Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
iScience ; 27(5): 109525, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38711450

RESUMO

High-performance electromagnetic interference (EMI) shielding materials with ultrathin, flexible, and pliable mechanical properties are highly desired for high-end equipments, yet there remain large challenges in the manufacture of these materials. Here, carbon nanotube film (CNTF)/copper (Cu) nanoparticle (NP) composite films are fabricated via a facile electrodeposition method to achieve high electromagnetic shielding efficiency. Notably, a CNTF/Cu NP composite film with 15 µm thickness can achieve excellent EMI shielding efficiency of ∼248 dB and absolute EMI shielding effectiveness as high as 2.17 × 105 dB cm2 g-1, which are the best values for composite EMI shielding materials with similar or greater thicknesses. These engineered composite films exhibit excellent deformation tolerance, which ensures the robust reliability of EMI shielding efficiency after 20,000 cycles of repeated bending. Our results represent a critical breakthrough in the preparation of ultrathin, flexible, and pliable shielding films for applications in smart, portable and wearable electronic devices, and 5G communication.

2.
iScience ; 27(3): 109201, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38433903

RESUMO

Even though the bioeffects of electromagnetic radiation (EMR) have been extensively investigated during the past several decades, our understandings of the bioeffects of EMR and the mechanisms of the interactions between the biological systems and the EMRs are still far from satisfactory. In this article, we introduce and summarize the consensus, controversy, limitations, and unsolved issues. The published works have investigated the EMR effects on different biological systems including humans, animals, cells, and biochemical reactions. Alternative methodologies also include dielectric spectroscopy, detection of bioelectromagnetic emissions, and theoretical predictions. In many studies, the thermal effects of the EMR are not properly controlled or considered. The frequency of the EMR investigated is limited to the commonly used bands, particularly the frequencies of the power line and the wireless communications; far fewer studies were performed for other EMR frequencies. In addition, the bioeffects of the complex EM environment were rarely discussed. In summary, our understanding of the bioeffects of the EMR is quite restrictive and further investigations are needed to answer the unsolved questions.

3.
Heliyon ; 10(4): e26369, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404848

RESUMO

In this study, we tackle the challenge of optimizing the design of a Brushless Direct Current (BLDC) motor. Utilizing an established analytical model, we introduced the Multi-Objective Generalized Normal Distribution Optimization (MOGNDO) method, a biomimetic approach based on Pareto optimality, dominance, and external archiving. We initially tested MOGNDO on standard multi-objective benchmark functions, where it showed strong performance. When applied to the BLDC motor design with the objectives of either maximizing operational efficiency or minimizing motor mass, the MOGNDO algorithm consistently outperformed other techniques like Ant Lion Optimizer (ALO), Ion Motion Optimization (IMO), and Sine Cosine Algorithm (SCA). Specifically, MOGNDO yielded the most optimal values across efficiency and mass metrics, providing practical solutions for real-world BLDC motor design. The MOGNDO source code is available at: https://github.com/kanak02/MOGNDO.

4.
iScience ; 27(1): 108609, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38174316

RESUMO

Realizing camouflage by illusion and cloaking based on the metasurface has received widespread attention recently. However, existing metasurface-based illusion and cloaking devices are valid for the incident wave with a specific frequency, angle, or polarization, or exhibit a single function. Therefore, a terahertz tunable vanadium dioxide (VO2) metasurface carpet cloak is proposed for dynamic illusion and cloaking. Simulation results show that by controlling the state of the VO2, the metasurface carpet cloak can simultaneously achieve illusion and cloaking functions, working at 0.45 THz and 0.6 THz, and is effective for orthogonal circularly polarized waves with different incidence angles. That is the function, frequency, incident angle, and polarization of the metasurface carpet cloak are dynamically adjustable. Besides, the metasurface carpet cloak is robust to the incident angle and is capable of polarization angle stability. This work has potential value in the real-life application of metasurface-based illusion and cloaking devices.

5.
Bioelectromagnetics ; 44(7-8): 181-191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908196

RESUMO

Electric-field stimulation of neuronal activity can be used to improve the speed of regeneration for severed and damaged nerves. Most techniques, however, require invasive electronic circuitry which can be uncomfortable for the patient and can damage surrounding tissue. A recently suggested technique uses a graft-antenna-a metal ring wrapped around the damaged nerve-powered by an external magnetic stimulation device. This technique requires no electrodes and internal circuitry with leads across the skin boundary or internal power, since all power is provided wirelessly. This paper examines the microscopic basic mechanisms that allow the magnetic stimulation device to cause neural activation via the graft-antenna. A computational model of the system was created and used to find that under magnetic stimulation, diverging electric fields appear at the metal ring's edges. If the magnetic stimulation is sufficient, the gradients of these fields can trigger neural activation in the nerve. In-vivo measurements were also performed on rat sciatic nerves to support the modeling finding that direct contact between the antenna and the nerve ensures neural activation given sufficient magnetic stimulation. Simulations also showed that the presence of a thin gap between the graft-antenna and the nerve does not preclude neural activation but does reduce its efficacy.


Assuntos
Neurônios , Nervo Isquiático , Ratos , Animais , Humanos , Eletrodos , Nervo Isquiático/fisiologia , Estimulação Elétrica , Imãs
6.
iScience ; 26(11): 107176, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026166

RESUMO

MXenes have been proven to be outstanding lossy phase of advanced electromagnetic interference (EMI) shielding materials. However, their poor tolerance to oxygen and water results in fast degradation of the pristine two-dimensional (2D) nanostructure and fading of the functional performance. Herein, in this research, natural antioxidants (e.g., melatonin, tea polyphenols, and phytic acid) were employed to protect the Ti3C2Tx MXene from its degradation in order to achieve a long-term stability of the EMI shielding performance. The results showed that the synthesized composites comprised of antioxidants and Ti3C2Tx exhibited a decelerating degradation rate resulting in an improved EMI shielding effective (SE) stability. The antioxidation mechanism of the applied antioxidants is discussed with respect to the nanostructure evolution of the Ti3C2Tx MXene. This work contributes to the basic foundations for the further development of advanced MXenes for stable applications in the EM field.

7.
iScience ; 26(10): 107975, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37841593

RESUMO

Recently, the design of graphene-based films with elaborately controlled microstructures and optimized electromagnetic interference shielding (EMI) properties can effectively improve EM energy attenuation and conversion. Herein, inspired by the structure of multi-layer steamed bread, an alternating multilayered structure with polyvinyl alcohol (PVA)-derived carbon layers and graphene/electrospun carbon nanofibers layers was designed through alternating vacuum-assisted filtration method. The composite film exhibited favorable impedance matching, abundant loss mechanism, and excellent EMI shielding ability, resulting in absorption dominated shielding characteristic. Thus, the resultant 7-layer alternating composite films with a thickness of 160 µm achieved an EMI shielding effectiveness (EMI SE) of up to 80 dB in the X-band. Specially, finite element analysis was applied to demonstrate the importance of seven-layer film alternations and detailed analysis of electromagnetic shielding mechanisms. Taken together, this effort opens a creative avenue for designing and constructing flexible composite films with excellent EMI shielding performance.

8.
Front Bioeng Biotechnol ; 11: 1225495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711443

RESUMO

Electric fields find use in tissue engineering but also in sensor applications besides the broad classical application range. Accurate numerical models of electrical stimulation devices can pave the way for effective therapies in cartilage regeneration. To this end, the dielectric properties of the electrically stimulated tissue have to be known. However, knowledge of the dielectric properties is scarce. Electric field-based methods such as impedance spectroscopy enable determining the dielectric properties of tissue samples. To develop a detailed understanding of the interaction of the employed electric fields and the tissue, fine-grained numerical models based on tissue-specific 3D geometries are considered. A crucial ingredient in this approach is the automated generation of numerical models from biomedical images. In this work, we explore classical and artificial intelligence methods for volumetric image segmentation to generate model geometries. We find that deep learning, in particular the StarDist algorithm, permits fast and automatic model geometry and discretisation generation once a sufficient amount of training data is available. Our results suggest that already a small number of 3D images (23 images) is sufficient to achieve 80% accuracy on the test data. The proposed method enables the creation of high-quality meshes without the need for computer-aided design geometry post-processing. Particularly, the computational time for the geometrical model creation was reduced by half. Uncertainty quantification as well as a direct comparison between the deep learning and the classical approach reveal that the numerical results mainly depend on the cell volume. This result motivates further research into impedance sensors for tissue characterisation. The presented approach can significantly improve the accuracy and computational speed of image-based models of electrical stimulation for tissue engineering applications.

9.
Sci Total Environ ; 905: 167225, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37741411

RESUMO

Salinization of inland fresh surface waters in temperate climates is a growing concern due to increasing salt inputs from sources including chloride (Cl)-containing road salt de-icers, industrial waste, and landfill leachate. Groundwater pathways play an important role in the year-round delivery of Cl to streams, but quantifying this pathway, including spatiotemporal variability and amount of Cl mass stored in the subsurface, is challenging. The objective of this study was to demonstrate, evaluate, and compare the potential applications of the geoelectrical techniques - electromagnetics (EM) and direct current (DC) resistivity - for mapping salt contamination in shallow urban groundwater and characterizing the groundwater pathways delivering Cl to urban streams. EM and DC surveys were conducted (3D mapping and 2D time-lapse) across a 20 m salt-impacted stream section and surrounding riparian zone that is located near an arterial road and parking lot. Groundwater samples and soil cores were also collected to validate the geoelectrical results. Both the EM and DC surveys detected high salt concentrations in the shallow subsurface (up to 3 m depth) near the road, parking lot, and stream; however, DC more accurately represented groundwater Cl concentrations. DC results were used to calculate the total Cl mass in the subsurface, with the spatial mass distribution used to infer the temporal variability in the subsurface salt plume. Finally, time-lapse DC showed that the highest groundwater salt concentrations existed near the stream between June and October - this is expected to contribute to the elevated salt concentrations in the stream during summer months. This study has shown that EM and DC can be useful for identifying groundwater salt concentration, storage, and transport in a non-intrusive and efficient manner, making them valuable field tools for characterizing and quantifying groundwater salt pathways to urban streams.

10.
iScience ; 26(9): 107659, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37680486

RESUMO

Actively controlled nanoliter fluid circuits are an urgently needed technology in electronics, biomedicine, chemical synthesis, and biosensing. The difficulty lies in how to drive the microfluid in an isolated and airtight manner in glass wafer. We used a magnetic oscillator pump to realize the switching of the circulation direction and controlling the flow rate of the 10nL fluid. Results of two-dimensional numerical simulations shows that the flow field can reach a steady state and a stable flow can be obtained. The contribution of each vibration cycle to the flow rate is proportional to the frequency, decays exponentially with the viscosity, is proportional to the 4.2 power of the amplitude, and is proportional to the radius. Compared with the existing fluid technology, this technology realizes the steering and flow control of a fully enclosed magnetic control fluid circuit as small as 10nL in hard materials for the first time.

11.
iScience ; 26(7): 107132, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37456858

RESUMO

To address the electromagnetic wave (EMW) pollution issues caused by the development of electronics and wireless communication technology, it is urgent to develop efficient EMW-absorbing materials. With controllable composition, diverse structure, high porosity, and large specific surface area, metal-organic framework (MOF) derivatives have sparked the infinite passion and creativity of researchers in the electromagnetic field. Against the challenges of poor inherent impedance matching and insufficient attenuation capability of pure MOF derivative, designing and developing MOF derivative-based composites by compounding MOF with other materials, such as graphene, CNTs, MXene, and so on, has been an effective strategy for constructing high-efficiency EMW absorbing materials. This review systematically expounds the research progress of MOF derivative-based composite strategies, and discusses the challenges and opportunities faced by MOF derivatives in the field of EMW absorption. This work can provide some good ideas for researchers to design and prepare high-efficiency MOF-based EMW absorbing materials in applications of next-generation electronics and aerospace.

12.
Geophys J Int ; 234(3): 2412-2429, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37416748

RESUMO

The dynamics of accretionary prisms and the processes that take place along subduction interfaces are controlled, in part, by the porosity and fluid overpressure of both the forearc wedge and the sediments transported to the system by the subducting plate. The Hikurangi Margin, located offshore the North Island of New Zealand, is a particularly relevant area to investigate the interplay between the consolidation state of incoming plate sediments, dewatering and fluid flow in the accretionary wedge and observed geodetic coupling and megathrust slip behaviour along the plate interface. In its short geographic extent, the margin hosts a diversity of properties that impact subduction processes and that transition from north to south. Its southernmost limit is characterized by frontal accretion, thick sediment subduction, the absence of seafloor roughness, strong interseismic coupling and deep slow slip events. Here we use seafloor magnetotelluric (MT) and controlled-source electromagnetic (CSEM) data collected along a profile through the southern Hikurangi Margin to image the electrical resistivity of the forearc and incoming plate. Resistive anomalies in the shallow forearc likely indicate the presence of gas hydrates, and we relate deeper forerarc resistors to thrust faulting imaged in colocated seismic reflection data. Because MT and CSEM data are highly sensitive to fluid phases in the pore spaces of seafloor sediments and oceanic crust, we convert resistivity to porosity to obtain a representation of fluid distribution along the profile. We show that porosity predicted by the resistivity data can be well fit by an exponential sediment compaction model. By removing this compaction trend from the porosity model, we are able to evaluate the second-order, lateral changes in porosity, an approach that can be applied to EM data sets from other sedimentary basins. Using this porosity anomaly model, we examine the consolidation state of the incoming plate and accretionary wedge sediments. A decrease in porosity observed in the sediments approaching the trench suggests that a protothrust zone is developing ∼25 km seaward of the frontal thrust. Our data also imply that sediments deeper in the accretionary wedge are slightly underconsolidated, which may indicate incomplete drainage and elevated fluid overpressures of the deep wedge.

13.
iScience ; 26(6): 106870, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37275524

RESUMO

Many efforts for decades have been made to explore electron wind force, produced by electric current itself under electropulsing treatment. However, the clear evidence of this force is hard to separate from Joule heating. Here we study a helical dislocation within quenched Al-Cu-Li alloy when subjected to a pulsed current. Such a helical configuration is quite suited for uncoupling this force from Joule heating effect because, contrary to general dislocations, it can take a unique reconfiguration under a driving force parallel to its Burgers vector. We find that within the pulsed samples, an initial helix happens to reconfigure, evolving into a line morphology. Therefore, it is this electron wind force Few, which parallel to the Burgers vector, would result in such novel helix reconfiguration when compared to the absence of this force. This is the first study to verify electron wind force by a helical dislocation reconfiguration.

14.
iScience ; 26(5): 106741, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37250322

RESUMO

Mechanical antennas (MAs) directly use the mechanical motion of electric or magnetic charges to excite electromagnetic waves. The radiation distance of rotating magnetic dipole type mechanical antennas is related to the volume of the radiation source, so the volume of the radiation source is too large for long-distance communication. To solve the above problem, we first establish the magnetic field model and differential equations of motion of the antenna array. Then, we design the prototype of antenna array with operating frequency of 75-125Hz. Finally, we experimentally established the radiation intensity relationship between a single permanent magnet and an array of permanent magnets. The results indicate that our driving model reduces the tolerance of the signal by 47%. Through 2FSK communication experiments, this article verifies the feasibility of extending the communication distance in the form of an array, which provides an important reference for long-distance low-frequency communication.

15.
Biosens Bioelectron ; 228: 115218, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36940633

RESUMO

Imperceptible wireless wearable devices are critical to advance digital medicine with the goal to capture clinical-grade biosignals continuously. Design of these systems is complex because of unique interdependent electromagnetic, mechanic and system level considerations that directly influence performance. Typically, approaches consider body location, related mechanical loads, and desired sensing capabilities, however, design for real world application context is not formulated. Wireless power casting eliminates user interaction and the need to recharge batteries, however, implementation is challenging because the use case influences performance. To facilitate a data-driven approach to design, we demonstrate a method for personalized, context-aware antenna, rectifier and wireless electronics design that considers human behavioral patterns and physiology to optimize electromagnetic and mechanical features for best performance across an average day of the target user group. Implementation of these methods result in devices that enable continuous recording of high-fidelity biosignals over weeks without the need for human interaction.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Técnicas Biossensoriais/métodos , Fenômenos Eletromagnéticos , Fontes de Energia Elétrica , Eletrônica
16.
Bioelectrochemistry ; 151: 108395, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36773506

RESUMO

Electrical stimulation has received increasing attention for decades for its application in regenerative medicine. Applications range from bone growth stimulation over cartilage regeneration to deep brain stimulation. Despite all research efforts, translation into clinical use has not yet been achieved in all fields. Recent critical assessments have identified limited documentation and monitoring of preclinical in vitro and in vivo experiments as possible reasons hampering clinical translation. In this work, we present experimental and numerical methods to determine the crucial quantities of electrical stimulation such as the electric field or current density. Knowing the stimulation quantities contributes to comprehending the biological response to electrical stimulation and to finally developing a reliable dose-response curve. To demonstrate the methods, we consider a direct contact electrical stimulation experiment that stands representative for a broad class of stimulation experiments. Electrochemical effects are addressed and methods to integrate them into numerical simulations are evaluated. A focus is laid on affordable lab equipment and reproducible open-source software solutions. Finally, clear guidelines to ensure replicability of electrical stimulation experiments are formulated.


Assuntos
Estimulação Elétrica
17.
J Comput Phys ; 4512022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36171963

RESUMO

In this paper, we develop an efficient algorithm to evaluate the azimuthal Fourier components of the Green's function for the Helmholtz equation in cylindrical coordinates. A computationally efficient algorithm for this modal Green's function is essential for solvers for electromagnetic scattering from bodies of revolution (e.g., radar cross sections, antennas). Current algorithms to evaluate this modal Green's function become computationally intractable when the source and target are close or when the wavenumber is large or complex. Furthermore, most state-of-the-art methods cannot be easily parallelized. In this paper, we present an algorithm for evaluating the modal Green's function that has performance independent of both source-to-target proximity and wavenumber, and whose cost grows as O(m), where m is the Fourier mode. Our algorithm's performance is independent of whether the wavenumber is real or complex. Furthermore, our algorithm is embarrassingly parallelizable.

18.
J Clin Med ; 11(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35807019

RESUMO

Electromagnetic fields are emerging as a therapeutic option for patients with spasticity. They have been applied at brain or peripheral level. The effects of electromagnetic fields applied to the brain have been extensively studied for years in spasticity, but not so at the peripheral level. Therefore, the purpose of our work is to analyze the effects of electromagnetic fields, applied peripherally to spasticity. A systematic review was conducted resulting in 10 clinical trials. The frequency ranged from 1 Hz to 150 Hz, with 25 Hz being the most commonly used and the intensity it was gradually increased but there was low homogeneity in how it was increased. Positive results on spasticity were found in 80% of the studies: improvements in stretch reflex threshold, self questionnaire about difficulties related to spasticity, clinical spasticity score, performance scale, Ashworth scale, spastic tone, Hmax/Mmax Ratio and active and passive dorsal flexion. However, results must be taken with caution due to the large heterogeneity and the small number of articles. In future studies, it would be interesting to agree on the parameters to be used, as well as the way of assessing spasticity, to be more objective in the study of their effectiveness.

19.
Cells ; 11(11)2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35681533

RESUMO

The role of Heat Shock Proteins (HSPs) is a "double-edged sword" with regards to tumors. The location and interactions of HSPs determine their pro- or antitumor activity. The present review includes an overview of the relevant functions of HSPs, which could improve their antitumor activity. Promoting the antitumor processes could assist in the local and systemic management of cancer. We explore the possibility of achieving this by manipulating the electromagnetic interactions within the tumor microenvironment. An appropriate electric field may select and affect the cancer cells using the electric heterogeneity of the tumor tissue. This review describes the method proposed to effect such changes: amplitude-modulated radiofrequency (amRF) applied with a 13.56 MHz carrier frequency. We summarize the preclinical investigations of the amRF on the HSPs in malignant cells. The preclinical studies show the promotion of the expression of HSP70 on the plasma membrane, participating in the immunogenic cell death (ICD) pathway. The sequence of guided molecular changes triggers innate and adaptive immune reactions. The amRF promotes the secretion of HSP70 also in the extracellular matrix. The extracellular HSP70 accompanied by free HMGB1 and membrane-expressed calreticulin (CRT) form damage-associated molecular patterns encouraging the dendritic cells' maturing for antigen presentation. The process promotes CD8+ killer T-cells. Clinical results demonstrate the potential of this immune process to trigger a systemic effect. We conclude that the properly applied amRF promotes antitumor HSP activity, and in situ, it could support the tumor-specific immune effects produced locally but acting systemically for disseminated cells and metastatic lesions.


Assuntos
Proteínas de Choque Térmico , Neoplasias , Apresentação de Antígeno , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Imunoterapia , Neoplasias/metabolismo , Microambiente Tumoral
20.
Comput Methods Programs Biomed ; 214: 106543, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34861616

RESUMO

A numerical procedure for analyzing electromagnetic (EM) fields interactions with biological tissues is presented. The proposed approach aims at drastically reducing the computational burden required by the repeated solution of large scale problems involving the interaction of the human body with EM fields, such as in the study of the time evolution of EM fields, uncertainty quantification, and inverse problems. The proposed volume integral equation (VIE), focused on low frequency applications, is a system of integral equations in terms of current density and scalar potential in the biological tissues excited by EM fields and/or electrodes connected to the human body. The proposed formulation requires the voxelization of the human body and takes advantage of the regularity of such discretization by speeding-up the computational procedure. Moreover, it exploits recent advancements in the solution of VIE by means of iterative preconditioned solvers and ad hoc parametric Model Order Reduction techniques. The efficiency of the proposed tool is demonstrated by applying it to a couple of realistic model problems: the assessment of the peripheral nerve stimulation, performed in terms of evaluation of the induced electric field, due to the gradient coils of a magnetic resonance imaging scanner during a clinical examination and the assessment of the exposure to environmental fields at 50 Hz of live-line workers with uncertain properties of the biological tissues. Thanks to the proposed method, uncertainty quantification analyses and time domain simulations are possible even for large scale problems and they can be performed on standard computers and reasonable computation time. Sample implementation of the method is made publicly available at https://github.com/UniPD-DII-ETCOMP/BioMOR.


Assuntos
Campos Eletromagnéticos , Corpo Humano , Eletricidade , Humanos , Imageamento por Ressonância Magnética , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...