Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Molecules ; 29(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38893407

RESUMO

CuO is recognized as a promising anode material for sodium-ion batteries because of its impressive theoretical capacity of 674 mAh g-1, derived from its multiple electron transfer capabilities. However, its practical application is hindered by slow reaction kinetics and rapid capacity loss caused by side reactions during discharge/charge cycles. In this work, we introduce an innovative approach to fabricating large-area CuO and CuO@Al2O3 flakes through a combination of magnetron sputtering, thermal oxidation, and atomic layer deposition techniques. The resultant 2D CuO flakes demonstrate excellent electrochemical properties with a high initial reversible specific capacity of 487 mAh g-1 and good cycling stability, which are attributable to their unique architectures and superior structural durability. Furthermore, when these CuO flakes are coated with an ultrathin Al2O3 layer, the integration of the 2D structures with outer nanocoating leads to significantly enhanced electrochemical properties. Notably, even after 70 rate testing cycles, the CuO@Al2O3 materials maintain a high capacity of 525 mAh g-1 at a current density of 50 mA g-1. Remarkably, at a higher current density of 2000 mA g-1, these materials still achieve a capacity of 220 mAh g-1. Moreover, after 200 cycles at a current density of 200 mA g-1, a high charge capacity of 319 mAh g-1 is sustained. In addition, a full cell consisting of a CuO@Al2O3 anode and a NaNi1/3Fe1/3Mn1/3O2 cathode is investigated, showcasing remarkable cycling performance. Our findings underscore the potential of these innovative flake-like architectures as electrode materials in high-performance sodium-ion batteries, paving the way for advancements in energy storage technologies.

2.
Materials (Basel) ; 17(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893808

RESUMO

Due to the volume expansion effect during charge and discharge processes, the application of transition metal oxide anode materials in lithium-ion batteries is limited. Composite materials and carbon coating are often considered feasible improvement methods. In this study, three types of TiO2@Fe3O4@C microspheres with a core-double-shell structure, namely TFCS (TiO2@Fe3O4@C with 0.0119 g PVP), TFCM (TiO2@Fe3O4@C with 0.0238 g PVP), and TFCL (TiO2@Fe3O4@C with 0.0476 g PVP), were prepared using PVP (polyvinylpyrrolidone) as the carbon source through homogeneous precipitation and high-temperature carbonization methods. After 500 cycles at a current density of 2 C, the specific capacities of these three microspheres are all higher than that of TiO2@Fe2O3 with significantly improved cycling stability. Among them, TFCM exhibits the highest specific capacity of 328.3 mAh·g-1, which was attributed to the amorphous carbon layer effectively mitigating the capacity decay caused by the volume expansion of iron oxide during charge and discharge processes. Additionally, the carbon coating layer enhances the electrical conductivity of the TiO2@Fe3O4@C materials, thereby improving their rate performance. Within the range of 100 to 1600 mA·g-1, the capacity retention rates for TiO2@Fe2O3, TFCS, TFCM, and TFCL are 27.2%, 35.2%, 35.9%, and 36.9%, respectively. This study provides insights into the development of new lithium-ion battery anode materials based on Ti and Fe oxides with the abundance and environmental friendliness of iron, titanium, and carbon resources in TiO2@Fe3O4@C microsphere anode materials, making this strategy potentially applicable.

3.
J Colloid Interface Sci ; 674: 67-78, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909595

RESUMO

In the wake of the carbon-neutral era, the exploration of innovative materials for energy storage and conversion has garnered increasing attention. While nickel silicates have been a focal point in energy storage research, their application in supercapacitors (SCs) has been relatively underreported due to poor conductivity. A newly designed architecture, designated as rGO@NiSiO@NiO/C (abbreviated for reduced graphene oxide (rGO), nickel silicate (NiSiO), nickel oxide/carbon (NiO/C)), has been developed to enhance the electrochemical performance of NiSiO. The incorporation of inner rGO provides structural support for NiSiO, enhancing conductivity, while the outer NiO/C layer not only boosts conductivity but also safeguards NiSiO from structural degradation and electrolyte dissolution. This architecture eliminates multi-phase mixtures, facilitating rapid electron/mass transfer kinetics and accelerating electrochemical reactions, resulting in exceptional electrochemical properties. The rGO@NiSiO@NiO/C architecture achieves a specific capacitance of 324F·g-1 at 0.5 A·g-1, with a superb cycle performance of âˆ¼ 91 % after 10,000 cycles, surpassing state-of-the-art nickel silicates. Furthermore, the hybrid supercapacitor (HSC) device incorporating the rGO@NiSiO@NiO/C electrode attains an areal capacitance of 159 mF·cm-2 at 2.5 mA·cm-2, a retention ratio of âˆ¼ 98 % after 10,000 cycles, and an energy density of 0.68 Wh·m-2 (26.7 Wh·kg-1) at 3.4 W·m-2 (343.8 W·kg-1). This study presents a layer-by-layer approach for constructing transition metal silicates/C architectures to enhance their electrochemical performance.

4.
ACS Appl Mater Interfaces ; 16(22): 28599-28612, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38804244

RESUMO

NASICON structured Na3V2(PO4)3 (NVP) has captured enormous attention as a potential cathode for next-generation sodium-ion batteries (SIBs), owing to its sturdy crystal structure and high theoretical capacity. Nonetheless, its poor intrinsic electronic conductivity has led to inferior electrochemical performance in terms of rate capability and long cycling performance. To address this problem, a combined strategy is adopted, such as (1) carbon coating and (2) high valent Sn4+ ion doping in the lattice site of vanadium in the NVP cathode. Carbon coating can effectively enhance the surface electronic conductivity, wherein high-valent Sn4+ improves the bulk intrinsic electronic conductivity of the materials. Moreover, Sn is a well-known alloying/dealloying type anode for SIBs; thus, doping of such metal in cathode materials will assume the role of structure stabilizing pillars and establishing high-performing cathode materials. Herein, Na3V2-xSnx(PO4)3/C (denoted as Sn(x)-NVP/C, where x = 0.00, 0.03, 0.05, 0.07, 0.1) were synthesized via sol-gel route, followed by calcination at 800 °C. XRD, Raman, XPS, and electron microscopy data confirmed the high purity of the synthesized cathode. The optimized Sn(0.07)-NVP/C exhibited excellent electrochemical performance in terms of high rate capability and long cycling performance, a high appreciable capacity of 98 mAh g-1 with capacity retention of 85% after 500 cycles. Similarly, at a high current of 20C, it is still able to deliver a stable capacity of 76 mAh g-1 with 85% capacity retention after 3000 cycles. The rate capability study indicates the high current tolerance of Sn(0.07)-NVP/C up to 70 C with a capacity delivery of 55 mAh g-1. It is worth mentioning that CV and EIS analysis for Sn(0.07)-NVP/C cathode displayed minimum voltage polarization and enhanced diffusion coefficient. Moreover, DFT calculation also proved that the electronic and ionic conductivity of NVP is promoted by Sn doping. Hence, the present results demonstrated that Sn(0.07)-NVP/C is considered a promising cathode for sodium-ion battery application.

5.
Chemistry ; 30(40): e202401469, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38747031

RESUMO

Here, we introduce an organic/inorganic composite hydrogel as a versatile gel electrode material. This composite hydrogel was formed by simply mixing an aqueous solution of flat microparticles of tungsten oxide, exhibiting superior water dispersibility, with a hydrogel composed of a water-soluble polyaramide-based polymer hydrogelator. The resulting composite hydrogel exhibited uniform dispersion of tungsten oxide flat particles throughout the hydrogel matrix, supplementing the structure formed by the polymer hydrogelator. It maintained the gel-forming capability and thixotropic behavior inherent to the polymer hydrogelator while showcasing the electrochemical characteristics of tungsten oxide. With its spreadability and applicability to various electrode shapes, a composite hydrogel is presented as a potential spreadable gel electrode material.

6.
Sensors (Basel) ; 24(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38793894

RESUMO

Hydrogel flexible strain sensors, renowned for their high stretchability, flexibility, and wearable comfort, have been employed in various applications in the field of human motion monitoring. However, the predominant method for fabricating hydrogels is the template method, which is particularly inefficient and costly for hydrogels with complex structural requirements, thereby limiting the development of flexible hydrogel electronic devices. Herein, we propose a novel method that involves using microgels to modify a hydrogel solution, printing the hydrogel ink using an electrohydrodynamic printing device, and subsequently forming the hydrogel under UV illumination. The resulting hydrogel exhibited a high tensile ratio (639.73%), high tensile strength (0.4243 MPa), and an ionic conductivity of 0.2256 S/m, along with excellent electrochemical properties. Moreover, its high linearity and sensitivity enabled the monitoring of a wide range of subtle changes in human movement. This novel approach offers a promising pathway for the development of high-performance, complexly structured hydrogel flexible sensors.

7.
J Colloid Interface Sci ; 669: 2-13, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38703578

RESUMO

Aqueous nonmetallic ion batteries have garnered significant interest due to their cost-effectiveness, environmental sustainability, and inherent safety features. Specifically, ammonium ion (NH4+) as a charge carrier has garnered more and more attention recently. However, one of the persistent challenges is enhancing the electrochemical properties of vanadium dioxide (VO2) with a tunnel structure, which serves as a highly efficient NH4+ (de)intercalation host material. Herein, a novel architecture, wherein carbon-coated VO2 nanobelts (VO2@C) with a core-shell structure are engineered to augment NH4+ storage capabilities of VO2. In detail, VO2@C is synthesized via the glucose reduction of vanadium pentoxide under hydrothermal conditions. Experimental results manifest that the introduction of the carbon layer on VO2 nanobelts can enhance mass transfer, ion transport and electrochemical kinetics, thereby culminating in the improved NH4+ storage efficiency. VO2@C core-shell composite exhibits a remarkable specific capacity of ∼300 mAh/g at 0.1 A/g, which is superior to that of VO2 (∼238 mAh/g) and various other electrode materials used for NH4+ storage. The NH4+ storage mechanism can be elucidated by the reversible NH4+ (de)intercalation within the tunnel of VO2, facilitated by the dynamic formation and dissociation of hydrogen bonds. Furthermore, when integrated into a full battery with polyaniline (PANI) cathode, the VO2@C//PANI full battery demonstrates robust electrochemical performances, including a specific capacity of ∼185 mAh·g-1 at 0.2 A·g-1, remarkable durability of 93 % retention after 1500 cycles, as well as high energy density of 58 Wh·kg-1 at 5354 W·kg-1. This work provides a pioneering approach to design and explore composite materials for efficient NH4+ storage, offering significant implications for future battery technology enhancements.

8.
Sci Rep ; 14(1): 11200, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755425

RESUMO

Lithium-doped anatase-TiO2 nanoparticles (LixTi1-xO2 NPs, x = 0, 0.05, 0.10, 0.15 and 0.20) could be synthesized by a simple sol-gel process. X-ray diffraction (XRD) results displayed the tetragonal (space group: I41/amd) of polycrystalline TiO2 anatase phase. The spectroscopy results of Raman and FT-IR confirmed the anatase phase of TiO2 through the specific modes of metal oxides vibration in the crystalline TiO2. Surfaces micrographs by scanning electron microscope (SEM) of agglomerated LixTi1-xO2 NPs showed a spongy like morphology. Transmission electron microscope (TEM) illustrated a cuboidal shape of dispersed NPs with particle size distributed in a narrow range 5-10 nm. Bruanauer Emmett-Teller (BET) results showed the increased surface area of LixTi1-xO2 NPs with increasing Li content. LixTi1-xO2 NPs (x = 0.05-0.20) working electrodes illustrated a pseudocapacitive behavior with excellent electrochemical properties through the whole cycles of GCD test. Interestingly, Li0.1Ti0.9O2 NPs electrode illustrated a high performance in terms of maximum specific capacitance 822 F g-1 at 1.5 A g-1 in 0.5 M Li2SO4 electrolyte, with excellent capacitive retention 92.6% after 5000 cycles GCD test.

9.
Materials (Basel) ; 17(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611987

RESUMO

Binary Ti100-x-Cux (x = 1.6 and 3.0 wt.%) alloys were produced by the application of mechanical alloying and powder metallurgy processes. The influence of the copper concentration in titanium on the microstructure and properties of bulk alloys was investigated. The synthesized materials were characterized by an X-ray diffraction technique, scanning electron microscopy, and chemical composition determination. The electrochemical and corrosion properties were also investigated. Cold compaction and sintering reduced the content of α-Ti content in Ti98.4-Cu1.6 and Ti97-Cu3 alloys to 92.4% and 83.7%, respectively. Open Circuit Potential measurements showed a positive shift after the addition of copper, suggesting a potential deterioration in the corrosion resistance of the Ti-Cu alloys compared to pure Ti. Electrochemical Impedance Spectroscopy analysis revealed significant improvement in electrical conductivity after the addition of copper. Corrosion testing results demonstrated compromised corrosion resistance of Ti-Cu alloys compared to pure Ti. In summary, the comprehensive investigation of Ti100-x-Cux alloys provides valuable insights for potential applications in biosensing.

10.
Materials (Basel) ; 17(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612107

RESUMO

In this study, a carbon fiber microelectrode (CF) was applied for the investigation of the electrochemical behavior of the natural antioxidant, apocynin (APO). Given the limited solubility of APO in water, a mixture of anhydrous acetic acid (AcH) with 20%, v/v acetonitrile (AN) and 0.1 mol L-1 sodium acetate (AcNa) was used. The electrochemical properties of APO were examined through linear sweep voltammetry (LSV), differential pulse voltammetry (DPV), and cyclic voltammetry (CV). The anodic oxidation of APO, which is the basis of the method used, proved to be diffusion-controlled and proceeded with a two-electron and one proton exchange. Both radicals and radical cations, arising from the first and second step of electrode reactions, respectively, underwent subsequent chemical transformations to yield more stable final products (EqCiEiCi mechanism). Using optimized DPV conditions, the anodic peak current of APO at a potential of 0.925 V vs. Ag/AgCl showed a good linear response within the concentration range of 2.7 × 10-6-2.6 × 10-4 mol L-1. The detection and quantification limits were determined as 8.9 × 10-7 and 2.7 × 10-6 mol L-1, respectively. The developed DPV method enabled the successful determination of APO in herbal extracts and in dietary supplements. It should be noted that this is the first method to be used for voltammetric determination of APO.

11.
Sci Total Environ ; 927: 172291, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588748

RESUMO

Biochar is commonly used to enhance the anaerobic digestion of organic waste solids and wastewater, due to its electrochemical properties, which intensify the electron transfer of microorganisms attached to its large surface area. However, it is difficult to create biochar with both high conductivity and high capacitance, which makes selecting the right biochar for engineering applications challenging. To address this issue, two Auto algorithms (TPOT and H2O) were applied to model the effects of different biochar properties on anaerobic digestion processes. The results showed that the gradient boosting machine had the highest predictive accuracy (R2 = 0.96). Feature importance analysis showed that feedstock concentration, digestion time, capacitance, and conductivity of biochar were the main factors affecting methane yield. According to the two-dimensional (2D) partial dependence plots, high-capacitance biochar (0.27-0.29 V·mA) is favorable for substrates with low-solid content (< 19.6 TS%), while the high-conductivity biochar (80.82-170.58 mS/cm) is suitable for high-solids substrates (> 20.1 TS%). The software, based on the optimal model, can be used to obtain the ideal range of biochar for AD trials, aiding researchers in practical applications prior to implementation.


Assuntos
Carvão Vegetal , Aprendizado de Máquina , Carvão Vegetal/química , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Reatores Biológicos
12.
ACS Appl Mater Interfaces ; 16(17): 22055-22065, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636080

RESUMO

Nb2O5 has been viewed as a promising anode material for lithium-ion batteries by virtue of its appropriate redox potential and high theoretical capacity. However, it suffers from poor electric conductivity and low ion diffusivity. Herein, we demonstrate the controllable fabrication of Cu-doped Nb2O5 with orthorhombic (T-Nb2O5) and monoclinic (H-Nb2O5) phases through annealing the solvothermally presynthesized Nb2O5 precursor under different temperatures in air, and the Cu doping amount can be readily controlled by the concentration of the precursor solution, whose effect on the lithium storage behaviors of the Cu-doped Nb2O5 is thoroughly investigated. H-Nb2O5 shows obvious redox peaks (Nb5+/Nb4+ and Nb4+/Nb3+) with much higher capacity and better cycling stability than those for the widely investigated T-Nb2O5. When introducing appropriate Cu doping, the optimized H-Cu0.1-Nb2O5 electrode shows greatly enhanced conductivity and lower diffusion barrier as revealed by the theoretical calculations and electrochemical characterizations, delivering a high reversible capacity of 203.6 mAh g-1 and a high capacity retention of 140.8 mAh g-1 after 5000 cycles at 1 A g-1, with a high initial Coulombic efficiency of 91% and a high rate capacity of 144.2 mAh g-1 at 4 A g-1. As a demonstration for full-cell application, the H-Cu0.1-Nb2O5||LiFePO4 cell displays good cycling performance, exhibiting a reversible capacity of 135 mAh g-1 after 200 cycles at 0.2 A g-1. More importantly, this work offers a new synthesis protocol of the monoclinic Nb2O5 phase with high capacity retention and improved reaction kinetics.

13.
ACS Appl Mater Interfaces ; 16(15): 18971-18979, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578663

RESUMO

The formation of a solid electrolyte interphase on carbon anodes causes irreversible loss of Na+ ions, significantly compromising the energy density of Na-ion full cells. Sodium compensation additives can effectively address the irreversible sodium loss but suffer from high decomposition voltage induced by low electrochemical activity. Herein, we propose a universal electrocatalytic sodium compensation strategy by introducing a carbon nanotube (CNT)/MnO2 catalyst to realize full utilization of sodium compensation additives at a much-reduced decomposition voltage. The well-organized CNT/MnO2 composite with high catalytic activity, good electronic conductivity, and abundant reaction sites enables sodium compensation additives to decompose at significantly reduced voltages (from 4.40 to 3.90 V vs Na+/Na for sodium oxalate, 3.88 V for sodium carbonate, and even 3.80 V for sodium citrate). As a result, sodium oxalate as the optimal additive achieves a specific capacity of 394 mAh g-1, almost reaching its theoretical capacity in the first charge, increasing the energy density of the Na-ion full cell from 111 to 158 Wh kg-1 with improved cycle stability and rate capability. This work offers a valuable approach to enhance sodium compensation efficiency, promising high-performance energy storage devices in the future.

14.
J Biol Inorg Chem ; 29(2): 251-264, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38494554

RESUMO

Organometallic η6-arene ruthenium(II) complexes with 3-chloro-6-(1H-pyrazol-1-yl)pyridazine (Ru1, Ru2, and Ru5) and 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)pyridazine (Ru3-4) N,N' heterocyclic and η6-arene (cymene (Ru1-4) or toluene (Ru 5)) have been synthesized. The ruthenium(II) complexes have common "three-legged piano-stool" pseudo-octahedral structures known for half-sandwich complexes. Evolution of their UV-Visible absorption spectra in PBS buffer or DMSO over 24 h confirmed their good solvolysis stability. Titrations of the complexes with the calf thymus DNA (CT-DNA) were monitored using UV-Visible absorption and fluorescence spectroscopies. The complexes interact moderately with CT-DNA and their binding constants are in the order of 104 M-1. Competitive binding of the complexes to a DNA-Hoechst 33,258 depicted competitive displacement of Hoechst from DNA's minor grooves. These complexes bind to glutathione forming GSH-adducts through S coordination by replacement of a halide, with the iodo-analogues having higher binding constants than the chloro-complexes. Cyclic voltammograms of the complexes exhibited one electron-transfer quasi-reversible process. Trends in the molecular docking data of Ru1-5/DNA were similar to those for DNA binding constants. Of the five, only Ru1, Ru3 and Ru5 showed some activity (moderate) against the MCF-7 breast cancer cells with IC50 values in the range of 59.2-39.9 for which Ru5 was the most active. However, the more difficult-to-treat cell line, MDA-MB 231 cell was recalcitrant to the treatment by these complexes.


Assuntos
Antineoplásicos , Complexos de Coordenação , DNA , Glutationa , Rutênio , DNA/química , DNA/metabolismo , Humanos , Rutênio/química , Ligantes , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Glutationa/química , Glutationa/metabolismo , Bovinos , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Animais , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Células MCF-7 , Linhagem Celular Tumoral
15.
Nanomaterials (Basel) ; 14(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38470765

RESUMO

Solid-state lithium metal batteries (LMBs) have been extensively investigated owing to their safer and higher energy density. In this work, we prepared a novel elastic solid-state polymer electrolyte based on an in situ-formed elastomer polymer matrix with ion-conductive plasticizer crystal embedded with Li6.5La3Zr1.5Ta0.5O12 (LLZTO) nanoparticles, denoted as LZT/SN-SPE. The unique structure of LZT/SN-SPE shows excellent elasticity and flexibility, good electrochemical oxidation tolerance, high ionic conductivity, and high Li+ transference number. The role of LLZTO filler in suppressing the side reactions between succinonitrile (SN) and the lithium metal anode and propelling the Li+ diffusion kinetics can be affirmed. The Li symmetric cells with LZT/SN-SPE cycled stably over 1100 h under a current density of 5 mA cm-2, and Li||LiFePO4 cells realized an excellent rate (92.40 mAh g-1 at 5 C) and long-term cycling performance (98.6% retention after 420 cycles at 1 C). Hence, it can provide a promising strategy for achieving high energy density solid-state LMBs.

16.
Molecules ; 29(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474488

RESUMO

Supercapacitors (SCs) are a novel type of energy storage device that exhibit features such as a short charging time, a long service life, excellent temperature characteristics, energy saving, and environmental protection. The capacitance of SCs depends on the electrode materials. Currently, carbon-based materials, transition metal oxides/hydroxides, and conductive polymers are widely used as electrode materials. However, the low specific capacitance of carbon-based materials, high cost of transition metal oxides/hydroxides, and poor cycling performance of conductive polymers as electrodes limit their applications. Copper-sulfur compounds used as electrode materials exhibit excellent electrical conductivity, a wide voltage range, high specific capacitance, diverse structures, and abundant copper reserves, and have been widely studied in catalysis, sensors, supercapacitors, solar cells, and other fields. This review summarizes the application of copper-sulfur compounds in SCs, details the research directions and development strategies of copper-sulfur compounds in SCs, and analyses and summarizes the research hotspots and outlook, so as to provide a reference and guidance for the use of copper-sulfur compounds.

17.
Materials (Basel) ; 17(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38399062

RESUMO

Cathodic protection is widely used for metal corrosion protection. To improve their performance, it is necessary and urgent to study the influence of metal oxides on the microstructure and performance of aluminum alloy sacrificial anodes. Taking an Al-Ga-In sacrificial anode as the research object, the dissolution morphology and current efficiency characteristics were studied by means of electrochemical testing and microstructural observation, and the influence of varying Pb and Bi contents on the performance of an aluminum alloy sacrificial anode was investigated. The test results reveal that: (1) The Al-Ga-In sacrificial anode with 4% Pb and 1% Bi contents exhibits the best sacrificial anode performance. (2) The inclusion of an appropriate Bi element content shifts the open-circuit potential in a negative direction and promotes activation dissolution. Conversely, excessive Bi content leads to uneven dissolution, resulting in the shedding of anode grains and greatly reducing the current efficiency. (3) During the activation dissolution of the aluminum alloy, the second phase preferentially dissolves, and the activation point destroys the oxide film, resulting in the dissolution of the exposed aluminum matrix. Consequently, the concentration of dissolved metal ions is reduced and deposited back on the surface of the anode sample, promoting the continuous dissolution of the anode.

18.
Nanotechnology ; 35(23)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38422541

RESUMO

Structural and electrochemical properties of bismuth ferrite nanostructures produced by pulsed laser deposition with various morphologies are reported. The nanostructures are also explored as electrode materials for high-performance supercapacitors. Scanning electron microscopy images revealed that various bismuth ferrite morphologies were produced by varying the background pressure (10-6, 0.01, 0.10, 0.25, 0.50, 1.0, 2.0 and 4.0 Torr) in the deposition chamber and submitting them to a thermal treatment after deposition at 500◦C. The as-deposited bismuth ferrite nanostructures range from very compact thin-film (10-6, 0.01, 0.10 Torr), to clustered nanoparticles (0.25, 0.50, 1.0 Torr), to very dispersed arrangement of nanoparticles (2.0 and 4.0 Torr). The electrochemical characteristic of the electrodes was investigated through cyclic voltammetry process. The increase in the specific surface area of the nanostructures as background pressure in the chamber increases does not lead to an increase in interfacial capacitance. This is likely due to the wakening of electrical contact between nanoparticles with increasing porosity of the nanostructures. The thermal treatment increased the contact between nanoparticles, which caused an increase in the interfacial capacitance of the nanostructure deposited under high background pressure in the chamber.

19.
Heliyon ; 10(4): e26631, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420414

RESUMO

In this work, MnO2/NiO nanocomposite electrode materials have been synthesized by a cost-effective hydrothermal method. The effect of the concentrations (0, 1, 3, 5, and 7 wt%) of NiO nanoparticles on the surface morphology, structural properties, and electrochemical performance of the nanocomposites was characterized by different characterization techniques. The scanning electron micrographs (SEM) reveal that the as-prepared NiO nanoparticles are well connected and stuck with the MnO2 nanowires. The transmission electron microscopy (TEM) analysis showed an increase in the interplanar spacing due to the incorporation of NiO nanoparticles. The different structural parameters of MnO2/NiO nanocomposites were also found to vary with the concentration of NiO. The MnO2/NiO nanocomposites provide an improved electrochemical performance together with a specific capacitance as high as 343 F/g at 1.25 A/g current density. The electrochemical spectroscopic analysis revealed a reduction in charge transfer resistance due to the introduction of NiO, indicating a rapid carrier transportation between the materials interface. The improved electrochemical performance of MnO2/NiO can be attributed to good interfacial interaction, a large interlayer distance, and low charge transfer resistance. The unique features of MnO2/NiO and the cost-effective hydrothermal method will open up a new route for the fabrication of a promising supercapacitor electrode.

20.
Heliyon ; 10(3): e25426, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38322955

RESUMO

Si-based anode materials have a relatively high theoretical specific capacity and low operating voltage, greatly enhancing the energy density of rechargeable lithium-ion batteries (LIBs). However, their practical application is seriously hindered by the instability of active particles and anode electrodes caused by the huge swelling during cycling. How to maintain the stability of the charge transfer network and interface structure of Si particles is full of challenges. To address this issue, we have developed a novel Si@Fe3O4/AC/CNR anode by in-situ growing one-dimensional high elastic carbon nano-ribbons to wrap Si nanoparticles. This special structure can construct fast channels of electron transport and lithium ion diffusion, and stabilize the surface structure of Si nanoparticles during cycling. With these promising architectural features, the Si@Fe3O4/AC/CNR composite possesses a high specific capacity of 1279.4 mAh/g at 0.5 A/g, and a superior cycling life with 80 % capacity retention after 700 cycles. Even at a high current density of 20.0 A/g, the composite still delivers a capacity of 621.2 mAh/g. The facile synthetic approach and high performance of Si@Fe3O4/AC/CNR anodes provide practical insight into advanced anode materials with large volume expansion for high-energy-density LIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...