducing life history trait changes under low concentrations, however, the underlying mechanisms remain not well understood. Here we examined systemic impacts on development and reproduction caused by low concentration exposures to cyantraniliprole in the fall armyworm (FAW), Spodoptera frugiperda, and the putative underlying mechanisms were investigated. The results showed that exposure of third-instar larvae to LC10 and LC30 of cyantraniliprole significantly extended larvae duration by 1.46 and 5.41 days, respectively. Treatment with LC30 of cyantraniliprole significantly decreased the pupae weight and pupation rate as well as the longevity, fecundity and egg hatchability of female adults. Consistently, we found that exposure of FAW to LC30 cyantraniliprole downregulated the mRNA expression of four ecdysteroid biosynthesis genes including SfNobo, SfShd, SfSpo and SfDib and one ecdysone response gene SfE75 in the larvae as well as the gene encoding vitellogenin (SfVg) in the female adults. We also found that treatment with LC30 of cyantraniliprole significantly decreased the whole body levels of glucose, trehalose, glycogen and triglyceride in the larvae. Our results indicate that low concentration of cyantraniliprole inhibited FAW development by disruption of ecdysteroid biosynthesis as well as carbohydrate and lipid metabolism, which have applied implications for the control of FAW.


Assuntos
Ecdisteroides , Inseticidas , Pirazóis , ortoaminobenzoatos , Animais , Spodoptera , Metabolismo dos Lipídeos , Larva , Inseticidas/toxicidade , Carboidratos
8.
Pest Manag Sci ; 80(6): 2698-2709, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38308415

RESUMO

BACKGROUND: Reduced glutathione (GSH) synthesis is vital for redox homeostasis, cell-cycle regulation and apoptosis, and immune function. The glutamate-cysteine ligase catalytic subunit (Gclc) is the first and rate-limiting enzyme in GSH synthesis, suggesting the potential use of Gclc as a pesticide target. However, the functional characterization of Gclc, especially its contribution in metamorphosis, antioxidant status and insecticide resistance, is unclear in Tribolium castaneum. RESULTS: In this study, we identified and cloned Gclc from T. castaneum (TcGclc) and found that its expression began to increase significantly from the late larvae (LL) stage (3.491 ± 0.490-fold). Furthermore, RNA interference-mediated knockdown of TcGclc resulted in three types of aberration (100% total aberration rate) caused by the downregulation of genes related to the 20-hydroxyecdysone (20E) pathway. This deficiency was partially rescued by exogenous 20E treatment (53.1% ± 3.2%), but not by antioxidant. Moreover, in the TcGclc knockdown group, GSH content was decreased to 62.3%, and total antioxidant capacity, glutathione peroxidase and total superoxide dismutase activities were reduced by 14.6%, 83.6%, and 82.3%, respectively. In addition, treatment with different insecticides upregulated expression of TcGclc significantly compared with a control group during the late larval stage (P < 0.01). CONCLUSION: Our results indicate that TcGclc has an extensive role in metamorphosis, antioxidant function and insecticide resistance in T. castaneum, thereby expanding our understanding of GSH functions and providing a scientific basis for pest control. © 2024 Society of Chemical Industry.


Assuntos
Antioxidantes , Glutationa , Resistência a Inseticidas , Larva , Metamorfose Biológica , Tribolium , Animais , Tribolium/genética , Tribolium/crescimento & desenvolvimento , Tribolium/metabolismo , Tribolium/efeitos dos fármacos , Glutationa/metabolismo , Metamorfose Biológica/efeitos dos fármacos , Antioxidantes/metabolismo , Resistência a Inseticidas/genética , Larva/crescimento & desenvolvimento , Larva/genética , Larva/efeitos dos fármacos , Larva/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Inseticidas/farmacologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-38242349

RESUMO

We analyse the developmental and circadian profiles of expression of the genes responsible for ecdysteroidogenesis (Halloween genes) in the PGs of Rhodnius prolixus throughout larval-adult development. Extensive use of in vitro techniques enabled multiple different parameters to be measured in individual PGs. Expression of disembodied and spook closely paralleled the ecdysteroid synthesis of the same PGs, and the ecdysteroid titre in vivo, but with functionally significant exceptions. Various tissues other than PGs expressed one, both or neither genes. Both gonads express both genes in pharate adults (larvae close to ecdysis). Both genes were expressed at low, but significant, levels in UF Rhodnius, raising questions concerning how developmental arrest is maintained in UF animals. IHC confirmed the subcellular localisation of the coded proteins. Gene knockdown suppressed transcription of both genes and ecdysteroid synthesis, with spook apparently regulating the downstream gene disembodied. Transcription of both genes occurred with a daily rhythm (with peaks at night) that was confirmed to be under circadian control using aperiodic conditions. The complex behaviour of the rhythm in LL implied two anatomically distinct oscillators regulate this transcription rhythm. First, the circadian clock in the PGs and second, the circadian rhythm of of Rhodnius PTTH which is released rhythmically from the brain under control of the circadian clock therein, both of which were described previously. We conclude ecdysteroidogenesis in Rhodnius PGs employs a similar pathway as other insects, but its control is complex, involving mechanisms both within and outside the PGs.


Assuntos
Hormônios de Inseto , Rhodnius , Animais , Ecdisteroides/metabolismo , Rhodnius/genética , Rhodnius/metabolismo , Hormônios de Inseto/genética , Hormônios de Inseto/metabolismo , Ritmo Circadiano/fisiologia , Larva/metabolismo
10.
J Econ Entomol ; 117(2): 377-387, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38289584

RESUMO

Division of labor within a honey bee colony creates a codependence between bees performing different tasks. The most obvious example of this is between the reproductive queen and worker bees. Queen bees lay 1,000 or more eggs a day, while young worker bees tend and feed queens. Young workers and queens can be exposed to pesticides when foragers return to the hive with contaminated resources. Previous research has found negative effects of larval exposure to insect-growth disruptors (IGD) methoxyfenozide and pyriproxyfen, on adult responsiveness to artificial queen pheromone. The present work investigates potential physiological and molecular mechanisms underpinning this behavioral change by examining the development of hypopharyngeal glands and ovaries as well as the expression of genes related to reproduction and worker endocrine signaling in the brain and hypopharyngeal gland tissues. Though hypopharyngeal gland and ovary development were not altered by developmental exposure to IGDs, gene expression differed. Specifically, in the brain tissue, ilp1 was downregulated in bees exposed to pyriproxyfen during development, and Kr-h1 was downregulated in both methoxyfenozide- and pyriproxyfen-exposed bees. In the hypopharyngeal glands, Kr-h1, EcR-A, EcR-B, and E75 were upregulated in honey bees exposed to methoxyfenozide compared to those in the pyriproxyfen or control treatments. Here we discuss these results and their potential implications for the health and performance of honey bee colonies.


Assuntos
Hidrazinas , Himenópteros , Feminino , Abelhas/genética , Animais , Comportamento Social , Hormônios Juvenis , Encéfalo/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-38061619

RESUMO

The experiment was conducted to investigate the effects of Bisphenol S (BPS) on growth, physiological and biochemical indices, and the expression of ecdysteroid receptor (ECR) of the red swamp crayfish (Procambarus clarkii). The gene encoding ECR was isolated from red swamp crayfish by homologous cloning and rapid amplification of cDNA ends (RACE). The ECR transcripts were 1757 bp long and encoded proteins of 576 amino acids. The quantitative real-time PCR (qRT-PCR) analysis showed that the ECR gene was expressed in various tissues under normal conditions, and the highest level was observed in the ovary and the lowest level was observed in the muscle (P < 0.05). Then, the experiment was designed with four different BPS concentrations (0, 1, 10, and 100 µg/L), BPS exposure for 14 days, three parallel groups, and a total of 240 red swamp crayfish. At 100 µg/L BPS, the survival rate, weight gain rate, and relative length rate were decreased significantly (P < 0.05). Malonaldehyde (MDA) content reached the highest level at 100 µg/L BPS. When BPS concentration was higher than 10 µg/L, the activities of superoxide dismutase (SOD) and catalase (CAT) were significantly lower than those of the control group (P < 0.05). The expression levels of the ECR gene in ovary, intestinal, gill, and hepatopancreas tissues were significantly increased after BPS exposure (P < 0.05). The ECR gene expression in ovaries and Y-organs was significantly higher than other groups in 10 µg/L BPS (P < 0.05). The expressions of the tumor necrosis factor -α (TNF-α) and interleukin-6 (IL-6) genes in the hepatopancreas gradually increased, and the highest expression was observed exposed in 100 µg/L BPS (P < 0.05). This research will provide novel insights into the health risk assessment of BPS in aquatic organisms.


Assuntos
Astacoidea , Receptores de Esteroides , Animais , Feminino , Astacoidea/genética , Receptores de Esteroides/genética , Expressão Gênica
12.
Exp Appl Acarol ; 92(1): 1-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38112881

RESUMO

The nuclear receptor gene Ecdysone-induced protein 75 (E75), as the component of ecdysone response genes in the ecdysone signaling pathway, has important regulatory function for insect molting. However, the regulatory function of E75 during the molting process of spider mites is not yet clear. In this study, the expression pattern of E75 in the molting process of the spider mite Tetranychus urticae was analyzed. The results showed that there was a peak at 8 h post-molting, followed by a decline 8 h after entering each respective quiescent stage across various developmental stages. During the deutonymph stage, the expression dynamics of E75, observed at 4-h intervals, indicated that the transcript levels of TuE75 peaked at 24 h, coinciding with the onset of molting in the mites. To investigate the function of TuE75 during the molting process, silencing TuE75 through dsRNA injection into deutonymph mites at the age of 8 h yielded a notable outcome: 78% of the deutonymph mites were unable to progress to the adult stage. Among these phenotypic mites, 37% were incapable of transitioning into the quiescent state and eventually succumbed after a certain period. An additional 41% of the mites successfully entered the quiescent state but encountered difficulties in shedding the old epidermis, leading to eventual mortality. In summary, these results suggested that TuE75 plays a key role in the molting process of T. urticae.


Assuntos
Muda , Tetranychidae , Animais , Muda/genética , Ecdisona , Tetranychidae/genética , Receptores Citoplasmáticos e Nucleares/genética
13.
Front Endocrinol (Lausanne) ; 14: 1251723, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929030

RESUMO

Purpose: Molting is a pivotal biological process regulated by the ecdysteroid signaling pathway that requires molecular coordination of two transcription factors, Ecdysone receptor (EcR) and ultraspiracle (USP) in arthropods. However, the molecular interplay of EcR and Retinoid X receptor (RXR), the crustacean homolog of USP in the ecdysteroid signaling pathway, is not well understood. Methods: In this study, we conducted temporal and spatial expression, co-immunoprecipitation (CO-IP), and luciferase reporter assay experiments to investigate the molecular function and interplay of EcR and RXR during the molting process of the Chinese mitten crab, Eriocheir sinensis. Results: The results showed that the expression level of RXR was more stable and significantly higher than EcR during the entire molting process. However, the expression level of EcR fluctuated dynamically and increased sharply at the premolt stage. The CO-IP and luciferase reporter assay results confirmed the molecular interplay of EcR and RXR. The heterodimer complex formed by the two transcription factors significantly induced the transcription of E75, an essential gene in the ecdysteroid signaling pathway. Conclusions: Our study unveiled the diverse molecular function and molecular interplay of EcR and RXR; RXR is possibly a "constitutive-type" gene, and EcR is possibly a vital speed-limiting gene while both EcR and RXR are required to initiate the ecdysteroid signaling cascade, which may be indispensable for molting regulation in E. sinensis. The results provide a theoretical basis for the endocrine control of molting in E. sinensis and novel insights into the molecular mechanism of molting mediated by the ecdysteroid signaling pathway in crustaceans.


Assuntos
Ecdisteroides , Muda , Muda/genética , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo , Luciferases
14.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834248

RESUMO

In insects, the ecdysteroid hormone regulates development and reproduction. However, its function in the reproduction process of spider mites is still unclear. In this study, we investigated the effect of the Halloween gene Spook on the oviposition of the reproduction process in a spider mite, Tetranychus urticae. The expression patterns of the ecdysteroid biosynthesis and signaling pathway genes, as analyzed by RT-qPCR, showed that the expression pattern of the Halloween genes was similar to the oviposition pattern of the female mite and the expression patterns of the vitellogenesis-related genes TuVg and TuVgR, suggesting that the Halloween genes are involved in the oviposition of spider mites. To investigate the function of the ecdysteroid hormone on the oviposition of the reproduction process, we carried out an RNAi assay against the Halloween gene Spook by injection in female mites. Effective silencing of TuSpo led to a significant reduction of oviposition. In summary, these results provide an initial study on the effect of Halloween genes on the reproduction in T. urticae and may be a foundation for a new strategy to control spider mites.


Assuntos
Oviposição , Tetranychidae , Animais , Feminino , Ecdisteroides/genética , Reprodução/genética , Interferência de RNA
15.
Vitam Horm ; 123: 525-554, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37717997

RESUMO

Ecdysteroids are a group of steroid hormones in arthropods with pleiotropic functions throughout their life history. Ecdysteroid research in insects has made a significant contribution to our current understanding of steroid hormone signaling in metazoans, but how far can we extrapolate our findings in insects to other systems, such as mammals? In this chapter, we compare steroid hormone signaling in insects and mammals from multiple perspectives and discuss similarities and differences between the two lineages. We also highlight a few understudied areas and remaining questions of steroid hormone biology in metazoans and propose potential future research directions.


Assuntos
Transdução de Sinais , Esteroides , Humanos , Animais , Insetos , Hormônios , Mamíferos
16.
Gen Comp Endocrinol ; 340: 114304, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127083

RESUMO

A pair of Y-organs (YOs) synthesize ecdysteroids that initiate and coordinate molting processes in decapod crustaceans. The YO converts cholesterol to secreted products through a biosynthetic pathway involving a Rieske oxygenase encoded by Neverland (Nvd) and cytochrome P450 monooxygenases encoded by Halloween genes Spook (Spo; Cyp307a1), Phantom (Phm; Cyp306a1), Disembodied (Dib; Cyp302a1), and Shadow (Sad; Cyp315a1). NAD kinase (NADK) and 5-aminolevulinic acid synthase (ALAS) support ecdysteroid synthesis in insects. A 20-hydroxylase, encoded by Shed in decapods and Shade in insects, converts ecdysone to the active hormone 20-hydroxyecdysone (20E). 20E is inactivated by cytochrome P450 26-hydroxylase (Cyp18a1). Contigs encoding these eight proteins were extracted from a Gecarcinus lateralis YO transcriptome and their expression was quantified by quantitative polymerase chain reaction. mRNA levels of Gl-Spo and Gl-Phm were four orders of magnitude higher in YO than those in nine other tissues, while mRNA levels of Gl-NADK and Gl-ALAS were similar in all ten tissues. In G. lateralis induced to molt by multiple leg autotomy, YO mRNA levels of Gl-Nvd, Gl-Spo, Gl-Phm, Gl-NADK, and Gl-ALAS were highest in intermolt and premolt stages and lower in postmolt. Gl-Dib mRNA level was not affected by molt stage. mRNA level of Gl-Sad, which converts 2-deoxyecdysone to ecdysone, was higher in mid- and late premolt stages, when YO ecdysteroidogenic capacity is greatest. Gl-Cyp18a1 mRNA level was highest in intermolt, decreased in premolt stages, and was lowest in postmolt. In animals induced to molt by eyestalk ablation, YO mRNA levels of all eight genes were not correlated with increased hemolymph 20E titers. These results suggest that YO ecdysteroidogenic genes are differentially regulated at transcriptional and translational levels.


Assuntos
Braquiúros , Animais , Braquiúros/genética , Braquiúros/metabolismo , Transdução de Sinais/genética , Ecdisteroides/metabolismo , Muda/genética , Ecdisona , RNA Mensageiro/metabolismo
17.
Insect Mol Biol ; 32(4): 400-411, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36892191

RESUMO

The control of insect moulting and metamorphosis involves ecdysteroids that orchestrate the execution of developmental genetic programs by binding to dimeric hormone receptors consisting of the ecdysone receptor (EcR) and ultraspiracle (USP). In insects, the main ecdysteroids comprise ecdysone (E), which is synthesized in the prothoracic gland and secreted into the haemolymph, and 20-hydroxyecdysone (20E), which is considered the active form by binding to the nuclear receptor of the target cell. While biosynthesis of ecdysteroids has been studied in detail in different insects, the transport systems involved in guiding these steroid hormones across cellular membranes have just recently begun to be studied. By analysing RNAi phenotypes in the red flour beetle, Tribolium castaneum, we have identified three transporter genes, TcABCG-8A, TcABCG-4D and TcOATP4-C1, whose silencing results in phenotypes similar to that observed when the ecdysone receptor gene TcEcRA is silenced, that is, abortive moulting and abnormal development of adult compound eyes during the larval stage. The genes of all three transporters are expressed at higher levels in the larval fat body of T. castaneum. We analysed potential functions of these transporters by combining RNAi and mass spectrometry. However, the analysis of gene functions is challenged by mutual RNAi effects indicating interdependent gene regulation. Based on our findings, we propose that TcABCG-8A, TcABCG-4D and TcOATP4-C1 participate in the ecdysteroid transport in fat body cells, which are involved in E → 20E conversion catalysed by the P450 enzyme TcShade.


Assuntos
Ecdisteroides , Tribolium , Animais , Ecdisteroides/metabolismo , Tribolium/metabolismo , Corpo Adiposo/metabolismo , Ecdisterona/metabolismo , Muda/genética , Metamorfose Biológica/genética , Ecdisona/metabolismo , Insetos/genética , Larva
18.
Biomolecules ; 13(3)2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36979396

RESUMO

Glutathione S-transferases (GSTs) are conserved in a wide range of organisms, including insects. In 2014, an epsilon GST, known as Noppera-bo (Nobo), was shown to regulate the biosynthesis of ecdysteroid, the principal steroid hormone in insects. Studies on fruit flies, Drosophila melanogaster, and silkworms, Bombyx mori, demonstrated that loss-of-function mutants of nobo fail to synthesize ecdysteroid and die during development, consistent with the essential function of ecdysteroids in insect molting and metamorphosis. This genetic evidence suggests that chemical compounds that inhibit activity of Nobo could be insect growth regulators (IGRs) that kill insects by disrupting their molting and metamorphosis. In addition, because nobo is conserved only in Diptera and Lepidoptera, a Nobo inhibitor could be used to target IGRs in a narrow spectrum of insect taxa. Dipterans include mosquitoes, some of which are vectors of diseases such as malaria and dengue fever. Given that mosquito control is essential to reduce mosquito-borne diseases, new IGRs that specifically kill mosquito vectors are always in demand. We have addressed this issue by identifying and characterizing several chemical compounds that inhibit Nobo protein in both D. melanogaster and the yellow fever mosquito, Aedes aegypti. In this review, we summarize our findings from the search for Nobo inhibitors.


Assuntos
Drosophila melanogaster , Ecdisteroides , Animais , Ecdisteroides/farmacologia , Ecdisteroides/metabolismo , Drosophila melanogaster/genética , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Hormônios Juvenis/farmacologia , Hormônios Juvenis/metabolismo , Larva/metabolismo , Insetos/metabolismo
19.
Insects ; 14(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36975959

RESUMO

The mosquito midgut is an important site for bloodmeal regulation while also acting as a primary site for pathogen exposure within the mosquito. Recent studies show that exposure to dehydrating conditions alters mosquito bloodfeeding behaviors as well as post-feeding regulation, likely altering how pathogens interact with the mosquito. Unfortunately, few studies have explored the underlying dynamics between dehydration and bloodmeal utilization, and the overall impact on disease transmission dynamics remains veiled. In this study, we find that dehydration-based feeding in the yellow fever mosquito, Aedes aegypti, prompts alterations to midgut gene expression, as well as subsequent physiological factors involving water control and post-bloodfeeding (pbf) regulation. Altered expression of ion transporter genes and aquaporin 2 (AQP2) in the midgut of dehydrated mosquitoes as well as the rapid reequilibration of hemolymph osmolality after a bloodmeal indicate an ability to expedite fluid and ion processing. These alterations ultimately indicate that female A. aegypti employ mechanisms to ameliorate the detriments of dehydration by imbibing a bloodmeal, providing an effective avenue for rehydration. Continued research into bloodmeal utilization and the resulting effects on arthropod-borne transmission dynamics becomes increasingly important as drought prevalence is increased by climate change.

20.
Arch Insect Biochem Physiol ; 112(3): e21989, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36588284

RESUMO

Insect-specific epsilon glutathion S-transferases (GSTs) are a class of multifunctional GST superfamily, which play important roles in detoxification of xenobiotic substances. Most research on GSTs has focused on insecticide detoxification and resistance, with little research on other physiological functions. Here, we identified and cloned the novel GSTe2 from Tribolium castaneum (TcGSTe2). Recombinant TcGSTe2 protein was successfully overexpressed in Escherichia coli and purified with affinity purification, which had high ability to catalyze the conjugation of reduced glutathione with 1-chloro-2,4-dinitrobenzene (CDNB). The expression level of TcGSTe2 was significantly decreased after exposure with four insecticides, phoxim, λ-cyhalothrin, dichlorvos, and carbofuran, in larval stage. Interestingly, RNA interference knockdown of TcGSTe2 caused metamorphosis deficiency in larval and pupal stages by inhibiting the 20E signal pathway. Furthermore, exogenous 20E injection partially rescued this metamorphosis deficiency and also increased the expression levels of 20E downstream response genes. This study illustrated TcGSTe2 plays an important role at metamorphosis beside the insecticide detoxification and resistance in T. castaneum.


Assuntos
Inseticidas , Tribolium , Animais , Inseticidas/farmacologia , Tribolium/metabolismo , Metamorfose Biológica/fisiologia , Larva/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA