Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(5)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38794157

RESUMO

The use of medicinal substances in nanosized forms (nanoforms, nanoparticles) allows the therapeutic effectiveness of pharmaceutical preparations to be increased due to several factors: (1) the high specific surface area of nanomaterials, and (2) the high concentration of surface-active centers interacting with biological objects. In the case of drug nanoforms, even low concentrations of a bioactive substance can have a significant therapeutic effect on living organisms. These effects allow pharmacists to use lower doses of active components, consequently lowering the toxic side effects of pharmaceutical nanoform preparations. It is known that many drug substances that are currently in development are poorly soluble in water, so they have insufficient bioavailability. Converting them into nanoforms will increase their rate of dissolution, and the increased saturation solubility of drug nanocrystals also makes a significant contribution to their high therapeutic efficiency. Some physical and chemical methods can contribute to the formation of both pure drug nanoparticles and their ligand or of polymer-covered nanoforms, which are characterized by higher stability. This review describes the most commonly used methods for the preparation of nanoforms (nanoparticles) of different medicinal substances, paying close attention to modern supercritical and cryogenic technologies and the advantages and disadvantages of the described methods and techniques; moreover, the improvements in the physico-chemical and biomedical properties of the obtained medicinal nanoforms are also discussed.

2.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(1): 116-125, 2024 Feb 05.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38426693

RESUMO

OBJECTIVES: To prepare 7-hydroxyethyl chrysin (7-HEC) loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles and to detect the in vitro release. METHODS: The 7-HEC/PLGA nanoparticles were prepared by emulsification solvent volatilization method. The particle size, polydispersity index (PDI), encapsulation rate, drug loading and zeta potential were measured. The prescription was optimized by single factor investigation combined with Box-Behnken response surface method. Mannitol was used as protectant to prepare lyophilized powder, and the optimal formulation was characterized and studied for the in vitro release. RESULTS: The optimal formulation of 7-HEC/PLGA nanoparticles was as follows: drug loading ratio of 2.12∶20, oil-water volume ratio of 1∶14.7, and 2.72% soybean phospholipid as emulsifier. With the optimal formulation, the average particle size of 7-HEC/PLGA nanoparticles was (240.28±0.96) nm, the PDI was 0.25±0.69, the encapsulation rate was (75.74±0.80)%, the drug loading capacity was (6.98±0.83)%, and the potentiostatic potential was (-18.17±0.17) mV. The cumulative in vitro release reached more than 50% within 48 h. CONCLUSIONS: The optimized formulation is stable and easy to operate. The prepared 7-HEC/PLGA nanoparticles have uniform particle size, high encapsulation rate and significantly higher dissolution rate than 7-HEC.


Assuntos
Flavonoides , Nanopartículas , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Láctico , Tamanho da Partícula , Portadores de Fármacos
3.
Chem Pharm Bull (Tokyo) ; 72(3): 340-344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38538315

RESUMO

In clinical diagnosis, magnetic polystyrene nanoparticles (MPS NPs) are commonly applied to, e.g., the chemiluminescent immunoassay (CLEIA). However, the conventional preparation method of MPS NPs requires a long duration of heating to form polymer particles, which is inefficient. In this study, we prepared MPS NPs by emulsion solvent-evaporation without heating. We evaluated the effect of the solvent in the water and organic phases on the magnetic particle content. MPS NPs prepared by 4% (v/v) MeOH aqueous solution and adding stearic acid (SA) (4MeSA-MPS NPs) exhibited the highest magnetic particle content. Furthermore, CLEIA analysis indicates that the C-reactive protein detection limit is 80 pg/mL. Thus, 4MeSA-MPS NPs are promising for clinical diagnoses.


Assuntos
Imunoensaio , Nanopartículas , Poliestirenos , Emulsões , Imunoensaio/métodos , Fenômenos Magnéticos , Tamanho da Partícula , Solventes , Água , Luminescência
4.
Heliyon ; 10(1): e23637, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38332882

RESUMO

l-carnitine is an essential dietary supplement of physiological importance. Handling and manufacture of l-carnitine is difficult due to its hygroscopic nature, resulting in impairing its flow properties, as well as solid dosage form stability. The study aimed at reducing l-carnitine hygroscopicity through its encapsulation within a hydrophobic, pH-insensitive polymer. A solid in oil in oil (s/o/o) emulsion solvent evaporation technique for microencapsulation was adopted to exclude the possibility of water uptake. The polymers used were two ethyl cellulose (EC) grades with different viscosities. The chosen solvent for the polymer was acetone, and liquid paraffin was the dispersion medium in which both the drug and polymer were insoluble. Sixteen formulations were developed, and evaluated to study the formulation parameters as anti-coalescent type, mixing speed, surfactant type and polymer ratio, and viscosity grade. A "One Factor at A Time" (OFAT) design of experiment, and a factorial design were utilized. Study results revealed that successful microencapsulation occurred by using Aerosil 200 (0.1 %) as anti-coalescent, a mixing speed of 1000 rpm, and Ethocel Std 20 at a 3:1 drug-to-polymer ratio. Microcapsule formulation containing l-carnitine base, successfully compressed into tablets, showed acceptable water content, disintegration time, hardness, and dissolution. Moreover, it showed acceptable stability upon storage at 40 °C at 75 % RH for six months compared to l-carnitine tablets prepared by wet granulation.

5.
J Biomater Sci Polym Ed ; 35(3): 306-329, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38100556

RESUMO

Poly lactic-co-glycolic acid (PLGA) is an ideal polymer for the delivery of small and macromolecule drugs. Conventional preparation methods of PLGA nanoparticles (NPs) result in poor control over NPs properties. In this research, a microfluidic mixer was designed to produce insulin-loaded PLGA NPs with tuned properties. Importantly; aggregation of the NPs through the mixer was diminished due to the coaxial mixing of the precursors. The micromixer allowed for the production of NPs with small size and narrow size distribution compared to the double emulsion solvent evaporation (DESE) method. Furthermore, encapsulation efficiency and loading capacity indicated a significant increase in optimized NPs produced through the microfluidic method in comparison to DESE method. NPs prepared by the microfluidic method were able to achieve a more reduction of trans-epithelial electrical resistance values in the Caco-2 cells compared to those developed by the DESE technique that leads to greater paracellular permeation. Compatibility and interaction between components were evaluated by differential scanning calorimetry and fourier transform infrared analysis. Also, the effect of NPs on cell toxicity was investigated using MTT test. Numerical simulations were conducted to analyze the effect of mixing patterns on the properties of the NPs. It was revealed that by decreasing flow rate ratio, i.e. flow rate of the organic phase to the flow rate of the aqueous phase, mixing of the two streams increases. As an alternative to the DESE method, high flexibility in modulating hydrodynamic conditions of the microfluidic mixer allowed for nanoassembly of NPs with superior insulin encapsulation at smaller particle sizes.


Assuntos
Nanopartículas , Ácido Poliglicólico , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico/química , Ácido Láctico/química , Insulina , Glicóis , Células CACO-2 , Microfluídica , Emulsões/química , Solventes , Nanopartículas/química , Tamanho da Partícula , Portadores de Fármacos/toxicidade , Portadores de Fármacos/química
6.
Recent Adv Drug Deliv Formul ; 17(4): 314-331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38031780

RESUMO

OBJECTIVE: The purpose of this research was to optimize the design and construction of nanoparticle gel (TFN-NPs) loaded with tofacitinib citrate (TFN) using poly lactic co glycolic acid (PLGA). METHOD: PLGA (A) as the polymer, polyvinyl alcohol (PVA) (B) as the stabilizer and stirring speed (C) as independent variables were used. TFN-NPs were prepared using single emulsion-solvent evaporation. Box Behnken Design (BBD) was used to determine the optimal component ratio of TFN-NPs based on point prediction. RESULTS: The entrapment efficiency, particle size, and cumulative drug release of the best-composed TFN-NPs were, respectively, 79.82±0.9%, 236.19±5.07 nm, and 82.31±1.23%; the PDI, zeta potential, and drug loading were, respectively, 0.297±0.21, -30.21±0.94mV, and 69.81±0.16%. Gel formulation employing Carbopol as a gelling polymer was then developed using the optimal TFN-NPs mixture. Gel characterization, drug release, permeation studies, irritation, and pharmacokinetic studies were also conducted. Further solid state and morphology were evaluated using FTIR, DSC, XRD, SEM, TEM, and AFM on the developed topical gel formulation (TFN-NPG) and TFN-NPs. The release and permeation investigations indicated that TFN was slowly released (38.42±2.87%) and had significantly enhanced penetration into the epidermal membrane of mice. The cumulative irritation score of 0.33 determined during testing suggested little discomfort. The generated nanogels are stable and have a high drug penetration profile over the skin, as shown by the findings. When compared to both pure TFN solutions, TFN-NPs and TFN-NPG demonstrated superior pharmacokinetic properties. CONCLUSION: Based on the results, the NPs and NPG formulations were depicted to enhance the activity of TFN compared to the free drug solution. TFN could be a safe and effective treatment for Alopecia areata. The tofacitinib citrate NPG could be a clinically translatable, safer topical formulation for managing Alopecia areata.


Assuntos
Alopecia em Áreas , Nanopartículas , Camundongos , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico , Alopecia em Áreas/tratamento farmacológico
7.
Int J Nanomedicine ; 18: 4121-4142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37525693

RESUMO

Introduction: Currently, conventional treatments of hepatocellular carcinoma (HCC) are not selective enough for tumor tissue and lead to multidrug resistance and drug toxicity. Although sorafenib (SOR) is the standard first-line systemic therapy approved for the clinical treatment of HCC, its poor aqueous solubility and rapid clearance result in low absorption efficiency and severely limit its use for local treatment. Methods: Herein, we present the synthesis of biodegradable polymeric Poly (D, L-Lactide-co-glycolide) (PLGA) particles loaded with SOR (PS) by emulsion-solvent evaporation process. The particles are carefully characterized focusing on particle size, surface charge, morphology, drug loading content, encapsulation efficiency, in vitro stability, drug release behaviour and tested on HepG2 cells. Additionally, PLGA particles have been coupled on side emitting optical fibers (seOF) integrated in a microfluidic device for light-triggered local release. Results: PS have a size of 248 nm, tunable surface charge and a uniform and spherical shape without aggregation. PS shows encapsulation efficiency of 89.7% and the highest drug loading (8.9%) between the SOR-loaded PLGA formulations. Treating HepG2 cells with PS containing SOR at 7.5 µM their viability is dampened to 40%, 30% and 17% after 48, 129 and 168 hours of incubation, respectively. Conclusion: The high PS stability, their sustained release profile and the rapid cellular uptake corroborate the enhanced cytotoxicity effect on HepG2. With the prospect of developing biomedical tools to control the spatial and temporal release of drugs, we successfully demonstrated the potentiality of seOF for light-triggered local release of the carriers. Our prototypical system paves the way to new devices integrating microfluidics, optical fibers, and advanced carriers capable to deliver minimally invasive locoregional cancer treatments.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Sorafenibe , Ácido Láctico , Ácido Poliglicólico , Portadores de Fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Linhagem Celular Tumoral , Tamanho da Partícula
8.
Drug Deliv ; 30(1): 2219864, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37272488

RESUMO

Polymeric microparticles are widely used as drug delivery platforms either alone or embedded in more complex structures for regenerative medicine. Emulsion-solvent evaporation is the most extensively used technique for microparticles preparation. Despite the apparent simplicity of this method, there is no general procedure for producing microparticles of predictable characteristics (particle size, size distribution, encapsulation efficiency, and drug loading). Hybrid systems such as neurofuzzy logic allow identifying relationships between inputs and outputs, expressing the generated mathematical models through rules in linguistic format. In this work, the relationships between the variables involved in the emulsion-solvent evaporation process and the quality parameters of PLGA microparticles as drug delivery systems were established. Neurofuzzy logic software was able to generate models of high predictability (> 85%) for the microspheres properties namely particle size, size distribution, encapsulation efficiency and drug loading. Moreover, the generated sets of IF-THEN rules allowed to dictate general guidelines to better select the PLGA microparticles formulation parameters. This approach would be of great interest as a starting point to set-up protocols for the development of PLGA microparticles obtained by emulsion-solvent evaporation for many applications.


Assuntos
Ácido Láctico , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico/química , Ácido Láctico/química , Microesferas , Emulsões/química , Sistemas de Liberação de Medicamentos/métodos , Solventes/química , Tamanho da Partícula
9.
Polymers (Basel) ; 15(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37242955

RESUMO

Melanin is an insoluble, amorphous polymer that forms planar sheets that aggregate naturally to create colloidal particles with several biological functions. Based on this, here, a preformed recombinant melanin (PRM) was utilized as the polymeric raw material to generate recombinant melanin nanoparticles (RMNPs). These nanoparticles were prepared using bottom-up (nanocrystallization-NC, and double emulsion-solvent evaporation-DE) and top-down (high-pressure homogenization-HP) manufacturing approaches. The particle size, Z-potential, identity, stability, morphology, and solid-state properties were evaluated. RMNP biocompatibility was determined in human embryogenic kidney (HEK293) and human epidermal keratinocyte (HEKn) cell lines. RMNPs prepared by NC reached a particle size of 245.9 ± 31.5 nm and a Z-potential of -20.2 ± 1.56 mV; 253.1 ± 30.6 nm and -39.2 ± 0.56 mV compared to that obtained by DE, as well as RMNPs of 302.2 ± 69.9 nm and -38.6 ± 2.25 mV using HP. Spherical and solid nanostructures in the bottom-up approaches were observed; however, they were an irregular shape with a wide size distribution when the HP method was applied. Infrared (IR) spectra showed no changes in the chemical structure of the melanin after the manufacturing process but did exhibit an amorphous crystal rearrangement according to calorimetric and PXRD analysis. All RMNPs presented long stability in an aqueous suspension and resistance to being sterilized by wet steam and ultraviolet (UV) radiation. Finally, cytotoxicity assays showed that RMNPs are safe up to 100 µg/mL. These findings open new possibilities for obtaining melanin nanoparticles with potential applications in drug delivery, tissue engineering, diagnosis, and sun protection, among others.

10.
Pharmaceutics ; 15(2)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36839939

RESUMO

Nanoparticles can be used as drug carriers in various applications (e.g., in pulmonary drug delivery and mucosal vaccination). For further investigations, such as drug release studies, as well as for cell and tissue targeting, particles with defined properties are needed. The purpose of the study was to show a multi-step systematic method utilising quality by design to ensure the quality of ovalbumin loaded polylactic-co-glycolic acid nanoparticles (OVA-PLGA-NP), which can be delivered to the lung, and to gain knowledge of the preparation method (double-emulsion solvent evaporation method) in an early development process. Within a definitive screening design, several process parameters (OVA, PLGA and stabiliser concentrations, stirring time and stirring speed of inner emulsion and stirring time and stirring speed of double emulsion) were varied to analyse their impact on resulting properties (z-average, PDI, loading efficiency and loading capacity). The results showed that the preparation of the inner emulsion mainly influenced the drug loading, while the parameters of the second emulsifying step controlled the size. Then a central composite response surface design was used to achieve a predictable OVA-PLGA-NP with an average particle size of 700 nm and high drug-loading. This also enabled the demonstration of curvature and interaction of the stabiliser and the PLGA concentration.

11.
Mar Drugs ; 20(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36355017

RESUMO

A potential fucoidan-based PEGylated PLGA nanoparticles (NPs) offering a proper delivery of N-methyl anthranilic acid (MA, a model of hydrophobic anti-inflammatory drug) have been developed via the formation of fucoidan aqueous coating surrounding PEGylated PLGA NPs. The optimum formulation (FuP2) composed of fucoidan:m-PEG-PLGA (1:0.5 w/w) with particle size (365 ± 20.76 nm), zeta potential (-22.30 ± 2.56 mV), % entrapment efficiency (85.45 ± 7.41), drug loading (51.36 ± 4.75 µg/mg of NPs), % initial burst (47.91 ± 5.89), and % cumulative release (102.79 ± 6.89) has been further investigated for the anti-inflammatory in vivo study. This effect of FuP2 was assessed in rats' carrageenan-induced acute inflammation model. The average weight of the paw edema was significantly lowered (p ≤ 0.05) by treatment with FuP2. Moreover, cyclooxygenase-2 and tumor necrosis factor-alpha immunostaining were decreased in FuP2 treated group compared to the other groups. The levels of prostaglandin E2, nitric oxide, and malondialdehyde were significantly reduced (p ≤ 0.05) in the FuP2-treated group. A significant reduction (p ≤ 0.05) in the expression of interleukins (IL-1ß and IL-6) with an improvement of the histological findings of the paw tissues was observed in the FuP2-treated group. Thus, fucoidan-based PEGylated PLGA-MA NPs are a promising anti-inflammatory delivery system that can be applied for other similar drugs potentiating their pharmacological and pharmacokinetic properties.


Assuntos
Nanopartículas , Ratos , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Nanopartículas/química , Polietilenoglicóis/química , Tamanho da Partícula , Anti-Inflamatórios/farmacologia , Portadores de Fármacos/química
12.
Eur J Pharm Biopharm ; 181: 60-78, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36347484

RESUMO

This study set out to evaluate novel PCL-based silica containing nanohybrids as the polymer matrix in a hydrophobic drug-loaded microsphere system. Nanohybrids were synthesized by PCL-grafting to NH2-end grouped silica by in situ enzymatic ring opening polymerization of ε-caprolactone. Molecular weight and monomer conversion, PCL grafting percentage, thermal properties and crystallinity of the nanohybrids were determined by 1H NMR, TGA, DSC and XRD. Synthesized nanohybrids had low crystallinity percentage (32 and 39 %) and molecular weight (4800 and 8700 g/mol), promising for controlled drug release applications. The nanohybrids were used for fabrication of trans-chalcone-loaded microspheres by O/W single emulsion solvent evaporation. Mean particle diameter of the microspheres were between 15 and 30 µm. The result of release studies showed that optimum microsphere formulations (AP4 and A2, respectively) had 61 and 64 % encapsulation efficiency. One of the more significant findings to emerge from this investigation is that TC release was extended to 16 and 37 days, in a controlled manner. TC release was significantly enhanced in acidic pH media (pH 3.6 and 5.6) indicating pH-dependent release from nanohybrid microspheres; releasing 80-100 % of the loaded drug in 4-14 days. Drug/polymer interactions and molecular structures were investigated by FT-IR spectroscopy and DSC analysis. According to the results obtained, enzymatically synthesized nanohybrids have potential for pH-dependent release of the model drug, trans-chalcone.


Assuntos
Polímeros , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de Hidrogênio
13.
Drug Deliv ; 29(1): 1848-1862, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35708451

RESUMO

Epigallocatechin-3-gallate (EGCG) was isolated from Cycas thouarsii leaves for the first time and encapsulated in aqueous core poly(lactide-co-glycolide) (PLGA) nanocapsules (NCs). This work investigates antimicrobial activity and in vivo reno-protective effects of EGCG-PLGA NCs in cisplatin-induced nephrotoxicity. A double emulsion solvent evaporation process was adopted to prepare PLGA NCs loaded with EGCG. Particle size, polydispersity index (PDI), zeta potential, percent entrapment efficiency (%EE), structural morphology, and in vitro release platform were all studied in vitro. The optimum formula (F2) with particle size (61.37 ± 5.90 nm), PDI (0.125 ± 0.027), zeta potential (-11.83 ± 3.22 mV), %EE (85.79 ± 5.89%w/w), initial burst (36.85 ± 4.79), and percent cumulative release (87.79 ± 9.84) was selected for further in vitro/in vivo studies. F2 exhibited an enhanced antimicrobial activity against uropathogens as it had lower minimum inhibitory concentration (MIC) values and a more significant impact on bacterial growth than free EGCG. Forty male adult mice were randomly allocated into five groups: control vehicle, untreated methotrexate, MTX groups treated with a daily oral dose of free EGCG, placebo PLGA NCs, and EGCG PLGA NCs (F2) for 10 days. Results showed that EGCG PLGA NCs (F2) exerted promising renoprotective effects compared to free EGCG. EGCG PLGA NCs group induced a significant decrease in kidney index, serum creatinine, kidney injury molecule-1 (KIM-1), NGAL serum levels, and pronounced inhibition of NLPR-3/caspase-1/IL/1ß inflammasome pathway. It also significantly ameliorated oxidative stress and decreased NFκB, Bax expression levels. Aqueous core PLGA NCs are a promising formulation strategy that provides high polymeric protection and sustained release pattern for hydrophilic therapeutic agents.


Assuntos
Nanocápsulas , Nanopartículas , Animais , Antibacterianos/farmacologia , Catequina/análogos & derivados , Cisplatino , Rim , Masculino , Camundongos , Nanocápsulas/química , Nanopartículas/química , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química
14.
Micromachines (Basel) ; 13(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35744492

RESUMO

A facile and robust microfluidic method to produce nanoparticle-in-microparticle systems (Trojan systems) is reported as a delivery vector for the oral administration of active pharmaceutical ingredients. The microfluidic system is based on two coaxial capillaries that produce monodisperse water-in-oil-in-water (W/O/W) double emulsions in a highly controlled fashion with precise control over the resulting particle structure, including the core and shell dimensions. The influence of the three phase flow rates, pH and drying process on the formation and overall size is evaluated. These droplets are then used as templates for the production of pH-sensitive Trojan microparticles after solvent evaporation. The shell of Trojan microparticles is made of Eudragit®, a methacrylic acid-ethyl acrylate copolymer that would enable the Trojan microparticle payload to first pass through the stomach without being degraded and then dissolve in the intestinal fluid, releasing the inner payload. The synthesis of the pH-sensitive Trojan microparticles was also compared with a conventional batch production method. The payloads considered in this work were different in nature: (1) fluorescein, to validate the feasibility of the polymeric shell to protect the payload under gastric pH; (2) poly(D,L-lactic acid/glycolic acid)-PLGA nanoparticles loaded with the antibiotic rifampicin. These PLGA nanoparticles were produced also using a microfluidic continuous process and (3) PLGA nanoparticles loaded with Au nanoparticles to trace the PLGA formulation under different environments (gastric and intestinal), and to assess whether active pharmaceutical ingredient (API) encapsulation in PLGA is due efficiently. We further showed that Trojan microparticles released the embedded PLGA nanoparticles in contact with suitable media, as confirmed by electron microscopy. Finally, the results show the possibility of developing Trojan microparticles in a continuous manner with the ability to deliver therapeutic nanoparticles in the gastrointestinal tract.

15.
J Pharm Sci ; 111(9): 2525-2530, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35447106

RESUMO

INTRODUCTION: Side effects associated with using antibodies as therapeutics can limit systemic administration at the high concentrations often needed for therapeutic impact. Thus, therapeutic antibodies are usually considered for targeted delivery. Antibody encapsulation in polymeric nanoparticles via the emulsion-based nanofabrication methods typically yields low loading efficiencies. Therefore, the fabrication techniques need to be modified to maximize the loading efficiency of antibodies. In this work, we utilized various cosolvents with the emulsion solvent evaporation technique to improve the loading efficiency of anti-CD47, a therapeutic antibody used to block CD47 activity in atherosclerotic plaques and cancer lesions. METHODS AND RESULTS: The double emulsion solvent evaporation technique was used to fabricate anti-CD47-loaded polymeric nanoparticles. The primary oil phase solvent, chloroform, was doped with different cosolvents, including ethyl acetate, acetonitrile, ethanol, and methanol, to investigate the impact of cosolvents on the loading efficiency of anti-CD47. The release profile and loading efficiency were quantified by measuring the fluorescence signal of the released antibody. The activity of the antibody released from particles fabricated in the presence of the cosolvent was confirmed by quantifying its adherence to red blood cells. Ethyl acetate was the optimum cosolvent, improving the loading efficiency of anti-CD47 in poly(lactic-co-glycolic acid), PLGA, nanoparticles to 90% or higher, and the antibody was found to retain its activity after being released from nanoparticles. CONCLUSION: Our results demonstrate that a minimum amount of a cosolvent with minimal hydrophilicity can stabilize the antibody in the oil phase; thus, improving the antibody's loading efficiency significantly.


Assuntos
Nanopartículas , Nanosferas , Emulsões , Ácido Láctico , Tamanho da Partícula , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Solventes
16.
Pharmaceutics ; 14(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335963

RESUMO

Heart failure (HF) causes decreased brain perfusion in older adults, and increased brain and systemic inflammation increases the risk of cognitive impairment and Alzheimer's disease (AD). Glycosylated Ang-(1-7) MasR agonists (PNA5) has shown improved bioavailability, stability, and brain penetration compared to Ang-(1-7) native peptide. Despite promising results and numerous potential applications, clinical applications of PNA5 glycopeptide are limited by its short half-life, and frequent injections are required to ensure adequate treatment for cognitive impairment. Therefore, sustained-release injectable formulations of PNA5 glycopeptide are needed to improve its bioavailability, protect the peptide from degradation, and provide sustained drug release over a prolonged time to reduce injection administration frequency. Two types of poly(D,L-lactic-co-glycolic acid) (PLGA) were used in the synthesis to produce nanoparticles (≈0.769−0.35 µm) and microparticles (≈3.7−2.4 µm) loaded with PNA5 (ester and acid-end capped). Comprehensive physicochemical characterization including scanning electron microscopy, thermal analysis, molecular fingerprinting spectroscopy, particle sizing, drug loading, encapsulation efficiency, and in vitro drug release were conducted. The data shows that despite the differences in the size of the particles, sustained release of PNA5 was successfully achieved using PLGA R503H polymer with high drug loading (% DL) and high encapsulation efficiency (% EE) of >8% and >40%, respectively. While using the ester-end PLGA, NPs showed poor sustained release as after 72 h, nearly 100% of the peptide was released. Also, lower % EE and % DL values were observed (10.8 and 3.4, respectively). This is the first systematic and comprehensive study to report on the successful design, particle synthesis, physicochemical characterization, and in vitro glycopeptide drug release of PNA5 in PLGA nanoparticles and microparticles.

17.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35215324

RESUMO

Hesperidin is a bioflavonoid constituent that among many other biological activities shows significant wound healing properties. However, the bioavailability of hesperidin when applied topically is limited due to its low solubility and systemic absorption, so novel dosage forms are needed to improve its therapeutic efficacy. The objectives of this study were to develop hesperidin-loaded lipid-polymer hybrid nanoparticles (HLPHNs) to enhance the delivery of hesperidin to endogenous sites in the wound bed and promote the efficacy of hesperidin. HLPHNs were optimized by response surface methodology (RSM) using the Box-Behnken design. HLPHNs were prepared using an emulsion-solvent evaporation method based on a double emulsion of water-in-oil-in-water (w/o/w) followed by freeze-drying to obtain nanoparticles. The prepared formulations were characterized using various evaluation parameters. In addition, the antioxidant activity of HLPHN 4 was investigated in vitro using the DPPH model. Seventeen different HLPHNs were prepared and the HLPHN4 exhibited the best mean particle size distribution, zeta potential, drug release and entrapment efficiency. The values are 91.43 nm, +23 mV, 79.97% and 92.8%, respectively. Transmission electron microscope showed similar spherical morphology as HLPHN4. Differential scanning calorimetry verified the physical stability of the loaded drug in a hybrid system. In vitro release studies showed uniform release of the drug over 24 h. HLPHN4 showed potent antioxidant activity in vitro in the DPPH model. The results of this study suggest that HLPHNs can achieve sustained release of the drug at the wound site and exhibit potent in vitro antioxidant activity.

18.
Front Bioeng Biotechnol ; 10: 1103990, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588954

RESUMO

Nanoparticle shape has been acknowledged as an important design parameter due to its influence on nanoparticle interaction with biological systems. However, there is lacking of simple and scalable preparation technique for drug loaded non-spherical polymeric nanoparticles for a long time, thus hindering the potential applications. Although our previous research has modified the traditional emulsion solvent evaporation technique by adding guest molecules to prepare non-spherical poly (lactic-co-glycolic acid) (PLGA) particles, it is difficult to obtain nano-sized rods with minor axis less than 200 nm, which may have great potential in cancer therapy. Herein, in present research, the two-step ESE method was used and optimized to prepare poly (lactic-co-glycolic acid) nanorods for paclitaxel delivery. Firstly, the single-factor experiment was used to screen the influence of multi-factors including type of guest molecules, concentration of guest molecules, emulsification method, surfactant concentration, oil volume, poly (lactic-co-glycolic acid) concentration on the size and shape to determine the range of variables; based on the above range, a multi-factor and multi-level orthogonal experiment was designed. The formula is evaluated by the rod fabrication yield and the aspect ratio of major axis to minor axis. The results showed that the yield of nanorods in the optimal formula was 99% and the aspect ratio was 5.35 ± 2.05 with the minor axis of 135.49 ± 72.66 nm, and major axis of 657.77 ± 307.63 nm. In addition, the anti-cancer drug paclitaxel was successfully encapsulated in PLGA nanorods by the same technique. Our results not only enrich the ESE technique for preparing small sized poly (lactic-co-glycolic acid) nanorods, but also envision the potential application of nanorods for targeted cancer therapy with the delivery of paclitaxel.

19.
Eur J Pharm Biopharm ; 170: 24-42, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34861359

RESUMO

Core-shell microspheres hold great promise as a drug delivery system because they offer several benefits over monolithic microspheres in terms of release kinetics, for instance a reduced initial burst release, the possibility of delayed (pulsatile) release, and the possibility of dual-drug release. Also, the encapsulation efficiency can significantly be improved. Various methods have proven to be successful in producing these core-shell microspheres, both the conventional bulk emulsion solvent evaporation method and methods in which the microspheres are produced drop by drop. The latter have become increasingly popular because they provide improved control over the particle characteristics. This review assesses various production methods for core-shell microspheres and summarizes the characteristics of formulations prepared by the different methods, with a focus on their release kinetics.


Assuntos
Sistemas de Liberação de Medicamentos , Microesferas , Preparações de Ação Retardada , Composição de Medicamentos , Liberação Controlada de Fármacos , Emulsões , Cinética , Tamanho da Partícula , Polímeros/química
20.
Int J Mol Sci ; 22(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34884873

RESUMO

The bioavailability of the antihypertensive drug valsartan can be enhanced by various microencapsulation methods. In the present investigation, valsartan-loaded polymeric nanoparticles were manufactured from Eudragit® RLPO using an emulsion-solvent evaporation method. Polyvinyl alcohol (PVA) was found to be a suitable stabilizer for the nanoparticles, resulting in a monodisperse colloid system ranging in size between 148 nm and 162 nm. Additionally, a high encapsulation efficiency (96.4%) was observed. However, due to the quaternary ammonium groups of Eudragit® RLPO, the stabilization of the dispersion could be achieved in the absence of PVA as well. The nanoparticles were reduced in size (by 22%) and exhibited similar encapsulation efficiencies (96.4%). This more cost-effective and sustainable production method reduces the use of excipients and their expected emission into the environment. The drug release from valsartan-loaded nanoparticles was evaluated in a two-stage biorelevant dissolution set-up, leading to the rapid dissolution of valsartan in a simulated intestinal medium. In silico simulations using a model validated previously indicate a potential dose reduction of 60-70% compared to existing drug products. This further reduces the expected emission of the ecotoxic compound into the environment.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Ácidos Polimetacrílicos/química , Valsartana/química , Valsartana/farmacocinética , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacocinética , Liberação Controlada de Fármacos , Excipientes/química , Suco Gástrico , Humanos , Tamanho da Partícula , Álcool de Polivinil/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA