Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.434
Filtrar
1.
Semin Cell Dev Biol ; 164: 1-12, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823219

RESUMO

Transposable elements (TEs) provide a prime example of genetic conflict because they can proliferate in genomes and populations even if they harm the host. However, numerous studies have shown that TEs, though typically harmful, can also provide fuel for adaptation. This is because they code functional sequences that can be useful for the host in which they reside. In this review, I summarize the "how" and "why" of adaptation enabled by the genetic conflict between TEs and hosts. In addition, focusing on mechanisms of TE control by small piwi-interacting RNAs (piRNAs), I highlight an indirect form of adaptation enabled by conflict. In this case, mechanisms of host defense that regulate TEs have been redeployed for endogenous gene regulation. I propose that the genetic conflict released by meiosis in early eukaryotes may have been important because, among other reasons, it spurred evolutionary innovation on multiple interwoven trajectories - on the part of hosts and also embedded genetic parasites. This form of evolution may function as a complexity generating engine that was a critical player in eukaryotic evolution.


Assuntos
Elementos de DNA Transponíveis , RNA Interferente Pequeno , Elementos de DNA Transponíveis/genética , Animais , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Evolução Molecular , RNA de Interação com Piwi
2.
J Environ Sci (China) ; 148: 88-106, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095204

RESUMO

In this study, a string of Cr-Mn co-modified activated coke catalysts (XCryMn1-y/AC) were prepared to investigate toluene and Hg0 removal performance. Multifarious characterizations including XRD, TEM, SEM, in situ DRIFTS, BET, XPS and H2-TPR showed that 4%Cr0.5Mn0.5/AC had excellent physicochemical properties and exhibited the best toluene and Hg0 removal efficiency at 200℃. By varying the experimental gas components and conditions, it was found that too large weight hourly space velocity would reduce the removal efficiency of toluene and Hg0. Although O2 promoted the abatement of toluene and Hg0, the inhibitory role of H2O and SO2 offset the promoting effect of O2 to some extent. Toluene significantly inhibited Hg0 removal, resulting from that toluene was present at concentrations orders of magnitude greater than mercury's or the catalyst was more prone to adsorb toluene, while Hg0 almost exerted non-existent influence on toluene elimination. The mechanistic analysis showed that the forms of toluene and Hg0 removal included both adsorption and oxidation, where the high-valent metal cations and oxygen vacancy clusters promoted the redox cycle of Cr3+ + Mn3+/Mn4+ ↔ Cr6+ + Mn2+, which facilitated the conversion and replenishment of reactive oxygen species in the oxidation process, and even the CrMn1.5O4 spinel structure could provide a larger catalytic interface, thus enhancing the adsorption/oxidation of toluene and Hg0. Therefore, its excellent physicochemical properties make it a cost-effective potential industrial catalyst with outstanding synergistic toluene and Hg0 removal performance and preeminent resistance to H2O and SO2.


Assuntos
Poluentes Atmosféricos , Mercúrio , Óxidos , Tolueno , Tolueno/química , Óxidos/química , Poluentes Atmosféricos/química , Mercúrio/química , Coque , Catálise , Cromo/química , Adsorção , Manganês/química , Compostos de Manganês/química , Modelos Químicos
3.
J Hazard Mater ; 477: 135300, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39088955

RESUMO

Actinides (An)-bearing colloids could facilitate An migration in the environment. However, little is known about the transport behavior of An(III)-silicate colloids, which are readily formed by the reaction of An3+ with silicic acid under environmental conditions. Column experiments were conducted to investigate the transport of Eu(III)-silicate colloids (chemical analog of An(III)-silicate colloids) in water-saturated porous media as a function of pH, ionic strength (IS) and the presence of fulvic acid (FA). The results showed that colloid transport was more favorable at relatively low IS (≤ 50 mM) and high pH levels (pH ≥ 7). The presence of FA (5-10 mg/L) significantly enhanced the colloid transport. Under high IS (≥ 100 mM), the transport feature of colloids was turned from blocking to ripening due to the on-going aggregation of colloids. Additionally, an interesting elemental fractionation, i.e., a discrepancy in the breakthrough curves (BTCs) with respect to the C/C0 values of Si and Eu, was observed in the IS of 100-500 mM. A detailed investigation indicated that the elemental fractionation could be attributed to the partial Si dissolution of the colloids, the heterogeneity of the colloid size and element composition, and particle size fractionation during colloid transport. Extended Derjaguin-Landau-Verwey-Overbeek interaction energy calculations and convective-dispersive equation modeling were performed to illustrate variations in the colloid transport profiles. These findings illustrate the importance of Si dissolution in the migration of metal-silicate colloids and highlight the significant influence of the heterogeneity of colloid size and composition on the transport/migration behavior of colloids in the environment.

4.
Pharmacol Res ; : 107333, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089399

RESUMO

The prognosis for Cholangiocarcinoma (CCA) is unfavorable, necessitating the development of new therapeutic approach such as magnetic hyperthermia therapy (MHT) which is induced by magnetic nano-particle (MNPs) drug to bridge the treatment gap. Given the deep location of CCA within the abdominal cavity and proximity to vital organs, accurately predict the individualized treatment effects and safety brought by the distribution of MNPs in tumor will be crucial for the advancement of MHT in CCA. The Mimics software was used in this study to conduct three-dimensional reconstruction of abdominal computed tomography (CT) and magnetic reso-nance imaging images from clinical patients, resulting in the generation of a realistic digital geometric model representing the human biliary tract and its adjacent structures. Subsequently, The COMSOL Multiphysics software was utilized for modeling CCA and calculating the heat transfer law resulting from the multi-regional distribution of MNPs in CCA. The temperature within the central region of irregular CCA measured approximately 46°C, and most areas within the tumor displayed temperatures surpassing 41°C. The temperature of the inner edge of CCA is only 39 ~ 41℃, however, it can be ameliorated by adjusting the local drug concentration through simulation system. For CCA with diverse morphologies and anatomical locations, the multi-regional distribution patterns of intratumoral MNPs and a slight overlap of drug distribution areas synergistically enhance intratumoral temperature while ensuring treatment safety. The present study highlights the practicality and imperative of incorporating personalized intratumoral MNPs distribution strategy into clinical practice for MHT, which can be achieved through the development of an integrated simulation system which incorporates medical image data and numerical calculations.

5.
J Anat ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39086103

RESUMO

The mammalian skull is very malleable and has notably radiated into highly diverse morphologies, fulfilling a broad range of functional needs. Although gnawing is relatively common in mammals, this behavior and its associated morphology are diagnostic features for rodents. These animals possess a very versatile and highly mechanically advantageous masticatory apparatus, which, for instance, allowed caviomorph rodents to colonize South America during the Mid-Eocene and successfully radiate in over 200 extant species throughout most continental niches. Previous work has shown that differences in bite force within caviomorphs could be better explained by changes in muscle development than in mechanical advantages (i.e., in cranial overall morphology). Considering the strong bites they apply, it is interesting to assess how the reaction forces upon the incisors (compression) and the powerful adductor musculature pulling (tension) mechanically affect the cranium, especially between species with different ecologies (e.g., chisel-tooth digging). Thus, we ran finite element analyses upon crania of the subterranean Talas' tuco-tuco Ctenomys talarum, the semi-fossorial common degu Octodon degus, and the saxicolous long-tailed chinchilla Chinchilla lanigera to simulate: (A) in vivo biting in all species, and (B) rescaled muscle forces in non-ctenomyid rodents to match those of the tuco-tuco. Results show that the stress patterns correlate with the mechanical demands of distinctive ecologies, on in vivo-based simulations, with the subterranean tuco-tuco being the most stressed species. In contrast, when standardizing all three species (rescaled models), non-ctenomyid models exhibited a several-fold increase in stress, in both magnitude and affected areas. Detailed observations evidenced that this increase in stress was higher in lateral sections of the snout and, mainly, the zygomatic arch; between approximately 2.5-3.5 times in the common degu and 4.0-5.0 times in the long-tailed chinchilla. Yet, neither species, module, nor simulation condition presented load factor levels that would imply structural failure by strong, incidental biting. Our results let us conclude that caviomorphs have a high baseline for mechanical strength of the cranium because of the inheritance of a very robust "rodent" model, while interspecific differences are associated with particular masticatory habits and the concomitant level of development of the adductor musculature. Especially, the masseteric and zygomaticomandibular muscles contribute to >80% of the bite force, and therefore, their contraction is responsible for the highest strains upon their origin sites, that is, the zygomatic arch and the snout. Thus, the robust crania of the subterranean and highly aggressive tuco-tucos allow them to withstand much stronger forces than degus or chinchillas, such as the ones produced by their hypertrophied jaw adductor muscles or imparted by the soil reaction.

6.
Anim Nutr ; 18: 107-118, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39091296

RESUMO

The intracellular lipids in muscle cells of farm animals play a crucial role in determining the overall intramuscular fat (IMF) content, which has a positive impact on meat quality. However, the mechanisms underlying the deposition of lipids in muscle cells of farm animals are not yet fully understood. The purpose of this study was to determine the roles of carbohydrate-response element binding protein (ChREBP) and fructose in IMF deposition of chickens. For virus-mediated ChREBP overexpression in tibialis anterior (TA) muscle of chickens, seven 5-d-old male yellow-feather chickens were used. At 10 d after virus injection, the chickens were slaughtered to obtain TA muscles for analysis. For fructose administration trial, sixty 9-wk-old male yellow-feather chickens were randomly divided into 2 groups, with 6 replicates per group and 5 chickens per replicate. The chickens were fed either a basal diet or a basal diet supplemented with 10% fructose (purity ≥ 99%). At 4 wk later, the chickens were slaughtered, and breast and thigh muscles were collected for analysis. The results showed that the skeletal ChREBP mRNA levels were positively associated with IMF content in multiple species, including the chickens, pigs, and mice (P < 0.05). ChREBP overexpression increased lipid accumulation in both muscle cells in vitro and the TA muscles of mice and chickens in vivo (P < 0.05), by activation of the de novo lipogenesis (DNL) pathway. Moreover, activation of ChREBP by dietary fructose administration also resulted in increased IMF content in mice and notably chickens (P < 0.05). Furthermore, the lipidomics analysis revealed that ChREBP activation altered the lipid composition of chicken IMF and tented to improve the flavor profile of the meat. In conclusion, this study found that ChREBP plays a pivotal role in mediating the deposition of fat in chicken muscles in response to fructose-rich diets, which provides a novel strategy for improving meat quality in the livestock industry.

7.
Spine J ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39097103

RESUMO

BACKGROUND: Pedicle subtraction osteotomy (PSO) is effective for correcting spinal malalignment but is associated with high complication rates. The biomechanical effect of different PSO levels remains unclear, and no finite element (FE) analysis has compared L2-, L3-, L4-, and L5-PSOs. PURPOSE: To assess the effects of PSO level on the spine's global range of motion, stresses on posterior instrumentation, load sharing with the anterior column, and proximal junctional stresses. STUDY DESIGN: A computational biomechanical analysis. METHODS: A validated 3D spinopelvic FE model (T10-Pelvis) was used to perform PSOs at L2, L3, L4 and L5. Each model was instrumented with a four-rod configuration (primary rods + in-line satellite rods) from T11-Pelvis. Simulation included a 2-step analysis; (1) applying 300 N to thoracic, 400 N to lumbar, and 400 N to sacrum, and (2) applying a 7.5 Nm moment to the top endplate of the T10 vertebral body. Acetabulum surfaces were fixed in all degrees of freedom. The range of motion, spinopelvic parameters (lumbar lordosis (LL), sacral slope (SS), pelvic incidence (PI), and pelvic tilt (PT)), PSO force, and von Mises stresses were measured. All models were compared with the L3-PSO model and percentage differences were captured. RESULTS: Compared to the intact alignment: LL increased by 48%, 45%, 59%, and 56% in the L2-, L3-, L4-, and L5-PSO models; SS increased by 25%, 15%, and 11% while PT decreased by 76%, 53%, and 45% in L2-, L3-, and L4-PSOs (SS and PT approximated intact model in L5-PSO); Lumbar osteotomy did not affect the PI. Compared to L3-PSO: L2-, L4-, and L5-PSOs showed up to 32%, 34%, and 34% lower global ROM. The least T10-T11 ROM was observed in L5-PSO. The left and right SIJ ROM were approximately similar in each model. Amongst all, the L5-PSO model showed the least ROM at the SIJ. Compared to L3-PSO, the L2-, L4-, and L5-PSO models showed up to 67%, 61%, and 78% reduced stresses at the UIV, respectively. Minimum stress at UIV+ was observed in the L3-PSO model. The L2-and L3-PSOs showed the maximum PSO force. The L5-PSO model showed the lowest stresses on the primary rods in all motions. CONCLUSION: Our FE investigation indicates that L5-PSO results in the greatest lumbar lordosis and lowest global, SIJ, and T10-T11 ROMs and stresses on the primary rods, suggesting potential mechanical benefits in reducing the risk of rod breakage. However, L4- and L5-PSOs led to the least force across the osteotomy site, which may increase the risk of pseudarthrosis. These findings provide biomechanical insights that may inform surgical planning, though further clinical investigation is essential to determine the optimal PSO level and validate these results. CLINICAL SIGNIFICANCE: Understanding the biomechanical impact of PSO level is crucial for optimizing surgical outcomes and minimizing the risks of post-operative complications.

8.
Ann Anat ; : 152313, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39097117

RESUMO

BACKGROUND: To prevent the absorption and collapse of the labial bone plate of the anterior teeth, immediate implantation and socket shield technique have been increasingly applied to anterior dental aesthetic implant restoration. OBJECTIVE: To provide a biomechanical basis for implant restoration of maxillary anterior teeth, finite element analysis was used to investigate the stress peak and distribution in different anatomical sites of natural teeth, conventional immediate implantation and socket shield technique. METHODS: Three maxillary finite element models were established, including a maxillary incisor as a natural tooth, a conventional immediate implantation and a socket shield technique. A mechanical load of 100N was applied to simulate and analyze the biomechanical behavior of the root, periodontal ligament (PDL), implant and surrounding bone interface. RESULTS: The stress distribution of the natural tooth was relatively uniform under load. The maximum von Mises stress of the root, periodontal ligament, cortical bone and cancellous bone were 20.14MPa, 2.473MPa, 19.48MPa and 5.068MPa, respectively. When the conventional immediate implantation was loaded, the stress was mainly concentrated around the neck of implant. Maximum stress on the surface of the implant was 102MPa, the cortical bone was 16.13MPa, and the cancellous bone was 18.29MPa. When the implantation with socket shield technique was loaded, the stress distribution of the implant was similar to that of immediate implantation. Maximum stress on the surface of the implant was 100.5MPa, the cortical bone was 23.11MPa, the cancellous bone was 21.66MPa, the remaining tooth fragment was 29.42MPa and the periodontal ligament of the tooth fragment was 1.131MPa. CONCLUSIONS: 1. Under static loading, both socket shield technology and conventional immediate implantation can support the esthetic restoration of anterior teeth biomechanically. 2.Under short-term follow-up, both immediate implant and socket shield technology achieved satisfactory clinical results, including bone healing and patient satisfaction. 3.The stress distribution is mainly located on the buccal bone surface of the implant and is associated with resorption of the buccal bone plate after implant replacement in both socket shield technology and conventional immediate implantation. 4.The presence of retained root fragment had an impact on the bone graft gap. In immediate implantation, the peak stress was located in the cortical bone near the implant position, while in socket shield technology, the peak stress was at the neck of the cortical bone corresponding to the retained root fragment.

9.
Sci Rep ; 14(1): 18017, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39097630

RESUMO

For the polarization multiplexing requirements in all-optical networks, this work presents a compact all-fiber polarization beam splitter (PBS) based on dual-core photonic crystal fiber (PCF) and an elliptical gold layer. Numerical analysis using the finite element method (FEM) demonstrates that the mode modulation effect of the central gold layer effectively reduces the dimensions of the proposed PBS. By determining reasonable structural parameters of the proposed PCF, the coupling length ratio (CLR) between X- and Y-polarized super-modes can approach 2, achieving a minimal device length of 0.122 mm. The PBS exhibits a maximum extinction ratio (ER) of - 65 dB at 1.55 µm, with an operating bandwidth spanning 100 nm (1.5-1.6 µm) and a stable insertion loss (IL) of ~ 1.5 dB at 1.55 µm. Furthermore, the manufacture feasibility and performance verification scheme are also investigated. It is widely anticipated that the designed PBS will play a crucial role in the ongoing development process of miniaturization and integration of photonic devices.

10.
Genome Biol ; 25(1): 204, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090757

RESUMO

BACKGROUND: DNA methylation in the form of 5-methylcytosine (5mC) is the most abundant base modification in animals. However, 5mC levels vary widely across taxa. While vertebrate genomes are hypermethylated, in most invertebrates, 5mC concentrates on constantly and highly transcribed genes (gene body methylation; GbM) and, in some species, on transposable elements (TEs), a pattern known as "mosaic". Yet, the role and developmental dynamics of 5mC and how these explain interspecies differences in DNA methylation patterns remain poorly understood, especially in Spiralia, a large clade of invertebrates comprising nearly half of the animal phyla. RESULTS: Here, we generate base-resolution methylomes for three species with distinct genomic features and phylogenetic positions in Annelida, a major spiralian phylum. All possible 5mC patterns occur in annelids, from typical invertebrate intermediate levels in a mosaic distribution to hypermethylation and methylation loss. GbM is common to annelids with 5mC, and methylation differences across species are explained by taxon-specific transcriptional dynamics or the presence of intronic TEs. Notably, the link between GbM and transcription decays during development, alongside a gradual and global, age-dependent demethylation in adult stages. Additionally, reducing 5mC levels with cytidine analogs during early development impairs normal embryogenesis and reactivates TEs in the annelid Owenia fusiformis. CONCLUSIONS: Our study indicates that global epigenetic erosion during development and aging is an ancestral feature of bilateral animals. However, the tight link between transcription and gene body methylation is likely more important in early embryonic stages, and 5mC-mediated TE silencing probably emerged convergently across animal lineages.


Assuntos
Envelhecimento , Metilação de DNA , Epigênese Genética , Animais , Envelhecimento/genética , Anelídeos/genética , Filogenia , Epigenoma , 5-Metilcitosina/metabolismo , Elementos de DNA Transponíveis , Evolução Molecular
11.
Dent Mater ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39095247

RESUMO

The clinical failure mode of dental crown ceramics involves radial cracking at the interface, driven by the surface tension generated from the flexure of the ceramic layer on the subsurface. This results in a reduced lifespan for most all-ceramic dental crowns. Therefore, investigating optimal material combinations to reduce stress concentration in dental crown materials has become crucial for future successful clinical applications. The anisotropic complex structures of natural materials, such as nacre, could potentially create suitable strong and damage-resistant materials. Their imitation of natural structural optimisation and mechanical functionality at both the macro- and micro-levels minimises weaknesses in dental crowns. This research aims to optimise cost-effective, freeze-casted bioinspired composites for the manufacture of novel, strong, and tough ceramic-based dental crowns. To this end, multilayer alumina (Al2O3) composites with four different polymer phases were tested to evaluate their bending behaviour and determine their flexural strength. A computational model was developed and validated against the experimental results. This model includes Al2O3 layers that undergo gentle compression and distribute stress, while the polymer layers act as stress relievers, undergoing plastic deformation to reduce stress concentration. Based on the experimental data and numerical modelling, it was concluded that these composites exhibit variability in mechanical properties, primarily due to differences in microstructures and their flexural strength. Furthermore, the findings suggest that bioinspired Al2O3-based composites demonstrate promising deformation and strengthening behaviour, indicating potential for application in the dental field.

12.
Technol Health Care ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39093098

RESUMO

BACKGROUND: Rib fractures are one of the most common blunt injuries, accounting for approximately 10% of all trauma patients and 60% of thoracic injuries. Multiple rib fractures, especially flail chest, can cause local chest wall softening due to the loss of rib support, leading to paradoxical breathing, severe pain, and a high likelihood of accompanying lung contusions. OBJECTIVE: This study investigates the mechanical properties of a new polymer material rib internal fixator to provide theoretical data for its clinical use. METHODS: We conducted in vitro mechanical tests on 20 fresh caudal fin sheep ribs, using different fracture models across four randomly assigned groups (five ribs per group). The fixators were assessed using non-destructive three-point bending, torsion, and unilateral compression tests, with results averaged. Additionally, finite element analysis compared stress and strain in the polymer fixators and titanium alloy rib plates during bending and torsion tests. RESULTS: In vitro tests showed that the polymer fixators handled loads effectively up to a maximum without increase beyond a certain displacement. Bending and torsion tests via finite element analysis showed the polymer material sustained lower maximum equivalent stresses (84.455 MPa and 14.426 MPa) compared to titanium alloy plates (219.88 MPa and 46.47 MPa). CONCLUSION: The polymer rib fixator demonstrated sufficient strength for rib fracture fixation and was superior in stress management compared to titanium alloy plates in both bending and torsion tests, supporting its potential clinical application.

13.
J Neural Eng ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39094614

RESUMO

OBJECTIVE: Producing realistic numerical models of neurostimulation electrodes in contact with the electrolyte and tissue, for use in time-domain finite element method simulations while maintaining a reasonable computational burden remains a challenge. We aim to provide a straightforward experimental-theoretical hybrid approach for common electrode materials (Ti, TiN, ITO, Au, Pt, IrOx) that are relevant to the research field of bioelectronics, along with all the information necessary to replicate our approach in arbitrary geometry for real-life experimental applications. Approach: We used electrochemical impedance spectroscopy to extract the electrode parameters in the AC regime under different DC biases. The pulsed electrode response was obtained by fast amperometry to optimize and verify the previously obtained electrode parameters in a COMSOL Multiphysics model. For optimization of the electrode parameters a constant phase element needed to be implemented in time-domain. Main results: We find that the parameters obtained by electrochemical impedance spectroscopy can be used to accurately simulate pulsed response only close to the electrode open circuit potential, while at other potentials we give corrections to the obtained parameters, based on fast amperometry measurements. We also find that for many electrodes (Au, TiN, Pt, and IrOx), it is important to implement a distributed constant phase element rather than an ideal capacitor for estimating the electrode double-layer capacitance. We outline and provide examples for the novel time-domain implementation of the constant phase element for finite element method simulations in COMSOL Multiphysics. Significance: An overview of electrode parameters for some common electrode materials can be a valuable and useful tool in numerical bioelectronics models. A provided FEM implementation model can be readily adapted to arbitrary electrode geometries and used for different applications. Finaly, the presented methodology for parametrization of electrode materials can be used for any materials of interest which were not covered by this work. .

14.
MethodsX ; 13: 102837, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39092280

RESUMO

In this study, the control volume method is used to determine the air temperature at the outlet of an air-to-ground heat exchanger. Its implementation consists in dividing the duct of the ground-air heat exchanger into micro-volumes of identical size. An energy balance is then established for each micro-volume. The input parameters used to implement this model are related to the city of Yaoundé in the equatorial zone. The results show that when the total length of the air-to-ground heat exchanger duct varies between 0 and 100 m, the air temperature at the outlet also varies between 34.5 and 24 °C. The air-to-ground heat exchanger operates in cooling mode. As the length of the air-to-ground heat exchanger duct increases, the temperature of the air at the outlet of the air-to-ground heat exchanger decreases, approaching that of the ground. Based on the results obtained using the control volume model, the minimum total length of air-to-ground heat exchanger duct recommended for this zone is 40 m. Admittedly, air pressure drops, air humidity and the geometry of the air-to-ground heat exchanger are aspects that have not yet been taken into account in the implementation of this model. Nevertheless, the control volume method can be used to optimise the parameters influencing the thermal performance of an air-to-ground heat exchanger.•The control volume method is implemented here by dividing the air-to-ground heat exchanger duct into identical micro-volumes and then establishing an energy balance for each micro-volume;•In this work, the control volume method was used to optimise the total length of the duct of a ground air heat exchanger installed in an equatorial zone;•Some important aspects such as air pressure drops, air humidity, and the geometry of the air-to-ground heat exchanger are not yet taken into account in the implementation of the control volume method.

15.
J Exp Biol ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092673

RESUMO

The primary function of the tetrapod jaw is to transmit jaw muscle forces to bite points. The routes of force transfer in the jaw have never been studied, but can be quantified using load paths--the shortest, stiffest routes from regions of force application to support constraints. Here we use load path analysis to map force transfer from muscle attachments to bite point and jaw joint, and to evaluate how different configurations of trabecular and cortical bone affect load paths. We created three models of the mandible of the Virginia opossum, Didelphis virginiana, each with a cortical bone shell, but with different material properties for the internal spaces: a cortical-trabecular model, in which the interior space is modeled with bulk properties of trabecular bone; a cortical-hollow model, in which trabeculae and mandibular canal are modeled as hollow; and a solid-cortical model, in which the interior is modeled as cortical bone. The models were compared with published in vivo bite force and bone strain data, and the load paths calculated for each model. The cortical-trabecular model, which most closely approximates the actual morphology, was best validated by in vivo data. In all three models the load path was confined to cortical bone, although its route within the cortex varied depending on the material properties of the inner model. Our analysis shows that most of the force is transferred through the cortical, rather than trabecular bone, and highlights the potential of load path analysis for understanding form-function relationships in the skeleton.

16.
Front Chem ; 12: 1435562, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108353

RESUMO

The continuous development and application of laser technology, and the increasing energy and power of laser output have promoted the development of various types of laser optical systems. The optical components based on quartz materials are key components of high-power laser systems, and their quality directly affects the load capacity of the system. Due to the photothermal effect when the laser interacts with the quartz material and generates extremely high temperatures in a short period of time, it is impossible to experimentally solve the phenomena and physical mechanisms under extreme conditions. Therefore, it is very important to select a suitable method to investigate the thermal effect of intense laser interaction with quartz materials and explain the related physical mechanism. In this study, a three-dimensional quarter-symmetric laser heating quartz material geometry model by using nonlinear transient finite element method was established, and its transient temperature field distribution of the quartz material after being heated by a 1,064 nm continuous laser was investigated. In addition, the influence of different laser parameters (laser spot radius, heat flux and irradiation time), material parameters (material thickness, material absorption rate of laser) on the thermal effect of heating quartz material were also studied. When the laser heat flux is 20 W/cm2, the diameter of the laser spot is 10 cm, the irradiation time is 600 s and the thickness is 4 cm, the temperature after laser heating can reach 940.18°C, which is far lower than the melting point. In addition, the temperature maximum probes were set at the overall model, spot edge and rear surface respectively, and their temperature rise curves with time were obtained. It is also found that there is a significant hysteresis period for the rear surface temperature change of the quartz material compared with the overall temperature change due to heat conduction. Finally, the method proposed can also be applied to the laser heating of other non-transparent materials.

17.
Front Bioeng Biotechnol ; 12: 1424553, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108596

RESUMO

Introduction: Pathologic vertebral fractures are devastating for patients with spinal metastases. However, the mechanical process underlying these fractures is poorly understood, limiting physician's ability to predict which vertebral bodies will fail. Method: Here, we show the development of a damage-based finite element framework producing highly reliable pathologic vertebral strength and stiffness predictions from X-Ray computed tomography (CT) data. We evaluated the performance of specimen-specific material calibration vs. global material calibration across osteosclerotic, osteolytic, and mixed lesion vertebrae that we derived using a machine learning approach. Results: The FE framework using global calibration strongly predicted the pathologic vertebrae stiffness (R 2 = 0.90, p < 0.0001) and strength (R 2 = 0.83, p = 0.0002) despite the remarkable variance in the pathologic bone structure and density. Specimen-specific calibration produced a near-perfect prediction of both stiffness and strength (R 2 = 0.99, p < 0.0001, for both), validating the FE approach. The FE damage-based simulations highlighted the differences in the pattern of spatial damage evolution between osteosclerotic and osteolytic vertebral bodies. Discussion: With failure, the FE simulation suggested a common damage evolution pathway progressing largely localized to the low bone modulus regions within the vertebral volume. Applying this FE approach may allow us to predict the onset and anatomical location of vertebral failure, which is critical for developing image-based diagnostics of impending pathologic vertebral fractures.

18.
Sci Prog ; 107(3): 368504241272461, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109937

RESUMO

Phononic crystals, which are artificial crystals formed by the periodic arrangement of materials with different elastic coefficients in space, can display modulated sound waves propagating within them. Similar to the natural crystals used in semiconductor research with electronic bandgaps, phononic crystals exhibit the characteristics of phononic bandgaps. A gap design can be utilized to create various resonant cavities, confining specific resonance modes within the defects of the structure. In studies on phononic crystals, phononic band structure diagrams are often used to investigate the variations in phononic bandgaps and elastic resonance modes. As the phononic band frequencies vary nonlinearly with the structural parameters, numerous calculations are required to analyze the gap or mode frequency shifts in phononic band structure diagrams. However, traditional calculation methods are time-consuming. Therefore, this study proposes the use of neural networks to replace the time-consuming calculation processes of traditional methods. Numerous band structure diagrams are initially obtained through the finite-element method and serve as the raw dataset, and a certain proportion of the data is randomly extracted from the dataset for neural network training. By treating each mode point in the band structure diagram as an independent data point, the training dataset for neural networks can be expanded from a small number to a large number of band structure diagrams. This study also introduces another network that effectively improves mode prediction accuracy by training neural networks to focus on specific modes. The proposed method effectively reduces the cost of repetitive calculations.

19.
Sci Rep ; 14(1): 18152, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103486

RESUMO

Brittle shear failure of beam-column joints, especially during seismic events poses a significant threat to structural integrity. This study investigates the potential of steel fiber reinforced concrete (SFRC) in the joint core to enhance ductility and overcome construction challenges associated with traditional reinforcement. A non-linear finite element analysis (NLFEA) using ABAQUS software was conducted to simulate the behavior of SFRC beam-column joints subjected to cyclic loading. Ten simulated specimens were analyzed to discern the impact of varying steel fiber volume fraction and aspect ratio on joint performance. Key findings reveal that a 2% volume fraction of steel fibers in the joint core significantly improves post-cracking behavior by promoting ductile shear failure, thereby increasing joint toughness. While aspect ratio variations showed minimal impact on load capacity, long and thin steel fibers effectively bridge cracks, delaying their propagation. Furthermore, increasing steel fiber content resulted in higher peak-to-peak stiffness. This research suggests that strategically incorporating SFRC in the joint core can promote ductile shear failure, enhance joint toughness, and reduce construction complexities by eliminating the need for congested hoops. Overall, the developed NLFEA model proves to be a valuable tool for investigating design parameters in SFRC beam-column joints under cyclic loading.

20.
Mob DNA ; 15(1): 16, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103880

RESUMO

BACKGROUND: Centromere function is highly conserved across eukaryotes, but the underlying centromeric DNA sequences vary dramatically between species. Centromeres often contain a high proportion of repetitive DNA, such as tandem repeats and/or transposable elements (TEs). Einkorn wheat centromeres lack tandem repeat arrays and are instead composed mostly of the two long terminal repeat (LTR) retrotransposon families RLG_Cereba and RLG_Quinta which specifically insert in centromeres. However, it is poorly understood how these two TE families relate to each other and if and how they contribute to centromere function and evolution. RESULTS: Based on conservation of diagnostic motifs (LTRs, integrase and primer binding site and polypurine-tract), we propose that RLG_Cereba and RLG_Quinta are a pair of autonomous and non-autonomous partners, in which the autonomous RLG_Cereba contributes all the proteins required for transposition, while the non-autonomous RLG_Quinta contributes GAG protein. Phylogenetic analysis of predicted GAG proteins showed that the RLG_Cereba lineage was present for at least 100 million years in monocotyledon plants. In contrast, RLG_Quinta evolved from RLG_Cereba between 28 and 35 million years ago in the common ancestor of oat and wheat. Interestingly, the integrase of RLG_Cereba is fused to a so-called CR-domain, which is hypothesized to guide the integrase to the functional centromere. Indeed, ChIP-seq data and TE population analysis show only the youngest subfamilies of RLG_Cereba and RLG_Quinta are found in the active centromeres. Importantly, the LTRs of RLG_Quinta and RLG_Cereba are strongly associated with the presence of the centromere-specific CENH3 histone variant. We hypothesize that the LTRs of RLG_Cereba and RLG_Quinta contribute to wheat centromere integrity by phasing and/or placing CENH3 nucleosomes, thus favoring their persistence in the competitive centromere-niche. CONCLUSION: Our data show that RLG_Cereba cross-mobilizes the non-autonomous RLG_Quinta retrotransposons. New copies of both families are specifically integrated into functional centromeres presumably through direct binding of the integrase CR domain to CENH3 histone variants. The LTRs of newly inserted RLG_Cereba and RLG_Quinta elements, in turn, recruit and/or phase new CENH3 deposition. This mutualistic interplay between the two TE families and the plant host dynamically maintains wheat centromeres.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...