Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 330: 121740, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368119

RESUMO

Cellulose cryogels are promising eco-friendly materials that exhibit low density, high porosity, and renewability. However, the applications of these materials are limited by their lower mechanical and water resistance compared to petrochemical-based lightweight materials. In this work, nanocelluloses were functionalized with cationic and anionic groups, and these nanomaterials were combined to obtain strong and water-resilient cryogels. To prepare the cryogels, anionic and cationic micro- and nanofibrils (CNFs) were produced at three different sizes and combined in various weight ratios, forming electrostatic complexes. The complex phase was concentrated by centrifugation and freeze-dried. Porous and open cellular structures were assembled in all compositions tested (porosity >90 %). Compressive testing revealed that the most resistant cryogels (1.7 MPa) were obtained with equivalent amounts of negatively and positively charged CNFs with lengths between 100 and 1200 nm. The strength at this condition was achieved as CNF electrostatic complexes assembled in thick cells, as observed by synchrotron X-ray tomography. In addition to mechanical strength, electrostatic complexation provided remarkable structural stability in water for the CNF cryogels, without compromising their biodegradability. This route by electrostatic complexation is a practical strategy to combine and concentrate nanocelluloses to tailor biodegradable lightweight materials with high strength and wet stability.

2.
Food Res Int ; 175: 113737, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129047

RESUMO

Alginate is a biopolymer widely used on delivery systems when bioactive protection at acidic pH is required, while chitosan can enhance mucoadhesion and controlled release at alkaline pHs. In this work, alginate ionotropic gelation and electrostatic complexation to chitosan were evaluated concomitantly or in a two-step approach to improve the delivery properties of systems in different pHs. The effect of pH on alginate gelation and chitosan interactions were also evaluated. Alginate microspheres were prepared by ionotropic gelation in CaCl2 at different pH values (2.5 and 6.0) by extrusion. Complexation with chitosan was carried out during alginate ionotropic gelation (one-step approach) or after alginate gel formation (two-step approach). Alginate microparticles without chitosan showed larger pores and lower mechanical strength. Extruded microspheres at pH 6.0 were more stable to pH and showed smaller pores than the formed at pH 2.5. One-step production retained a large amount of bioactive at pH 7.0 and resulted in lower release at the pH of intestinal digestion. The two-step approach retained less amount of bioactive but confer more protection to the pH of the stomach phase and higher release in pH of the intestinal phase than one-step samples. These results indicate that the formation of alginate gels by ionotropic gelation followed by the complexation with chitosan (in two-step) is promising for the transport and delivery of bioactives into intestinal conditions, whereas the ionotropic gelation concomitantly to electrostatic complexation (one-step approach) is indicated to the delivery of bioactives into lower pH environments.


Assuntos
Quitosana , Sistemas de Liberação de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Quitosana/química , Alginatos/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula
3.
Carbohydr Polym ; 256: 117547, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33483055

RESUMO

Supramolecular assembly of biobased components in water is a promising strategy to construct advanced materials. Herein, electrostatic complexation was used to prepare wet-resilient foams with improved mechanical property. Small-angle X-ray scattering and cryo-transmission electron microscopy experiments showed that suspensions with oppositely charged cellulose nanofibers are a mixture of clusters and networks of entangled fibers. The balance between these structures governs the colloidal stability and the rheological behavior of CNFs in water. Foams prepared from suspensions exhibited maximum compressive modulus at the mass composition of 1:1 (ca 0.12 MPa), suggesting that meaningful attractive interactions happen at this point and act as stiffening structure in the material. Besides the electrostatic attraction, hydrogen bonds and hydrophobic contacts may also occur within the clustering, improving the water stability of cationic foams. These results may provide a basis for the development of robust all- cellulose materials prepared in water, with nontoxic chemicals.


Assuntos
Celulose/química , Nanopartículas/química , Eletricidade Estática , Cátions , Força Compressiva , Microscopia Crioeletrônica , Óxidos N-Cíclicos/química , Ligação de Hidrogênio , Processamento de Imagem Assistida por Computador , Teste de Materiais , Microscopia Eletrônica de Transmissão , Reologia , Espalhamento de Radiação , Propriedades de Superfície , Suspensões , Água/química , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA