Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.757
Filtrar
1.
Exp Eye Res ; 246: 110005, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032624

RESUMO

The stiffening effect of corneal crosslinking (CXL) treatment, a therapeutic approach for managing the progression of keratoconus, has been primarily investigated using uniaxial tensile experiments. However, this testing technique has several drawbacks and is unable to measure the mechanical response of cornea under a multiaxial loading state. In this work, we used biaxial mechanical testing method to characterize biomechanical properties of porcine cornea before and after CXL treatment. We also investigated the influence of preconditioning on measured properties and used TEM images to determine microstructural characteristics of the extracellular matrix. The conventional method of CXL treatment was used for crosslinking the porcine cornea. The biaxial experiments were done by an ElectroForce TestBench system at a stretch ratio of 1:1 and a displacement rate of 2 mm/min with and without preconditioning. The experimental measurements showed no significant difference in the mechanical properties of porcine cornea along the nasal temporal (NT) and superior inferior (SI) direction. Furthermore, the CXL therapy significantly enhanced the mechanical properties along both directions without creating anisotropic response. The samples tested with preconditioning showed significantly stiffer response than those tested without preconditioning. The TEM images showed that the CXL therapy did not increase the diameter of collagen fibers but significantly decreased their interfibrillar spacing, consistent with the mechanical property improvement of CXL treated samples.

2.
Bioessays ; : e2400117, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044599

RESUMO

In cells, microtubules (MTs) assemble from α/ß-tubulin subunits at nucleation sites containing the γ-tubulin ring complex (γ-TuRC). Within the γ-TuRC, exposed γ-tubulin molecules act as templates for MT assembly by interacting with α/ß-tubulin. The vertebrate γ-TuRC is scaffolded by γ-tubulin-interacting proteins GCP2-6 arranged in a specific order. Interestingly, the γ-tubulin molecules in the γ-TuRC deviate from the cylindrical geometry of MTs, raising the question of how the γ-TuRC structure changes during MT nucleation. Recent studies on the structure of the vertebrate γ-TuRC attached to the end of MTs came to varying conclusions. In vitro assembly of MTs, facilitated by an α-tubulin mutant, resulted in a closed, cylindrical γ-TuRC showing canonical interactions between all γ-tubulin molecules and α/ß-tubulin subunits. Conversely, native MTs formed in a frog extract were capped by a partially closed γ-TuRC, with some γ-tubulin molecules failing to align with α/ß-tubulin. This review discusses these outcomes, along with the broader implications.

3.
J Orthop Res ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044717

RESUMO

Cutibacterium acnes, part of normal skin flora, is increasingly recognized as an opportunistic pathogen capable of causing chronic prosthetic joint infections (PJI) associated with total hip and knee arthroplasty. However, there is a paucity of literature examining the pathogenesis of C. acnes during PJI. To study this, we developed an implant-associated osteomyelitis murine model in which 8-10-week-old C57BL6 mice were subjected to transtibial implantation of titanium or stainless-steel L-shaped pins contaminated with C. acnes. Postsurgery, mice were killed on Days 14 and 28 for terminal assessments of (1) bacterial load in bone, implant, and internal organs (heart, spleen, kidney, and liver), (2) bone osteolysis (micro-CT), (3) abscess formation (histology), and (4) systematic electron microscopy (EM). In vitro scanning EM (SEM) confirmed that C. acnes can form biofilms on stainless-steel and titanium implants. In mice, C. acnes could persist for 28 days in the tibia. Also, we observed C. acnes dissemination to internal organs. C. acnes chronic osteomyelitis revealed markedly reduced bone osteolysis and abscess formation compared to Staphylococcus aureus infections. Importantly, transmission EM (TEM) investigation revealed the presence of C. acnes within canaliculi, demonstrating that C. acnes can invade the osteocyte lacuno-canalicular networks (OLCN) within bone. Our preliminary pilot study, for the first time, revealed that the OLCN in bone can be a reservoir for C. acnes and potentially provides a novel mechanism of why C. acnes chronic implant-associated bone infections are difficult to treat.

4.
Adv Mater ; : e2403274, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39045913

RESUMO

Magnetic skyrmions are topologically nontrivial spin configurations that possess particle-like properties. Earlier research has mainly focused on a specific type of skyrmion with topological charge Q = -1. However, theoretical analyses of 2D chiral magnets have predicted the existence of skyrmion bags-solitons with arbitrary positive or negative topological charge. Although such spin textures are metastable states, recent experimental observations have confirmed the stability of isolated skyrmion bags in a limited range of applied magnetic fields. Here, by utilizing Lorentz transmission electron microscopy, the extraordinary stability of skyrmion bags in thin plates of B20-type FeGe is shown. In particular, it is shown that skyrmion bags embedded within a skyrmion lattice remain stable even in zero or inverted external magnetic fields. A robust protocol for nucleating such embedded skyrmion bags is provided. The results agree perfectly with micromagnetic simulations and establish thin plates of cubic chiral magnets as a powerful platform for exploring a broad spectrum of topological magnetic solitons.

5.
BMC Plant Biol ; 24(1): 694, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039438

RESUMO

BACKGROUND: This study was aimed to determine the taxonomic position and delimitation of fifteen Lamiaceae taxa using leaf epidermal morpho-anatomical features in Lahore. A main objective of the study was also the revision and upgradation of Lamiaceae taxa in the flora of Pakistan, as no details of studied species are found in the flora of Pakistan. METHODS: The examination of significant anatomical parameters, such as epidermal cell shape and size, stomatal types, guard and subsidiary cells shape and size, stomatal cavity size, trichome size and shape, oil droplets, crystals, and secretory cavity characteristics were studied using light microscopic (LM) and scanning electron microscopic (SEM) techniques. Among all the studied Lamiaceae species, these anatomical features varied significantly. Principal component analysis and correlation were done to distinguish the species' similarities. RESULTS: Most species had pentagonal and hexagonal epidermal cells with straight anticlinal wall thickness. On the adaxial surface, paracytic stomata were found in Ocimum basilicum L. and Rosmarinus officinalis L. Diacytic stomata was observed in Ajuga reptans L. and anisocytic stomata in Galeopsis tetrahit L. In the abaxial surface, trichomes were present in five species, i.e., Mentha suaveolens Ehrh. A. reptans, Thymus vulgaris L., M. haplocalyx, and Salvia splendens Ewat. In S. splendens, peltate and glandular trichomes were seen whereas, in other species, trichomes were long, unbranched glandular and had tapering ends. In adaxial side trichomes were present only in M. suaveolens, A. reptans, S. bazyntina, O. basciculum, S. splendens, S. officinalis, S. rosemarinus. In other species, trichomes were absent on the adaxial surface. In abaxial view, M. suaveolens had the largest length of trichomes, and O. basciculum had the smallest. S. splendens L. had the largest trichome width, while T. vulgaris had the smallest. CONCLUSION: Hence, according to these findings, morpho-anatomical traits are useful for identifying Lamiaceae taxa. Also, there is a need of upgradation and addition of studied taxa in flora of Pakistan comprehensively.


Assuntos
Lamiaceae , Folhas de Planta , Paquistão , Lamiaceae/anatomia & histologia , Lamiaceae/ultraestrutura , Folhas de Planta/anatomia & histologia , Folhas de Planta/ultraestrutura , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/ultraestrutura , Microscopia Eletrônica de Varredura , Tricomas/anatomia & histologia , Tricomas/ultraestrutura , Epiderme Vegetal/anatomia & histologia , Epiderme Vegetal/ultraestrutura
6.
FASEB J ; 38(14): e23764, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39042395

RESUMO

The mosquito, Aedes aegypti, is the principal vector for several arboviruses. The mosquito midgut is the initial tissue that gets infected with an arbovirus acquired along with a blood meal from a vertebrate host. Blood meal ingestion leads to midgut tissue distention thereby increasing the pore size of the surrounding basal lamina. This allows newly synthesized virions to exit the midgut by traversing the distended basal lamina to infect secondary tissues of the mosquito. We conducted a quantitative label-free proteomic time course analysis with saline meal-fed Ae. aegypti females to identify host factors involved in midgut tissue distention. Around 2000 proteins were detected during each of the seven sampling time points and 164 of those were uniquely expressed. Forty-five of 97 differentially expressed proteins were upregulated during the 96-h time course and most of those were involved in cytoskeleton modulation, metabolic activity, and vesicle/vacuole formation. The F-actin-modulating Ae. aegypti (Aa)-gelsolin was selected for further functional studies. Stable knockout of Aa-gelsolin resulted in a mosquito line, which showed distorted actin filaments in midgut-associated tissues likely due to diminished F-actin processing by gelsolin. Zika virus dissemination from the midgut of these mosquitoes was diminished and delayed. The loss of Aa-gelsolin function was associated with an increased induction of apoptosis in midgut tissue indicating an involvement of Aa-gelsolin in apoptotic signaling in mosquitoes. Here, we used proteomics to discover a novel host factor, Aa-gelsolin, which affects the midgut escape barrier for arboviruses in mosquitoes and apoptotic signaling in the midgut.


Assuntos
Aedes , Arbovírus , Gelsolina , Proteínas de Insetos , Animais , Aedes/virologia , Aedes/metabolismo , Gelsolina/metabolismo , Gelsolina/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Arbovírus/fisiologia , Citoesqueleto/metabolismo , Feminino , Mosquitos Vetores/virologia , Mosquitos Vetores/metabolismo , Proteômica/métodos , Zika virus/fisiologia
7.
ACS Nano ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058675

RESUMO

Single-photon sources are essential for advancing quantum technologies with scalable integration being a crucial requirement. To date, deterministic positioning of single-photon sources in large-scale photonic structures remains a challenge. In this context, colloidal quantum dots (QDs), particularly core/shell configurations, are attractive due to their solution processability. However, traditional QDs are typically small, about 3 to 6 nm, which restricts their deterministic placement and utility in large-scale photonic devices, particularly within optical cavities. The largest existing core/shell QDs are a family of giant CdSe/CdS QDs, with total diameters ranging from about 20 to 50 nm. Pushing beyond this size limit, we introduce a synthesis strategy for colossal CdSe/CdS QDs, with sizes ranging from 30 to 100 nm, using a stepwise high-temperature continuous injection method. Electron microscopy reveals a consistent hexagonal diamond morphology composed of 12 semipolar {101̅1} facets and one polar (0001) facet. We also identify conditions where shell growth is disrupted, leading to defects, islands, and mechanical instability, which suggest synthetic requirements for growing crystalline particles beyond 100 nm. The stepwise growth of thick CdS shells on CdSe cores enables the synthesis of emissive QDs with long photoluminescence lifetimes of a few microseconds and suppressed blinking at room temperature. Notably, QDs with 80 and 100 CdS monolayers exhibit high single-photon emission purity with second-order photon correlation g(2)(0) values below 0.2.

8.
Fluids Barriers CNS ; 21(1): 53, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956598

RESUMO

AQP4 is expressed in the endfeet membranes of subpial and perivascular astrocytes and in the ependymal cells that line the ventricular system. The sporadic appearance of obstructive congenital hydrocephalus (OCHC) has been observed in the offspring of AQP4-/- mice (KO) due to stenosis of Silvio's aqueduct. Here, we explore whether the lack of AQP4 expression leads to abnormal development of ependymal cells in the aqueduct of mice. We compared periaqueductal samples from wild-type and KO mice. The microarray-based transcriptome analysis reflected a large number of genes with differential expression (809). Gene sets (GS) associated with ependymal development, ciliary function and the immune system were specially modified qPCR confirmed reduced expression in the KO mice genes: (i) coding for transcription factors for ependymal differentiation (Rfx4 and FoxJ1), (ii) involved in the constitution of the central apparatus of the axoneme (Spag16 and Hydin), (iii) associated with ciliary assembly (Cfap43, Cfap69 and Ccdc170), and (iv) involved in intercellular junction complexes of the ependyma (Cdhr4). By contrast, genes such as Spp1, Gpnmb, Itgax, and Cd68, associated with a Cd11c-positive microglial population, were overexpressed in the KO mice. Electron microscopy and Immunofluorescence of vimentin and γ-tubulin revealed a disorganized ependyma in the KO mice, with changes in the intercellular complex union, unevenly orientated cilia, and variations in the planar cell polarity of the apical membrane. These structural alterations translate into reduced cilia beat frequency, which might alter cerebrospinal fluid movement. The presence of CD11c + microglia cells in the periaqueductal zone of mice during the first postnatal week is a novel finding. In AQP4-/- mice, these cells remain present around the aqueduct for an extended period, showing peak expression at P11. We propose that these cells play an important role in the normal development of the ependyma and that their overexpression in KO mice is crucial to reduce ependyma abnormalities that could otherwise contribute to the development of obstructive hydrocephalus.


Assuntos
Aquaporina 4 , Epêndima , Hidrocefalia , Camundongos Knockout , Microglia , Animais , Epêndima/metabolismo , Epêndima/patologia , Hidrocefalia/metabolismo , Hidrocefalia/genética , Hidrocefalia/patologia , Microglia/metabolismo , Aquaporina 4/metabolismo , Aquaporina 4/genética , Camundongos , Aqueduto do Mesencéfalo/metabolismo , Aqueduto do Mesencéfalo/patologia , Antígenos CD11/metabolismo , Antígenos CD11/genética , Camundongos Endogâmicos C57BL
9.
Dent J (Basel) ; 12(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39057010

RESUMO

This study presents a scanning electron microscopy analysis of a failed PEEK retainer in an orthodontic patient. After 15 months of use, the patient reported a gap opening between teeth 41 and 42. The PEEK retainer was removed and sent for electron microscope analysis. To investigate the failure, scanning electron microscopy was employed to assess the microstructure and composition of the retainer at various magnifications. These findings suggest that the failure of the PEEK retainer was multifaceted, implicating factors such as material defects, manufacturing flaws, inadequate design, environmental factors, and patient-related factors. In conclusion, this scanning electron microscopy analysis offers valuable insights into the failure mechanisms of PEEK retainers in orthodontic applications. Further research is necessary to explore preventive strategies and optimize the design and fabrication of PEEK retainers, minimizing the occurrence of failures in orthodontic practice.

10.
Insects ; 15(7)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39057268

RESUMO

Eyespot foci on butterfly wings function as organizers of eyespot color patterns during development. Despite their importance, focal structures have not been examined in detail. Here, we microscopically examined scales, sockets, and the wing membrane in the butterfly eyespot foci of both expanded and unexpanded wings using the Blue Pansy butterfly Junonia orithya. Images from a high-resolution light microscope revealed that, although not always, eyespot foci had scales with disordered planar polarity. Scanning electron microscopy (SEM) images after scale removal revealed that the sockets were irregularly positioned and that the wing membrane was physically distorted as if the focal site were mechanically squeezed from the surroundings. Focal areas without eyespots also had socket array irregularities, but less frequently and less severely. Physical damage in the background area induced ectopic patterns with socket array irregularities and wing membrane distortions, similar to natural eyespot foci. These results suggest that either the process of determining an eyespot focus or the function of an eyespot organizer may be associated with wing-wide mechanics that physically disrupt socket cells, scale cells, and the wing membrane, supporting the physical distortion hypothesis of the induction model for color pattern determination in butterfly wings.

11.
Nanomaterials (Basel) ; 14(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39057846

RESUMO

Morphologies of nanoparticles and aggregates play an important role in their properties for a range of applications. In particular, significant synthesis efforts have been directed toward controlling nanoparticle morphology and aggregation behavior in biomedical applications, as their size and shape have a significant impact on cellular uptake. Among several techniques for morphological characterization, transmission electron microscopy (TEM) can provide direct and accurate characterization of nanoparticle/aggregate morphology details. Nevertheless, manually analyzing a large number of TEM images is still a laborious process. Hence, there has been a surge of interest in employing machine learning methods to analyze nanoparticle size and shape. In order to achieve accurate nanoparticle analysis using machine learning methods, reliable and automated nanoparticle segmentation from TEM images is critical, especially when the nanoparticle image contrast is weak and the background is complex. These challenges are particularly pertinent in biomedical applications. In this work, we demonstrate an efficient, robust, and automated nanoparticle image segmentation method suitable for subsequent machine learning analysis. Our method is robust for noisy, low-electron-dose cryo-TEM images and for TEM cell images with complex, strong-contrast background features. Moreover, our method does not require any a priori training datasets, making it efficient and general. The ability to automatically, reliably, and efficiently segment nanoparticle/aggregate images is critical for advancing precise particle/aggregate control in biomedical applications.

12.
Vet Sci ; 11(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39057996

RESUMO

Primary lung cancer is rare in dogs and depending on the tumour stage and subtype, the prognosis can be poor. In this report, we describe a 10 year-old female intact Yorkshire terrier that presented progressive weight loss and chronic pain of unknown origin. Due to the poor condition of the dog, it was subsequently euthanized. Post-mortem evaluation revealed a single large mass in the left caudal lung lobe, with numerous pale, proliferative lesions of various sizes dispersed throughout all the lobes. Additionally, a solitary skin mass was palpated on the mid-thoracic body wall. Histopathological examination of the lung samples revealed multiple distinct, non-encapsulated, expansive neoplastic epithelial cell proliferations with dense cellularity, exhibiting growth patterns, ranging from papillary to micropapillary to solid, accompanied by central areas of necrosis. In some areas, microvilli-like structures were observed on the luminal cytoplasmic margins of the neoplastic cells. The histopathology of the skin mass closely resembled that of the lung. Electron microscopy of the skin samples revealed regions containing cells resembling the respiratory epithelium, along with cells exhibiting processes or microvilli indicative of cilia. The diagnosis was pulmonary adenocarcinoma with cutaneous metastasis. This is the first report of a canine with primary lung cancer that metastasized to the skin.

13.
Biomedicines ; 12(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39062035

RESUMO

Globally, cerebral microbleeds (CMBs) are increasingly being viewed not only as a marker for cerebral small vessel disease (SVD) but also as having an increased risk for the development of stroke (hemorrhagic/ischemic) and aging-related dementia. Recently, brain endothelial cell activation and dysfunction and blood-brain barrier dysfunction and/or disruption have been shown to be associated with SVD, enlarged perivascular spaces, and the development and evolution of CMBs. CMBs are a known disorder of cerebral microvessels that are visualized as 3-5 mm, smooth, round, or oval, and hypointense (black) lesions seen only on T2*-weighted gradient recall echo or susceptibility-weighted sequences MRI images. CMBs are known to occur with high prevalence in community-dwelling older individuals. Since our current global population is the oldest recorded in history and is only expected to continue to grow, we can expect the healthcare burdens associated with CMBs to also grow. Increased numbers (≥10) of CMBs should raise a red flag regarding the increased risk of large symptomatic neurologic intracerebral hemorrhages. Importantly, CMBs are also currently regarded as markers of diffuse vascular and neurodegenerative brain damage. Herein author highlights that it is essential to learn as much as we can about CMB development, evolution, and their relation to impaired cognition, dementia, and the exacerbation of neurodegeneration.

14.
Ultramicroscopy ; 265: 114008, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39033628

RESUMO

Cryogenic Scanning/Transmission Electron Microscopy has been established as a leading method to image sensitive biological samples and is now becoming a powerful tool to understand materials' behavior at low temperatures. However, achieving precise local temperature calibration at low temperatures remains a challenge, which is especially crucial for studying phase transitions and emergent physical properties in quantum materials. In this study, we employ electron energy loss spectroscopy (EELS) to measure local cryogenic specimen temperatures. We use the temperature-dependent characteristics of aluminum's bulk plasmon peak in EEL spectra, which shifts due to changes in electron density caused by thermal expansion and contraction. We successfully demonstrate the versatility of this method by calibrating different liquid nitrogen cooling holders in various microscopes, regardless of whether a monochromated or non-monochromated electron beam is used. Temperature discrepancies between the actual temperature and the setpoint temperatures are identified across a range from room temperature to 100 K. This work demonstrates the importance of temperature calibrations at intermediate temperatures and presents a straightforward, robust method for calibrating local temperatures of cryogenically-cooled specimens in electron microscopes.

15.
mBio ; : e0180424, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037231

RESUMO

Influenza A virus (IAV) is well known for its pandemic potential. While current surveillance and vaccination strategies are highly effective, therapeutic approaches are often short-lived due to the high mutation rates of IAV. Recently, monoclonal antibodies (mAbs) have emerged as a promising therapeutic approach, both against current strains and future IAV pandemics. In addition to mAbs, several antibody-like alternatives exist, which aim to improve upon mAbs. Among these, Affimers stand out for their short development time, high expression levels in Escherichia coli, and animal-free production. In this study, we utilized the Affimer platform to isolate and produce specific and potent inhibitors of IAV. Using a monomeric version of the IAV trimeric hemagglutinin (HA) fusion protein, we isolated 12 Affimers that inhibit IAV infection in vitro. Two of these Affimers were characterized in detail and exhibited nanomolar-binding affinities to the target H3 HA protein, specifically binding to the HA1 head domain. Cryo-electron microscopy (cryo-EM), employing a novel spray approach to prepare cryo-grids, allowed us to image HA-Affimer complexes. Combined with functional assays, we determined that these Affimers inhibit IAV by blocking the interaction of HA with the host-cell receptor, sialic acid. Furthermore, these Affimers inhibited IAV strains closely related to the one used for their isolation. Overall, our results support the use of Affimers as a viable alternative to existing targeted therapies for IAV and highlight their potential as diagnostic reagents. IMPORTANCE: Influenza A virus is one of the few viruses that can cause devastating pandemics. Due to the high mutation rates of this virus, annual vaccination is required, and antivirals are short-lived. Monoclonal antibodies present a promising approach to tackle influenza virus infections but are associated with some limitations. To improve on this strategy, we explored the Affimer platform, which are antibody-like proteins made in bacteria. By performing phage-display against a monomeric version of influenza virus fusion protein, an established viral target, we were able to isolate Affimers that inhibit influenza virus infection in vitro. We characterized the mechanism of inhibition of the Affimers by using assays targeting different stages of the viral replication cycle. We additionally characterized HA-Affimer complex structure, using a novel approach to prepare samples for cryo-electron microscopy. Overall, these results show that Affimers are a promising tool against influenza virus infection.

16.
ACS Nano ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017620

RESUMO

Better techniques for imaging ferroelectric polarization would aid the development of new ferroelectrics and the refinement of old ones. Here we show how scanning transmission electron microscope (STEM) electron beam-induced current (EBIC) imaging reveals ferroelectric polarization with obvious, simply interpretable contrast. Planar imaging of an entire ferroelectric hafnium zirconium oxide (Hf0.5Zr0.5O2, HZO) capacitor shows an EBIC response that is linearly related to the polarization determined in situ with the positive-up, negative-down (PUND) method. The contrast is easily calibrated in MV/cm. The underlying mechanism is magnification-independent, operating equally well on micrometer-sized devices and individual nanoscale domains. Coercive-field mapping reveals that individual domains are biased "positive" and "negative", as opposed to being "easy" and "hard" to switch. The remanent background E-fields generating this bias can be isolated and mapped. Coupled with STEM's native capabilities for structural identification, STEM EBIC imaging provides a revolutionary tool for characterizing ferroelectric materials and devices.

17.
Tissue Cell ; 90: 102469, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39032463

RESUMO

Global coverage of living coral has declined by half since 1950s. Reef-building species have been severely impacted in this climate crisis scenario, compromising the future of coral reefs. Despite their importance, there is a lack of knowledge regarding the reproductive biology of scleractinian corals. In the present study, we evaluated through electron microscopy approaches, the gametes of the endemic Southwestern Atlantic coral Mussismilia harttii. We observed spherical oocytes with microvilli throughout the outer membrane. Fine granular material dispersed in cytoplasm, lipid granules, numerous yolk bodies, and mitochondria were identified in the oocytes. In addition, small Symbiodinium-like cells were observed, suggesting a vertical transmission from parental coral to oocytes. The spherical-head sperm presents a 9.3 ± 2.1 µm flagellum. The nucleus is located centrally in the head, and the centrioles are positioned between the nuclear base and the flagellar insertion, which is connected to the axoneme. This axoneme has a microtubular arrangement (9+2). Vesicles, underlining the inner plasma membrane, presented the same electron-dense pattern as the Golgi complex, and mitochondria positioned surrounding the axoneme. The vesicles present in the sperm may have a role as an acrosome since the oocytes do not develop any cell specialization for fertilization.

18.
ACS Nano ; 18(29): 19369-19380, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38982621

RESUMO

Layered transition metal dichalcogenides (TMDs) have exhibited huge potential as anode materials for sodium-ion batteries. Most of them usually store sodium via an intercalation-conversion mechanism, but niobium sulfide (NbS2) may be an exception. Herein, through in situ transmission electron microscopy, we carefully investigated the insertion behaviors of Na ions in NbS2 and directly visualized anisotropic sodiation kinetics. Lattice-resolution imaging coupled with density functional theory calculations reveals the preferential diffusion of Na ions within layers of NbS2, accompanied by observable interlayer lattice expansion. Impressively, the Na-inserted layers can still withstand in situ mechanical testing. Further in situ observation vertical to the a/b plane of NbS2 tracked the illusive conversion reaction, which could result from interlayer gliding or wrinkling associated with stress accumulation. In situ electron diffraction measurements ruled out the possibility of such a conversion mechanism and identified a phase transition from pristine 3R-NbS2 to 2H-NaNbS2. Therefore, the NbS2 anode stores Na ions via only the intercalation mechanism, which conceptually differs from the well-known intercalation-conversion mechanism of typical TMDs. These findings not only decipher the whole sodiation process of the NbS2 anode but also provide valuable reference for unraveling the precise sodium storage mechanism in other TMDs.

19.
Small ; : e2402260, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982949

RESUMO

The metal-insulator (MI) transition of vanadium dioxide (VO2) is effectively modulated by oxygen vacancies, which decrease the transition temperature and insulating resistance. Oxygen vacancies in thin films can be driven by oxygen transport using electrochemical potential. This study delves into the role of crystallographic channels in VO2 in facilitating oxygen transport and the subsequent tuning of electrical properties. A model system is designed with two types of VO2 thin films: (100)- and (001)-oriented, where channels align parallel and perpendicular to the surface, respectively. Growing an oxygen-deficient TiO2 layer on these VO2 films prompted oxygen transport from VO2 to TiO2. Notably, in (001)-VO2 film, where oxygen ions move along the open channels, the oxygen migration deepens the depleted region beyond that in (100)-VO2, leading to more pronounced changes in metal-insulator transition behaviors. The findings emphasize the importance of understanding the intrinsic crystal structure, such as channel pathways, in controlling ionic defects and customizing electrical properties for applications.

20.
Methods Mol Biol ; 2827: 71-84, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985263

RESUMO

The success of in vitro cultivation, particularly for micropropagation purposes, depends on the efficient control of contaminants. In this context, the sterilization of plant material constitutes a fundamental step in initiating cultures. Microbial contaminants can be found either on the surface (epiphyte) or inside plant explants (endophyte). However, the latter is generally challenging to detect and may not always be eradicated through surface sterilization alone. Endophyte contaminants, such as bacteria, can persist within plant material over several cultivation cycles, potentially interfering with or inhibiting in vitro establishment, growth, or recovery of cryopreserved materials. Therefore, microscopy techniques, such as electron microscopy, can yield valuable insights into bacterial endophytes' localization, tissue colonization patterns, and functions in in vitro plant culture. This information is essential for adopting effective strategies for eliminating, preventing, or harmonious coexistence with contaminants.


Assuntos
Bactérias , Endófitos , Microscopia Eletrônica/métodos , Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...