Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 18(7): 4473-4481, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29924620

RESUMO

SrTiO3-based heterointerfaces support quasi-two-dimensional (2D) electron systems that are analogous to III-V semiconductor heterostructures, but also possess superconducting, magnetic, spintronic, ferroelectric, and ferroelastic degrees of freedom. Despite these rich properties, the relatively low mobilities of 2D complex-oxide interfaces appear to preclude ballistic transport in 1D. Here we show that the 2D LaAlO3/SrTiO3 interface can support quantized ballistic transport of electrons and (nonsuperconducting) electron pairs within quasi-1D structures that are created using a well-established conductive atomic-force microscope (c-AFM) lithography technique. The nature of transport ranges from truly single-mode (1D) to three-dimensional (3D), depending on the applied magnetic field and gate voltage. Quantization of the lowest e2/ h plateau indicate a ballistic mean-free path lMF ∼ 20 µm, more than 2 orders of magnitude larger than for 2D LaAlO3/SrTiO3 heterostructures. Nonsuperconducting electron pairs are found to be stable in magnetic fields as high as B = 11 T and propagate ballistically with conductance quantized at 2 e2/ h. Theories of one-dimensional (1D) transport of interacting electron systems depend crucially on the sign of the electron-electron interaction, which may help explain the highly ballistic transport behavior. The 1D geometry yields new insights into the electronic structure of the LaAlO3/SrTiO3 system and offers a new platform for the study of strongly interacting 1D electronic systems.

2.
Nanoscale Res Lett ; 11(1): 179, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27044308

RESUMO

Quantized conductance is observed at zero magnetic field and room temperature in metal-insulator-metal structures with graphene submicron-sized nanoplatelets embedded in a 3-hexylthiophene (P3HT) polymer layer. In devices with medium concentration of graphene platelets, integer multiples of G o = 2e (2)/h (=12.91 kΩ(-1)), and in some devices partially quantized including a series of with (n/7) × G o, steps are observed. Such an organic memory device exhibits reliable memory operation with an on/off ratio of more than 10. We attribute the quantized conductance to the existence of a 1-D electron waveguide along the conductive path. The partial quantized conductance results likely from imperfect transmission coefficient due to impedance mismatch of the first waveguide modes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA