Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.503
Filtrar
1.
Immunol Res ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967692

RESUMO

The extracellular matrix (ECM) is currently considered to be an important factor influencing the migration and progression of cancer cells. Therefore, the aim of our study was to investigate the mechanism of action of elastin-derived peptides in cancerous cells derived from the immunological system, i.e., HL-60, K562, and MEG-A2 cell lines. Moreover, an attempt to clarify the involvement of c-SRC kinase in EDP mechanism of action was also undertaken. Our data show that the VGVAPG and VVGPGA peptides are not toxic in the studied cell lines. Moreover, due to the involvement of KI67 and PCNA proteins in the cell cycle and proliferation, we can assume that neither peptide stimulates cell proliferation. Our data suggest that both peptides could initiate the differentiation process in all the studied cell lines. However, due to the different origins (HL-60 and K562-leukemic cell line vs. MEG-A2-megakaryoblastic origin) of the cell lines, the mechanism may differ. The increase in the ELANE mRNA expression noted in our experiments may also suggest enhancement of the migration of the tested cells. However, more research is needed to fully explain the mechanism of action of the VGVAPG and VVGPGA peptides in the HL-60, K562, and MEG-A2 cell lines. HIGHLIGHTS: • VGVAPG and VVGPGA peptides do not affect the metabolic activity of HL-60, K562, and MEG-A2 cells. • mTOR and PPARγ proteins are involved in the mechanism of action of VGVAPG and VVGPGA peptides. • Both peptides may initiate differentiation in HL-60, K562, and MEG-A2 cell lines.

2.
Sci Rep ; 14(1): 15095, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956125

RESUMO

Nanogels offer hope for precise drug delivery, while addressing drug delivery hurdles is vital for effective prostate cancer (PCa) management. We developed an injectable elastin nanogels (ENG) for efficient drug delivery system to overcome castration-resistant prostate cancer (CRPC) by delivering Decursin, a small molecule inhibitor that blocks Wnt/ßcatenin pathways for PCa. The ENG exhibited favourable characteristics such as biocompatibility, flexibility, and low toxicity. In this study, size, shape, surface charge, chemical composition, thermal stability, and other properties of ENG were used to confirm the successful synthesis and incorporation of Decursin (DEC) into elastin nanogels (ENG) for prostate cancer therapy. In vitro studies demonstrated sustained release of DEC from the ENG over 120 h, with a pH-dependent release pattern. DU145 cell line induces moderate cytotoxicity of DEC-ENG indicates that nanomedicine has an impact on cell viability and helps strike a balance between therapeutics efficacy and safety while the EPR effect enables targeted drug delivery to prostate tumor sites compared to free DEC. Morphological analysis further supported the effectiveness of DEC-ENG in inducing cell death. Overall, these findings highlight the promising role of ENG-encapsulated decursin as a targeted drug delivery system for CRPC.


Assuntos
Elastina , Nanogéis , Neoplasias de Próstata Resistentes à Castração , Masculino , Elastina/química , Humanos , Linhagem Celular Tumoral , Nanogéis/química , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Sistemas de Liberação de Medicamentos , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Benzopiranos , Butiratos
3.
Adv Exp Med Biol ; 1441: 761-775, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884747

RESUMO

Lesions of the semilunar valve and the aortic arch can occur either in isolation or as part of well-described clinical syndromes. The polygenic cause of calcific aortic valve disease will be discussed including the key role of NOTCH1 mutations. In addition, the complex trait of bicuspid aortic valve disease will be outlined, both in sporadic/familial cases and in the context of associated syndromes, such as Alagille, Williams, and Kabuki syndromes. Aortic arch abnormalities particularly coarctation of the aorta and interrupted aortic arch, including their association with syndromes such as Turner and 22q11 deletion, respectively, are also discussed. Finally, the genetic basis of congenital pulmonary valve stenosis is summarized, with particular note to Ras-/mitogen-activated protein kinase (Ras/MAPK) pathway syndromes and other less common associations, such as Holt-Oram syndrome.


Assuntos
Aorta Torácica , Valva Aórtica , Humanos , Aorta Torácica/anormalidades , Aorta Torácica/patologia , Valva Aórtica/anormalidades , Valva Aórtica/patologia , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Doença da Válvula Aórtica Bicúspide/genética , Estenose da Valva Pulmonar/genética , Mutação , Receptor Notch1/genética , Valvopatia Aórtica/genética , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/patologia , Calcinose/genética , Calcinose/patologia , Doenças Hematológicas/genética , Doenças Hematológicas/patologia , Doenças Vestibulares/genética , Doenças Vestibulares/patologia
4.
Curr Issues Mol Biol ; 46(6): 5655-5667, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38921009

RESUMO

In this in vivo study on hairless mice, we examined the effects of light-emitting diode (LED) treatment applied prior to ultraviolet B (UVB) irradiation. We found that pre-treating with LED improved skin morphological and histopathological conditions compared to those only exposed to UVB irradiation. In our study, histological evaluation of collagen and elastic fibers after LED treatment prior to UVB irradiation showed that this pretreatment significantly enhanced the quality of fibers, which were otherwise poor in density and irregularly arranged due to UV exposure alone. This suggests that LED treatment promotes collagen and elastin production, leading to improved skin properties. Additionally, we observed an increase in Claudin-1 expression and a reduction in nuclear factor-erythroid 2-related factor 2 (Nrf-2) and heme-oxygenase 1 (HO-1) expression within the LED-treated skin tissues, suggesting that LED therapy may modulate key skin barrier proteins and oxidative stress markers. These results demonstrate that pretreatment with LED light can enhance the skin's resistance to UVB-induced damage by modulating gene regulation associated with skin protection. Further investigations are needed to explore the broader biological effects of LED therapy on other tissues such as blood vessels. This study underscores the potential of LED therapy as a non-invasive approach to enhance skin repair and counteract the effects of photoaging caused by UV exposure.

5.
J Funct Biomater ; 15(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38921515

RESUMO

The recombinant structural protein described in this study was designed based on sequences derived from elastin and silk. Silk-elastin hybrid copolymers are characterized by high solubility while maintaining high product flexibility. The phase transition temperature from aqueous solution to hydrogel, as well as other physicochemical and mechanical properties of such particles, can differ significantly depending on the number of sequence repeats. We present a preliminary characterization of the EJ17zipR protein obtained in high yield in a prokaryotic expression system and efficiently purified via a multistep process. Its addition significantly improves biomaterial's rheological and mechanical properties, especially elasticity. As a result, EJ17zipR appears to be a promising component for bioinks designed to print spatially complex structures that positively influence both shape retention and the internal transport of body fluids. The results of biological studies indicate that the addition of the studied protein creates a favorable microenvironment for cell adhesion, growth, and migration.

6.
Int J Biol Macromol ; 274(Pt 1): 133267, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906359

RESUMO

While it is known that calcium phosphate (CaP) minerals deposit in elastin-rich medial layers of arteries during medial calcification, their nucleation and growth sites are still debated. Neutral carbonyl groups and carboxylate groups are possible candidates. Also, while it is known that elastin degradation leads to calcification, it is unclear whether this is due to formation of new carboxylate groups or elastin fragmentation. In this work, we disentangle effects of carboxylate groups and particle size on elastin calcification; in doing so, we shed light on CaP mineralization sites on elastin. We find carboxylate groups accelerate calcification only in early stages; they mainly function as Ca2+ ion chelation sites but not calcification sites. Their presence promotes formation (likely on Ca2+ ions adsorbed on nearby carbonyl groups) of CaP minerals with high calcium-to-phosphate ratio as intermediate phases. Larger elastin particles calcify slower but reach similar amounts of CaP minerals in late stages; they promote direct formation of hydroxyapatite and CaP minerals with low calcium-to-phosphate ratio as intermediate phases. This work provides new perspectives on how carboxylate groups and elastin particle size influence calcification; these parameters can be tuned to study the mechanism of medial calcification and design drugs to inhibit the process.

7.
Mol Neurobiol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914873

RESUMO

Elastin is a stable protein present in many tissues, including brain tissues, and is one of the most long-life proteins with a half-life of approximately 70 years. The peptide with a Val-Gly-Val-Ala-Pro-Gly (VGVAPG) amino acid sequence is released during elastin decay, which correlates with aging-related neurodegeneration. A recent study has shown enhanced protein expression of Sirtuin 2 (SIRT2 - one of the redox homeostatic factors) in aged rodent brains, while the correlation between VGVAPG and SIRT2 has never been evaluated so far. Therefore, the study aimed to determine the impact of the VGVAPG hexapeptide on SIRT2 and neuronal functions in differentiated SH-SY5Y cells at the gene and protein expression levels. The present results showed that VGVAPG caused a 52.69% decrease in the level of reactive oxygen species (ROS), as in the case of neurons treated with AGK2 (Sirtuin 2 inhibitor) after 24h and 48h. Furthermore, a decrease in superoxide dismutase (SOD) activity was observed. The SIRT2 gene expression was found to fluctuate after 6h and 24h as a result of the exposure to the VGVAPG peptide. In turn, a decrease in the PPARγ, P53, SOD2, and CAT mRNA expression was shown in VGVAPG-treated cells. Additionally, an increase in the Sirtuin 2 protein expression was recorded after 24h and 48h in the VGVAPG peptide-treated neurons. Last but not least, the decrease in the level of acetylation of α-tubulin after the hexapeptide treatment was correlated with shortening of neurites, which may indicate the destabilization of the microtubule and ROS-independent induction of neurodegeneration.

8.
Biomaterials ; 311: 122666, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38879893

RESUMO

Self-assembling protein nanoparticles are beneficial platforms for enhancing the often weak and short-lived immune responses elicited by subunit vaccines. Their benefits include multivalency, similar sizes as pathogens and control of antigen orientation. Previously, the design, preparation, and characterization of self-assembling protein vesicles presenting fluorescent proteins and enzymes on the outer vesicle surface have been reported. Here, a full-size model antigen protein, ovalbumin (OVA), was genetically fused to the recombinant vesicle building blocks and incorporated into protein vesicles via self-assembly. Characterization of OVA protein vesicles showed room temperature stability and tunable size. Immunization of mice with OVA protein vesicles induced strong antigen-specific humoral and cellular immune responses. This work demonstrates the potential of protein vesicles as a modular platform for delivering full-size antigen proteins that can be extended to pathogen antigens to induce antigen specific immune responses.

9.
Adv Healthc Mater ; : e2401562, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38852041

RESUMO

Protein hydrogels with tailored stimuli-responsive features and tunable stiffness have garnered considerable attention due to the growing demand for biomedical soft robotics. However, integrating multiple responsive features toward intelligent yet biocompatible actuators remains challenging. Here, we report a facile approach that synergistically combines genetic and chemical engineering for the design of protein hydrogel actuators with programable complex spatial deformation. Genetically engineered silk-elastin-like proteins (SELPs) were encoded with stimuli-responsive motifs and enzymatic crosslinking sites via simulation-guided genetic engineering strategies. Chemical modifications of the recombinant proteins were also used as secondary control points to tailor material properties, responsive features, and anisotropy in SELP hydrogels. As a proof-of-concept example, diazonium coupling chemistry was exploited to incorporate sulfanilic acid groups onto the tyrosine residues in the elastin domains of SELPs to achieve patterned SELP hydrogels. These hydrogels can be programmed to perform various actuations, including controllable bending, buckling, and complex deformation under external stimuli, such as temperature, ionic strength, or pH. With the inspiration of genetic and chemical engineering in natural organisms, this work offers a predictable, tunable, and environmentally sustainable approach for the fabrication of programmed intelligent soft actuators, with implications for a variety of biomedical materials and bio-robotics needs. This article is protected by copyright. All rights reserved.

10.
Macromol Rapid Commun ; : e2400304, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837515

RESUMO

A generic model of elastin-like polypeptides (ELP) is derived that includes proline isomerization (ProI). As a case study, conformational transition of a -[valine-proline-glycine-valine-glycine]- sequence is investigated in aqueous ethanol mixtures. While the non-bonded interactions are based on the Lennard-Jones (LJ) parameters, the effect of ProI is incorporated by tuning the intramolecular 3- and 4-body interactions known from the underlying all-atom simulations into the generic model. One of the key advantages of such a minimalistic model is that it readily decouples the effects of geometry and the monomer-solvent interactions due to the presence of ProI, thus gives a clearer microscopic picture that is otherwise rather nontrivial within the all-atom setups. These results are consistent with the available all-atom and experimental data. The model derived here may pave the way to investigate large scale self-assembly of ELPs or biomimetic polymers in general.

11.
Protein Expr Purif ; 222: 106521, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38852714

RESUMO

Plants are often seen as a potent tool in the recombinant protein production industry. However, unlike bacterial expression, it is not a popular method due to the low yield and difficulty of protein extraction and purification. Therefore, developing a new high efficient and easy to purify platform is crucial. One of the best approaches to make extraction easier is to utilize the Extensin Signal peptide (EXT) to translocate the recombinant protein to the outside of the cell, along with incorporating an Elastin-like polypeptide tag (ELP) to enhance purification and accumulation rates. In this research, we transiently expressed Shigella dysenteriae's IpaDSTxB fused to both NtEXT and ELP in both Nicotiana tabacum and Medicago sativa. Our results demonstrated that N. tabacum, with an average yield of 6.39 ng/µg TSP, outperforms M. sativa, which had an average yield of 3.58 ng/µg TSP. On the other hand, analyzing NtEXT signal peptide indicated that merging EXT to the constructs facilitates translocation of IpaDSTxB to the apoplast by 78.4% and 65.9% in N. tabacum and M. sativa, respectively. Conversely, the mean level for constructs without EXT was below 25% for both plants. Furthermore, investigation into the orientation of ELP showed that merging it to the C-terminal of IpaDSTxB leads to a higher accumulation rate in both N. tabacum and M. sativa by 1.39 and 1.28 times, respectively. It also facilitates purification rate by over 70% in comparison to 20% of the 6His tag. The results show a highly efficient and easy to purify platform for the expression of heterologous proteins in plant.

12.
Cureus ; 16(5): e59633, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38832188

RESUMO

Stickler syndrome is a genetic disorder characterized by collagen abnormalities leading to various ocular manifestations, such as retinal detachment. We present two cases of siblings clinically diagnosed with Stickler syndrome who exhibited retinal detachment. Case 1, a seven-year-old girl, and case 2, her 14-year-old brother, both displayed severe myopia and other clinical signs consistent with Stickler syndrome. Despite their ages, neither case showed evidence of posterior precortical vitreous pocket (PPVP) on imaging or during surgical intervention. These findings suggest a potential relationship between collagen abnormalities and PPVP dysplasia in Stickler syndrome.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38943281

RESUMO

The synthesis and assembly of mature, organized elastic fibers remains a limitation to the clinical use of many engineered tissue replacements. There is a critical need for a more in-depth understanding of elastogenesis regulation for the advancement of methods to induce and guide production of elastic matrix structures in engineered tissues that meet the structural and functional requirements of native tissue. The dramatic increase in elastic fibers through normal pregnancy has led us to explore the potential role of mechanical stretch in combination with pregnancy levels of the steroid hormones 17ß-estradiol and progesterone on elastic fiber production by human uterine myometrial smooth muscle cells in a three-dimensional (3D) culture model. Opposed to a single strain regimen, we sought to better understand how the amplitude and frequency parameters of cyclic strain influence elastic fiber production in these myometrial tissue constructs (MTC). Mechanical stretch was applied to MTC at a range of strain amplitudes (5%, 10%, and 15% at 0.5 Hz frequency) and frequencies (0.1 Hz, 0.5 Hz, 1 Hz, and constant 0 Hz at 10% amplitude), with and without pregnancy-level hormones, for 6 days. MTC were assessed for cell proliferation, matrix elastin protein content, and expression of the main elastic fiber genes, tropoelastin (ELN) and fibrillin-1 (FBN1). Significant increases in elastin protein and ELN and FBN1 mRNA were produced from samples subjected to a 0.5 Hz, 10% strain regimen, as well as samples stretched at higher amplitude (15%, 0.5 Hz) and higher frequency (1 Hz, 10%); however, no significant effects because of third-trimester mimetic hormone treatment were determined. These results establish that a minimum level of strain is required to stimulate the synthesis of elastic fiber components in our culture model and show this response can be similarly enhanced by increasing either the amplitude or frequency parameter of applied strain. Further, our results demonstrate strain alone is sufficient to stimulate elastic fiber production and suggest hormones may not be a significant factor in regulating elastin synthesis. This 3D culture model will provide a useful tool to further investigate mechanisms underlying pregnancy-induced de novo elastic fiber synthesis and assembly by uterine smooth muscle cells.

14.
Skin Res Technol ; 30(7): e13790, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38932444

RESUMO

BACKGROUND: The delicate periorbital region is susceptible to skin dehydration, wrinkles, and loss of elasticity. Thus, targeted and effective anti-aging interventions are necessary for the periorbital area. AIM: To evaluate the efficacy and safety of a new anti-aging eye cream formulated with the active complex (Yeast/rice fermentation filtrate, N-acetylneuraminic acid, palmityl tripeptide-1, and palmitoyl tetrapeptide-7). METHODS: The cell viability and expressions of key extracellular matrix (ECM) components of the active complex were evaluated using a human skin fibroblast model. In the 12-week clinical trial, skin hydration, elasticity, facial photographs, and collagen density following eye cream application were assessed using Corneometer, Cutometer, VISIA, and ultrasound device, respectively. Dermatologists and participants evaluated clinical efficacy and safety at baseline, and after 4, 8, and 12 weeks. RESULTS: PCR and immunofluorescent analyses revealed that the active complex significantly stimulated fibroblast proliferation (p < 0.05) and markedly promote the synthesis of collagen and elastin. Clinical findings exhibited a substantial enhancement in skin hydration (28.12%), elasticity (18.81%), and collagen production (54.99%) following 12 weeks of eye cream application. Dermatological evaluations and participants' assessments reported a significant improvement in skin moisture, roughness, elasticity, as well as fine lines and wrinkles by week 8. CONCLUSION: The new anti-aging eye cream, enriched with the active complex, demonstrates comprehensive rejuvenating effects, effectively addressing aging concerns in the periorbital area, coupled with a high safety profile.


Assuntos
Fibroblastos , Envelhecimento da Pele , Creme para a Pele , Humanos , Envelhecimento da Pele/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Feminino , Pessoa de Meia-Idade , Creme para a Pele/administração & dosagem , Adulto , Elasticidade/efeitos dos fármacos , Colágeno , Sobrevivência Celular/efeitos dos fármacos , Elastina , Masculino , Pele/efeitos dos fármacos , Pele/patologia , Resultado do Tratamento , Administração Tópica , Proliferação de Células/efeitos dos fármacos , Idoso
15.
J Extracell Biol ; 3(3): e145, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38939412

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with poor prognosis due to its highly metastatic profile. Intercellular communication between cancer and stromal cells via extracellular vesicles (EVs) is crucial for the premetastatic microenvironment preparation leading to tumour metastasis. This study shows that under the influence of bioactive peptides derived from the extracellular matrix microenvironment, illustrated here by the AG-9 elastin-derived peptide (EDP), PDAC cells secrete more tumour-derived EVs. Compared to PDAC-derived EVs, tumour-derived EVs resulting from AG-9 treatment (PDAC AG-9-derived EVs) significantly stimulated cell proliferation. At constant amount, tumour-derived EVs were similarly taken up by PDAC and HMEC-1 cells. Tumour-derived EVs stimulated cell proliferation, migration, proteinase secretion, and angiogenesis. Bioluminescence imaging allowed tumour-derived EV/FLuc+ tracking in vivo in a PDAC mouse model. The biodistribution of PDAC AG-9-derived EVs was different to PDAC-derived EVs. Our results demonstrate that the microenvironment, through EDP release, may not only influence the genesis of EVs but may also affect tumour progression (tumour growth and angiogenesis), and metastatic homing by modifying the in vivo biodistribution of tumour-derived EVs. They are potential candidates for targeted drug delivery and modulation of tumour progression, and they constitute a new generation of therapeutic tools, merging oncology and genic therapy.

16.
Biotech Histochem ; : 1-7, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726944

RESUMO

Anterior cruciate ligament injuries are frequent afflictions related to sports or physical trauma. Autograft reconstruction strategies cause secondary injury to the patient. One alternative, supported by clinical evidence, is porcine xenografts. For clinical use, xenografts must be conditioned to avoid immune rejection. The most widely accepted procedure is tissue decellularization. We analyzed three decellularization strategies: the application of the anionic detergent sodium dodecyl sulfate (SDS), sonication, and freezing and thawing cycles. The treated tissues were evaluated histologically using H&E, Masson's trichrome, Verhoeff-van Gieson staining, and DAPI for fluorescent staining of nuclei. Finally, collagen fiber preservation was evaluated by quantifying this protein by colorimetry. The most efficient decellularization techniques were sonication and SDS. Collagen fibers were preserved in all experimental conditions.

17.
Front Bioeng Biotechnol ; 12: 1374352, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694621

RESUMO

Background: The treatment of patellar tendon injury has always been an unsolved problem, and mechanical characterization is very important for its repair and reconstruction. Elastin is a contributor to mechanics, but it is not clear how it affects the elasticity, viscoelastic properties, and structure of patellar tendon. Methods: The patellar tendons from six fresh adult experimental pigs were used in this study and they were made into 77 samples. The patellar tendon was specifically degraded by elastase, and the regional mechanical response and structural changes were investigated by: (1) Based on the previous study of elastase treatment conditions, the biochemical quantification of collagen, glycosaminoglycan and total protein was carried out; (2) The patellar tendon was divided into the proximal, central, and distal regions, and then the axial tensile test and stress relaxation test were performed before and after phosphate-buffered saline (PBS) or elastase treatment; (3) The dynamic constitutive model was established by the obtained mechanical data; (4) The structural relationship between elastin and collagen fibers was analyzed by two-photon microscopy and histology. Results: There was no statistical difference in mechanics between patellar tendon regions. Compared with those before elastase treatment, the low tensile modulus decreased by 75%-80%, the high tensile modulus decreased by 38%-47%, and the transition strain was prolonged after treatment. For viscoelastic behavior, the stress relaxation increased, the initial slope increased by 55%, the saturation slope increased by 44%, and the transition time increased by 25% after enzyme treatment. Elastin degradation made the collagen fibers of patellar tendon become disordered and looser, and the fiber wavelength increased significantly. Conclusion: The results of this study show that elastin plays an important role in the mechanical properties and fiber structure stability of patellar tendon, which supplements the structure-function relationship information of patellar tendon. The established constitutive model is of great significance to the prediction, repair and replacement of patellar tendon injury. In addition, human patellar tendon has a higher elastin content, so the results of this study can provide supporting information on the natural properties of tendon elastin degradation and guide the development of artificial patellar tendon biomaterials.

18.
Arterioscler Thromb Vasc Biol ; 44(7): 1674-1682, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38752350

RESUMO

BACKGROUND: A series of incurable cardiovascular disorders arise due to improper formation of elastin during development. Supravalvular aortic stenosis (SVAS), resulting from a haploinsufficiency of ELN, is caused by improper stress sensing by medial vascular smooth muscle cells, leading to progressive luminal occlusion and heart failure. SVAS remains incurable, as current therapies do not address the root issue of defective elastin. METHODS: We use SVAS here as a model of vascular proliferative disease using both human induced pluripotent stem cell-derived vascular smooth muscle cells and developmental Eln+/- mouse models to establish de novo elastin assembly as a new therapeutic intervention. RESULTS: We demonstrate mitigation of vascular proliferative abnormalities following de novo extracellular elastin assembly through the addition of the polyphenol epigallocatechin gallate to SVAS human induced pluripotent stem cell-derived vascular smooth muscle cells and in utero to Eln+/- mice. CONCLUSIONS: We demonstrate de novo elastin deposition normalizes SVAS human induced pluripotent stem cell-derived vascular smooth muscle cell hyperproliferation and rescues hypertension and aortic mechanics in Eln+/- mice, providing critical preclinical findings for the future application of epigallocatechin gallate treatment in humans.


Assuntos
Estenose Aórtica Supravalvular , Catequina , Proliferação de Células , Modelos Animais de Doenças , Elastina , Células-Tronco Pluripotentes Induzidas , Músculo Liso Vascular , Miócitos de Músculo Liso , Elastina/metabolismo , Animais , Humanos , Catequina/análogos & derivados , Catequina/farmacologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Estenose Aórtica Supravalvular/metabolismo , Estenose Aórtica Supravalvular/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Camundongos , Células Cultivadas , Camundongos Endogâmicos C57BL , Feminino , Masculino , Camundongos Knockout
19.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L812-L820, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38712445

RESUMO

Chronic obstructive pulmonary disease (COPD) is a condition characterized by chronic airway inflammation and obstruction, primarily caused by tobacco smoking. Although the involvement of immune cells in COPD pathogenesis is well established, the contribution of innate lymphoid cells (ILCs) remains poorly understood. ILCs are a type of innate immune cells that participate in tissue remodeling processes, but their specific role in COPD has not been fully elucidated. During COPD, the breakdown of pulmonary elastin generates elastin peptides that elicit biological activities on immune cells. This study aimed to investigate the presence of ILC in patients with COPD and examine the impact of elastin peptides on their functionality. Our findings revealed an elevated proportion of ILC2 in the peripheral blood of patients with COPD, and a general activation of ILC as indicated by an increase in their cytokine secretion capacity. Notably, our study demonstrated that serum from patients with COPD promotes ILC2 phenotype, likely due to the elevated concentration of IL-5, a cytokine known to favor ILC2 activation. Furthermore, we uncovered that this increase in IL-5 secretion is partially attributed to its secretion by macrophages upon stimulation by elastin peptides, suggesting an indirect role of elastin peptides on ILC in COPD. These findings shed light on the involvement of ILC in COPD and provide insights into the potential interplay between elastin breakdown, immune cells, and disease progression. Further understanding of the mechanisms underlying ILC activation and their interaction with elastin peptides could contribute to the development of novel therapeutic strategies for COPD management.NEW & NOTEWORTHY Elastin-derived peptides, generated following alveolar degradation during emphysema in patients with COPD, are able to influence the response of type 2 innate lymphoid cells. We show that the orientation of innate lymphoid cells in patients with COPD is shifted toward a type 2 profile and that elastin peptides are indirectly participating in that shift through their influence of macrophages, which in turn impact innate lymphoid cells.


Assuntos
Elastina , Imunidade Inata , Linfócitos , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/patologia , Elastina/metabolismo , Elastina/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/efeitos dos fármacos , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Interleucina-5/metabolismo , Interleucina-5/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Peptídeos/farmacologia , Peptídeos/imunologia
20.
Colloids Surf B Biointerfaces ; 240: 113988, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810467

RESUMO

Confronted with the profound threat of cardiovascular diseases to health, vascular tissue engineering presents potential beyond the limitations of autologous and allogeneic grafts, offering a promising solution. This study undertakes an initial exploration into the impact of a natural active protein, elastin, on vascular cell behavior, by incorporating with polycaprolactone to prepare fibrous tissue engineering scaffold. The results reveal that elastin serves to foster endothelial cell adhesion and proliferation, suppress smooth muscle cell proliferation, and induce macrophage polarization. Furthermore, the incorporation of elastin contributes to heightened scaffold strength, compliance, and elongation, concomitantly lowering the elastic modulus. Subsequently, a bilayer oriented polycaprolactone (PCL) scaffold infused with elastin is proposed. This design draws inspiration from the cellular arrangement of native blood vessels, leveraging oriented fibers to guide cell orientation. The resulting fiber scaffold exhibits commendable mechanical properties and cell infiltration capacity, imparting valuable insights for the rapid endothelialization of vascular scaffolds.


Assuntos
Adesão Celular , Proliferação de Células , Nanofibras , Poliésteres , Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Nanofibras/química , Poliésteres/química , Poliésteres/farmacologia , Proliferação de Células/efeitos dos fármacos , Humanos , Adesão Celular/efeitos dos fármacos , Animais , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Elastina/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Camundongos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...