RESUMO
ABSTRACT Tray dryers are usually designed with simplistic scaling rules that do not account for all the transport phenomena associated with drying. The use of computational fluid dynamics coupled with response surface methodology can be a powerful tool to evaluate how different tray dryer design parameters affect the drying process. In this work, two tray dryers, one with a lateral air inlet and another with a bottom air inlet, were parameterized for the position of the air inlet, the dryer length, and the distance between the trays. A central composite design was chosen to determine the sample points, and the average turbulence viscosity and effective thermal conductivity as well as the homogeneity index were calculated. With these values, a response surface curve was constructed. The effective thermal conductivity and its homogeneity index were improved (80 % and 11 %, respectively) with an increased distance between trays and an air inlet located in the middle of the inlet face in the best scenario. In addition, the reductions in effective thermal conductivity outcomes were minimal due to the scale-up process in terms of the dryer length.
RESUMEN Los secadores de bandejas se suelen diseñar con reglas de escala simplistas, que no tienen en cuenta todos los fenómenos de transporte, asociados con el secado. El uso de dinámica de fluidos computacional junto con la metodología de superficie de respuesta puede ser una herramienta poderosa, para evaluar cómo los diferentes parámetros de diseño del secador de bandeja afectan el proceso de secado. En este trabajo se parametrizaron dos secadores de bandeja, uno con entrada de aire lateral y otro con entrada de aire inferior, variando la posición de la entrada de aire, la longitud del secador y la distancia entre las bandejas. Se eligió un diseño compuesto central, para determinar los puntos de muestra y se calcularon la viscosidad de turbulencia promedio y la conductividad térmica efectiva, así como el índice de homogeneidad. Con estos valores se construyó una curva de superficie de respuesta. Se mejoró la conductividad térmica efectiva y su índice de homogeneidad (80 y 11 %, respectivamente), con una mayor distancia entre platos y una entrada de aire, ubicada en el medio de la cara de entrada en el mejor escenario. Además, las reducciones en los resultados de la conductividad térmica efectiva fueron mínimas, debido al proceso de ampliación en términos de la longitud del secador.
RESUMO
In this work, an effective thermal conductivity (ETC) for living tissues, which directly affects the energy transport process, is determined. The fractal scaling and Monte Carlo methods are used to describe the tissue as a porous medium, and blood is considered a Newtonian and non-Newtonian fluid for comparative and analytical purposes. The effect of the principal variables-such as fractal dimensions DT and Df, porosity, and the power-law index, n-on the temperature profiles as a function of time and tissue depth, for one- and three-layer tissues, besides temperature distribution, are presented. ETC was improved by considering high tissue porosity, low tortuosity, and shear-thinning fluids. In three-layer tissues with different porosities, perfusion with a non-Newtonian fluid contributes to the understanding of the heat transfer process in some parts of the human body.
RESUMO
There has been much interest in semiconductor superlattices because of their low thermal conductivities. This makes them especially suitable for applications in a variety of devices for the thermoelectric generation of energy, heat control at the nanometric length scale, etc. Recent experiments have confirmed that the effective thermal conductivity of superlattices at room temperature have a minimum for very short periods (in the order of nanometers) as some kinetic calculations had anticipated previously. This work will show advances on a thermodynamic theory of heat transport in nanometric 1D multilayer systems by considering the separation of ballistic and diffusive heat fluxes, which are both described by Guyer-Krumhansl constitutive equations. The dispersion relations, as derived from the ballistic and diffusive heat transport equations, are used to derive an effective heat conductivity of the superlattice and to explain the minimum of the effective thermal conductivity.