Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.819
Filtrar
1.
Front Immunol ; 15: 1369326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38953022

RESUMO

Objectives: Mast cell (MC) degranulation is a key process in allergic reactions and inflammatory responses. Aspartate aminotransferase 1 (AAT1)-derived endogenous sulfur dioxide (SO2) is an important regulator of MC function. However, the mechanism underlying its role in MC degranulation remains unclear. This study aimed to investigate the mechanism by which endogenous SO2 controlled MC degranulation. Methods: HMC-1 and Rat basophilic leukemia cell MC line (RBL-2H3) were used in the cell experiments. SO2 content was detected by in situ fluorescent probe. MC degranulation represented by the release rate of MC ß-hexosaminidase was determined using a colorimetric assay. Sulfenylation of galectin-9 (Gal-9) in MCs and purified protein was detected using a biotin switch assay. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the exact sulfenylation sites of Gal-9 by SO2. Animal models of passive cutaneous anaphylaxis (PCA) and hypoxia-driven pulmonary vascular remodeling were used to investigate the effect of SO2 on mast cell activation in vivo. Site-directed mutation of Gal-9 was conducted to confirm the exact site of SO2 and support the significance of SO2/Gal-9 signal axis in the regulation of MC degranulation. Results: Degranulation was increased in AAT1-knockdowned MCs, and SO2 supplementation reversed the increase in MC degranulation. Furthermore, deficiency of endogenous SO2 contributed to IgE-mediated degranulation in vitro. Besides, SO2 inhibited IgE-mediated and hypoxia-driven MC degranulation in vivo. Mechanistically, LC-MS/MS analysis and site-directed mutation results showed that SO2 sulfenylated Gal-9 at cysteine 74. Sulfenylation of the 74th cysteine of Gal-9 protein was required in the SO2-inhibited MC degranulation under both physiological and pathophysiological conditions. Conclusion: These findings elucidated that SO2 inhibited MC degranulation via sulfenylating Gal-9 under both physiological and pathophysiological conditions, which might provide a novel treatment approach for MC activation-related diseases.


Assuntos
Degranulação Celular , Cisteína , Galectinas , Mastócitos , Dióxido de Enxofre , Animais , Degranulação Celular/efeitos dos fármacos , Mastócitos/metabolismo , Mastócitos/imunologia , Mastócitos/efeitos dos fármacos , Cisteína/metabolismo , Ratos , Dióxido de Enxofre/farmacologia , Dióxido de Enxofre/metabolismo , Humanos , Galectinas/metabolismo , Camundongos , Masculino , Anafilaxia Cutânea Passiva , Linhagem Celular
2.
Reprod Sci ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955937

RESUMO

Recurrent implantation failure (RIF) is a complex and poorly understood clinical disorder characterized by failure to conceive after repeated embryo transfers. Endometrial receptivity (ER) is a prerequisite for implantation, and ER disorders are associated with RIF. However, little is known regarding the molecular mechanisms underlying ER in RIF. In the present study, RNA sequencing data from the mid-secretory endometrium of patients with and without RIF were analyzed to explore the potential long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) involved in RIF. The analysis revealed 213 and 1485 differentially expressed mRNAs and lncRNAs, respectively (fold change ≥ 2 and p < 0.05). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that these genes were mostly involved in processes related to immunity or inflammation. 5 key genes (TTR, ALB, TF, AFP, and CFTR) and a key module including 14 hub genes (AFP, ALB, APOA1, APOA2, APOB, APOH, FABP1, FGA, FGG, GC, ITIH2, SERPIND1, TF and TTR) were identified in the protein-protein interaction (PPI) network. The 5 key genes were used to further explore the lncRNA-miRNA-mRNA regulatory network. Finally, the drug ML-193 based on the 14 hub genes was identifed through the CMap. After ML-193 treatment, endometrial cell proliferation was increased, the hub genes were mostly down-regulated, and the ER marker HOXA10 was up-regulated. These results offer insights into the regulatory mechanisms of lncRNAs and mRNAs and suggest ML-193 as a therapeutic agent for RIF by enhancing ER.

3.
Braz J Microbiol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963474

RESUMO

Viral infection disrupts the normal regulation of the host gene's expression. In order to normalise the expression of dysregulated host genes upon virus infection, analysis of stable reference housekeeping genes using quantitative real-time-PCR (qRT-PCR) is necessary. In the present study, healthy and African swine fever virus (ASFV) infected porcine tissues were assessed for the expression stability of five widely used housekeeping genes (HPRT1, B2M, 18 S rRNA, PGK1 and H3F3A) as reference genes using standard algorithm. Total RNA from each tissue sample (lymph node, spleen, kidney, heart and liver) from healthy and ASFV-infected pigs was extracted and subsequently cDNA was synthesized, and subjected to qRT-PCR. Stability analysis of reference genes expression was performed using the Comparative delta CT, geNorm, BestKeeper and NormFinder algorithm available at RefFinder for the different groups. Direct Cycle threshold (CT) values of samples were used as an input for the web-based tool RefFinder. HPRT1 in spleen, 18 S rRNA in liver and kidney and H3F3A in heart and lymph nodes were found to be stable in the individual healthy tissue group (group A). The majority of the ASFV-infected organs (liver, kidney, heart, lymph node) exhibited H3F3A as stable reference gene with the exception of the ASFV-infected spleen, where HPRT1 was found to be the stable gene (group B). HPRT1 was found to be stable in all combinations of all CT values of both healthy and ASFV-infected porcine tissues (group C). Of five different reference genes investigated for their stability in qPCR analysis, the present study revealed that the 18 S rRNA, H3F3A and HPRT1 genes were optimal reference genes in healthy and ASFV-infected different porcine tissue samples. The study revealed the stable reference genes found in healthy as well as ASF-infected pigs and these reference genes identified through this study will form the baseline data which will be very useful in future investigations on gene expression in ASFV-infected pigs.

4.
Oncol Lett ; 28(3): 404, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38983125

RESUMO

The abnormal expression of mucin 1 (MUC1) is a major cause of poor prognosis in patients with hepatocellular carcinoma (HCC). Competitive endogenous RNA demonstrates a novel regulatory mechanism that can affect the biological behavior of tumors. In the present study, the regulatory functions of hsa_circ_0055054 as well as those of microRNA (miR/miRNA) 122-5p on MUC1 expression and its role in HCC cell proliferation, migration and invasion, were evaluated. MUC1 expression was assessed using western blotting and reverse transcription-quantitative PCR. The phenotypic functions of the HCC cell lines were evaluated following MUC1 knockdown using Cell Counting Kit-8, wound healing and Transwell assays. Bioinformatics tools were used to identify specific miRNAs and circular (circ)RNAs that interact with and can regulate MUC1. The stability of circRNAs was assessed using a Ribonuclease R assay. The binding of circRNA/miRNA/MUC1 was assessed using dual-luciferase reporter assays and cellular function tests. Finally, in vivo experiments were performed using animal models. The results demonstrated that in MHCC97L cells, MUC1 and hsa_circ_0055054 were expressed at high levels while miR-122-5p was downregulated. The proliferation, migration and invasion of MHCC97L cells were suppressed by low MUC1 expression. hsa_circ_0055054 knockdown or miR-122-5p overexpression both led to a decrease in MUC1 expression. In MHCC97L cells with a low MUC1 expression caused by hsa_circ_0055054 knockdown, miR-122-5p inhibition resulted in the increased proliferation, migration and invasion of MHCC97L cells. In combination, the results of the present study indicate that hsa_circ_0055054 knockdown in MHCC97L cells leads to an increased expression of miR-122-5p and decreased expression of MUC1, which results in the inhibition of MHCC97L cell proliferation, migration and invasion.

5.
Front Mol Biosci ; 11: 1366278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011141

RESUMO

The examination of drug accumulation within complex biological systems offers valuable insights into the molecular aspects of drug metabolism and toxicity. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is an innovative methodology that enables the spatial visualization and quantification of biomolecules as well as drug and its metabolites in complex biological system. Hence, this method provides valuable insights into the metabolic profile and any molecular changes that may occur as a result of drug treatment. The renal system is particularly vulnerable to adverse effects of drug-induced harm and toxicity. In this study, MALDI MSI was utilized to examine the spatial distribution of drug and renal metabolites within kidney tissues subsequent to a single oral dosage of the anticancer compound rotenone. The integration of ion mobility spectrometry with MALDI MSI enhanced the data acquisition and analysis, resulting to improved mass resolution. Subsequently, the MS/MS fragment ions of rotenone reference drug were detected and characterized using MALDI HDMS/MS imaging. Notably, drug accumulation was observed in the cortical region of the representative kidney tissue sections treated with rotenone. The histological examination of treated kidney tissues did not reveal any observable changes. Differential ion intensity of renal endogenous metabolites was observed between untreated and rotenone-treated tissues. In the context of treated kidney tissues, the ion intensity level of sphingomyelin (D18:1/16:0), a sphingolipid indicator of glomerular cell injury and renal damage, was found to be elevated significantly compared to untreated kidney tissues. Conversely, the ion intensities of choline, glycero-3-phosphocholine (GPC), inosine, and a lysophosphatidylcholine LysoPC(18:0) exhibited a significant decrease. The results of this study demonstrate the potential of MALDI MSI as a novel technique for investigating the in situ spatial distribution of drugs and renal endogenous molecules while preserving the anatomical integrity of the kidney tissue. This technique can be used to study drug-induced metabolism and toxicity in a dynamic manner.

6.
World J Stem Cells ; 16(6): 656-669, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38948092

RESUMO

BACKGROUND: Validation of the reference gene (RG) stability during experimental analyses is essential for correct quantitative real-time polymerase chain reaction (RT-qPCR) data normalisation. Commonly, in an unreliable way, several studies use genes involved in essential cellular functions [glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 18S rRNA, and ß-actin] without paying attention to whether they are suitable for such experimental conditions or the reason for choosing such genes. Furthermore, such studies use only one gene when Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines recommend two or more genes. It impacts the credibility of these studies and causes distortions in the gene expression findings. For tissue engineering, the accuracy of gene expression drives the best experimental or therapeutical approaches. AIM: To verify the most stable RG during osteogenic differentiation of human dental pulp stem cells (DPSCs) by RT-qPCR. METHODS: We cultivated DPSCs under two conditions: Undifferentiated and osteogenic differentiation, both for 35 d. We evaluated the gene expression of 10 candidates for RGs [ribosomal protein, large, P0 (RPLP0), TATA-binding protein (TBP), GAPDH, actin beta (ACTB), tubulin (TUB), aminolevulinic acid synthase 1 (ALAS1), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (YWHAZ), eukaryotic translational elongation factor 1 alpha (EF1a), succinate dehydrogenase complex, subunit A, flavoprotein (SDHA), and beta-2-microglobulin (B2M)] every 7 d (1, 7, 14, 21, 28, and 35 d) by RT-qPCR. The data were analysed by the four main algorithms, ΔCt method, geNorm, NormFinder, and BestKeeper and ranked by the RefFinder method. We subdivided the samples into eight subgroups. RESULTS: All of the data sets from clonogenic and osteogenic samples were analysed using the RefFinder algorithm. The final ranking showed RPLP0/TBP as the two most stable RGs and TUB/B2M as the two least stable RGs. Either the ΔCt method or NormFinder analysis showed TBP/RPLP0 as the two most stable genes. However, geNorm analysis showed RPLP0/EF1α in the first place. These algorithms' two least stable RGs were B2M/GAPDH. For BestKeeper, ALAS1 was ranked as the most stable RG, and SDHA as the least stable RG. The pair RPLP0/TBP was detected in most subgroups as the most stable RGs, following the RefFinfer ranking. CONCLUSION: For the first time, we show that RPLP0/TBP are the most stable RGs, whereas TUB/B2M are unstable RGs for long-term osteogenic differentiation of human DPSCs in traditional monolayers.

7.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 635-640, 2024 May 20.
Artigo em Chinês | MEDLINE | ID: mdl-38948290

RESUMO

Objective: Intracerebral hemorrhage (ICH), the second most common type of stroke, can cause long-lasting disability in the afflicted patients. The study was conducted to examine the patterns of change in endogenous neural stem cells (eNSCs) and in the regenerative microenvironment after ICH, to observe the relationship between the migration of eNSCs and the pattern of change in the polarization state of immune cells in the microenvironment, and provide a research basis for research on clinical nerve repair. Methods: The collagenase injection method was used for modeling. The ICH model was induced in adult female Sprague-Dawley (SD) rats by injecting type VII collagenase (2 U) into the brain tissue of rats. All the experimental rats weighed 280-300 g. In order to simulate the ICU at different time points, including the acute phase (within 1 week), subacute phase (1-3 weeks), and the chronic phase (over 3 weeks), brain tissues were harvested at 3 day post injection (3 DPI), 10 DPI, 20 DPI, and 30 DPI to evaluate the modeling effect. Immunofluorescence staining of the brain tissue sections was performed with DCX antibody to observe the pattern of change in the migration of eNSCs in the brain tissue at different time points. Immunofluorescence staining of brain tissue sections was performed with CD206 antibody and CD86 antibody for respective observation of the pattern of change in pro-inflammatory (M1-type) and anti-inflammatory (M2-type) immune cells in the regenerative microenvironment of the brain tissue after ICM. Results: Spontaneous ICH was successfully induced by injecting type Ⅶ collagenase into the brain tissue of SD rats. The volume of the hematoma formed started to gradually increase at 3 DPI and reached its maximum at 10 DPI. After that, the hematoma was gradually absorbed and was completely absorbed by 30 DPI. Analysis of the pattern of changes in eNSCs in the brain tissue showed that a small number of eNSCs were activated at 3 DPI, but very soon their number started to decrease. By 10 DPI, eNSCs gradually began to increase. A large number of eNSCs migrated to the hemorrhage site at 20 DPI. Then the number of eNSCs decreased significantly at 30 DPI (P<0.01). Analysis of the immune microenvironment of the brain tissue showed that pro-inflammatory (M1 type) immune cells increased significantly at 10 and 20 DPI (P<0.01) and decreased at 30 DPI. Anti-inflammatory (M2 type) immune cells began to increase gradually at 3 DPI, decreased significantly at 20 DPI (P<0.05), and then showed an increase at 30 DPI. Conclusion: After ICH in rats, eNSCs migrating toward the site of ICH first increase and then decrease. The immune microenvironment demonstrates a pattern of change in which inflammation is suppressed at first, then promoted, and finally suppressed again. Inflammation may have a stimulatory effect on the migration of eNSCs, but excessive inflammatory activation has an inhibitory effect on the differentiation and further activation of eNSCs. After ICH, the early stage of repair and protection (10 d) and the subacute phase (20 d) may provide the best opportunities for intervention.


Assuntos
Movimento Celular , Hemorragia Cerebral , Proteína Duplacortina , Células-Tronco Neurais , Ratos Sprague-Dawley , Animais , Hemorragia Cerebral/imunologia , Ratos , Feminino , Células-Tronco Neurais/imunologia , Células-Tronco Neurais/citologia , Modelos Animais de Doenças , Fenótipo , Encéfalo/imunologia , Encéfalo/patologia , Macrófagos/imunologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-38946426

RESUMO

Glycosylation is the most structurally diverse form of post-translational modification (PTM) of proteins that affects a myriad of cellular processes. As a pivotal regulator of protein homeostasis, glycosylation notably impacts the function of proteins, spanning from protein localization and stability to protein-protein interactions. Aberrant glycosylation is a hallmark of cancer, and extensive studies have revealed the multifaceted roles of glycosylation in tumor growth, migration, invasion and immune escape Over the past decade, glycosylation has emerged as an immune regulator in the tumor microenvironment (TME). Here, we summarize the intricate interplay between glycosylation and the immune system documented in recent literature, which orchestrates the regulation of the tumor immune response through endogenous lectins, immune checkpoints and the extracellular matrix (ECM) in the TME. In addition, we discuss the latest progress in glycan-based cancer immunotherapy. This review provides a basic understanding of glycosylation in the tumor immune response and a theoretical framework for tumor immunotherapy.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38965130

RESUMO

INTRODUCTION: Plasma protein carbonylation that reflects oxidative stress has been demonstrated to be associated with the prothrombotic fibrin clot phenotype. However, the role of protein carbonyls (PC) in predicting ischemic stroke in atrial fibrillation (AF) is largely unknown. This study aimed to investigate whether PC increase the risk of stroke in anticoagulated AF patients during follow-up. METHODS: In 243 AF patients on anticoagulation (median age 69 years; median CHA2DS2-VASc of 4), we measured plasma PC using the assay by Becatti, along with plasma clot permeability (Ks), clot lysis time (CLT), thrombin generation, and fibrinolytic proteins, including plasminogen activator inhibitor type 1 (PAI-1) and thrombin activatable fibrinolysis inhibitor (TAFI). Ischemic stroke, major bleeding, and mortality were recorded during a median follow-up of 53 months. RESULTS: Plasma PC levels (median, 3.16 [2.54-3.99] nM/mg protein) at baseline showed positive associations with age (P < 0.001), CHA2DS2-VASc (P = 0.003), and N-terminal B-type natriuretic peptide (P = 0.001), but not with type of AF or comorbidities except for heart failure (P = 0.007). PC levels were correlated with CLT (r = 0.342, P < 0.001), endogenous thrombin potential (r = 0.217, P = 0.001) and weakly with Ks (r = -0.145, P = 0.024), but not with fibrinogen, PAI-1, or TAFI levels. Stroke was recorded in 20 patients (1.9%/year), who had at baseline 36% higher PC levels (P < 0.001). Elevated PC (P = 0.003) at baseline were independently associated with stroke risk. CONCLUSION: Our findings suggest that in patients with AF enhanced protein carbonylation is associated with increased "residual" risk of stroke despite anticoagulation, which is at least in part due to unfavorably altered fibrin clot phenotype.

10.
Br J Anaesth ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997839

RESUMO

Virtual reality (VR) holds unmeasured potential as a multicomponent tool for managing chronic pain by adapting conventional in-person biopsychosocial pain management strategies into one virtual space. We review recent evidence showcasing the successful integration of cognitive behavioural therapy, mindfulness-based stress reduction, embodiment techniques, and physical therapy into VR environments, demonstrating positive outcomes in patients with chronic pain. We propose that future clinical and basic research build on this by integrating pain neuroscience techniques to help better understand pathophysiological pain mechanisms and treatment response. This could help facilitate early assessment and personalised treatment of chronic pain using a VR-based biopsychosocial approach.

11.
GMS Ophthalmol Cases ; 14: Doc07, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994472

RESUMO

Endogenous endophthalmitis is a severe sight-threatening condition that requires urgent intervention. It is a rare complication of Escherichia coli septicemia. We herein report a case of left eye endogenous endophthalmitis with uncontrolled type 2 diabetes mellitus with pyelonephritis associated with Escherichia coli septicemia. Vitrectomy was done along with intravitreal antibiotics and steroids. There was significant improvement in vision after vitrectomy.

12.
J Nanobiotechnology ; 22(1): 411, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997706

RESUMO

The fracture healing outcome is largely dependent on the quantities as well as osteogenic differentiation capacities of mesenchymal stem cells (MSCs) at the lesion site. Herein, macrophage membrane (MM)-reversibly cloaked nanocomplexes (NCs) are engineered for the lesion-targeted and hierarchical co-delivery of short stromal derived factor-1α peptide (sSDF-1α) and Ckip-1 small interfering RNA (Ckip-1 siRNA, siCkip-1) to promote bone repair by concurrently fostering recruitment and osteogenic differentiation of endogenous MSCs. To construct the NCs, a membrane-penetrating α-helical polypeptide first assembles with siCkip-1, and the cationic NCs are sequentially coated with catalase and an outer shell of sSDF-1α-anchored MM. Due to MM-assisted inflammation homing, intravenously injected NCs could efficiently accumulate at the fractured femur, where catalase decomposes the local hydrogen peroxide to generate oxygen bubbles that drives the shedding of sSDF-1α-anchored MM in the extracellular compartment. The exposed, cationic inner core thus enables robust trans-membrane delivery into MSCs to induce Ckip-1 silencing. Consequently, sSDF-1α-guided MSCs recruitment cooperates with siCkip-1-mediated osteogenic differentiation to facilitate bone formation and accelerate bone fracture healing. This study provides an enlightened strategy for the hierarchical co-delivery of macromolecular drugs into different cellular compartments, and it also renders a promising modality for the management of fracture healing.


Assuntos
Diferenciação Celular , Consolidação da Fratura , Macrófagos , Células-Tronco Mesenquimais , Osteogênese , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Animais , Consolidação da Fratura/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , RNA Interferente Pequeno , Masculino , Membrana Celular/metabolismo , Humanos , Células RAW 264.7
13.
Animals (Basel) ; 14(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38998112

RESUMO

The accurate estimation of basal endogenous losses (BEL) of amino acids at the ileum is indispensable to improve nutrient utilization efficiency. This study used a quantitative proteomic approach to identify variations in BEL in the ileal digesta of growing pigs fed a nitrogen-free diet (NFD) or a casein diet (CAS). Eight barrow pigs (39.8 ± 6.3 kg initial body weight (BW)) were randomly assigned to a 2 × 2 crossover design. A total of 348 proteins were identified and quantified in both treatments, of which 101 showed a significant differential abundance between the treatments (p < 0.05). Functional and pathway enrichment analyses revealed that the endogenous proteins were associated with intestinal metabolic function. Furthermore, differentially abundant proteins (DAPs) in the digesta of pigs fed the NFD enriched terms and pathways that suggest intestinal inflammation, the activation of innate antimicrobial host defense, an increase in cellular autophagy and epithelial turnover, and reduced synthesis of pancreatic and intestinal secretions. These findings suggest that casein diets may provide a more accurate estimation of BEL because they promote normal gastrointestinal secretions. Overall, proteomic and bioinformatic analyses provided valuable insights into the composition of endogenous proteins in the ileal digesta and their relationship with the functions, processes, and pathways modified by diet composition.

15.
Int Ophthalmol ; 44(1): 308, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958789

RESUMO

PURPOSE: This study aimed to investigate the demographics, clinical characteristics, and management outcomes of patients with acute infectious endophthalmitis (AIE). METHODS: This retrospective chart review was conducted on all patients admitted with the clinical diagnosis of infectious endophthalmitis from 2017 to 2022. Demographic data, patients' clinical characteristics, the type of acute infectious endophthalmitis (post-operative, post-traumatic, bleb-associated, and endogenous endophthalmitis), the type of surgical procedure in the post-operative cases, the microbiologic analysis results of vitreous samples, therapeutic measures, and visual outcomes of patients were recorded. RESULTS: In this study, 182 participants, including 122 male (67%) and 60 (33%) female, were involved. The mean age of patients was 54.56 ± 21 years, with a range of 1-88 years old. The most prevalent type of AIE was post-operative (59.9%), followed by endogenous (19.2%), post-traumatic (17%), and bleb-associated (3.8%). The most common type of intraocular surgery in the post-operative subgroups of AIE patients was phacoemulsification (57.8%). The median (interquartile range) of the primary and final BCVA of patients was 1.5 (1.35, 1.85) and 0.65 (0.35, 1.35), respectively. Vitreous haziness grade (OR, 2.89; 95% CI, 1.11-5.74; p = 0.009) and the primary VA (OR, 60.34; 95% CI, 2.87-126.8; p = 0.008) revealed statistical significance for final vision loss. CONCLUSION: AIE is a devastating condition with poor visual outcomes, which presents with acute inflammatory signs and symptoms regardless of its type. However, prompt and appropriate treatment leads to visual recovery to a functional level in many patients.


Assuntos
Endoftalmite , Infecções Oculares Bacterianas , Acuidade Visual , Humanos , Endoftalmite/diagnóstico , Endoftalmite/microbiologia , Endoftalmite/epidemiologia , Endoftalmite/terapia , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Adulto , Idoso de 80 Anos ou mais , Adolescente , Infecções Oculares Bacterianas/diagnóstico , Infecções Oculares Bacterianas/microbiologia , Infecções Oculares Bacterianas/epidemiologia , Infecções Oculares Bacterianas/terapia , Adulto Jovem , Doença Aguda , Criança , Pré-Escolar , Lactente , Antibacterianos/uso terapêutico , Corpo Vítreo/microbiologia , Corpo Vítreo/patologia , Vitrectomia/métodos
16.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000086

RESUMO

Currently, pharmacotherapy provides successful seizure control in around 70% of patients with epilepsy; however, around 30% of cases are still resistant to available treatment. Therefore, effective anti-epileptic therapy still remains a challenge. In our study, we utilized two mouse lines selected for low (LA) and high (HA) endogenous opioid system activity to investigate the relationship between down- or upregulation of the opioid system and susceptibility to seizures. Pentylenetetrazole (PTZ) is a compound commonly used for kindling of generalized tonic-clonic convulsions in animal models. Our experiments revealed that in the LA mice, PTZ produced seizures of greater intensity and shorter latency than in HA mice. This observation suggests that proper opioid system tone is crucial for preventing the onset of generalized tonic-clonic seizures. Moreover, a combination of an opioid receptor antagonist-naloxone-and a GABA receptor agonist-diazepam (DZP)-facilitates a significant DZP-sparing effect. This is particularly important for the pharmacotherapy of neurological patients, since benzodiazepines display high addiction risk. In conclusion, our study shows a meaningful, protective role of the endogenous opioid system in the prevention of epileptic seizures and that disturbances in that balance may facilitate seizure occurrence.


Assuntos
Pentilenotetrazol , Convulsões , Animais , Pentilenotetrazol/toxicidade , Camundongos , Convulsões/metabolismo , Convulsões/tratamento farmacológico , Convulsões/induzido quimicamente , Masculino , Naloxona/farmacologia , Modelos Animais de Doenças , Diazepam/farmacologia , Suscetibilidade a Doenças , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Antagonistas de Entorpecentes/farmacologia
17.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38995038

RESUMO

Fermentation of dietary and endogenous protein in the hindgut is generally considered detrimental to the health of pigs. We investigated the in vitro fermentation potential of porcine endogenous protein in ileal digesta and colonic mucus, using a N-free buffer with an excess of fermentable carbohydrates. Urea, whey protein isolate (WPI, positive control), WPI hydrolysate (WPIH), and combinations of the latter two were used to validate the assay. A new biphasic model, including a linear end simulation, fitted to the gas production data over a 48-h period identified the time point when substrate fermentation ended. A higher degree of hydrolysis of WPI resulted in a higher maximum gas production rate (Rmax, P < 0.01). Differences in Rmax and the time required to reach Rmax were observed among ileal digesta samples, with Rmax increasing with the insoluble protein content, and the highest Rmax occurring with colonic mucus samples (P < 0.05). The endogenous proteins entering the large intestine of pigs can ferment more rapidly compared to highly soluble and digestible protein sources, with Rmax positively correlated with decreasing solubility of endogenous nitrogenous components.


Protein fermentation in the hindgut of pigs can impact their health, affecting factors like growth rates and feed efficiency. Besides dietary protein, up to 50% of the protein entering the large intestine of growing pigs may be of endogenous origin. Therefore, we explored the fermentation potential of endogenous proteins compared to a well-known protein source, whey protein isolate (WPI). In developing and validating an in vitro gas production technique, we employed urea, WPI, WPI hydrolysate, and various combinations as substrates. The study introduces a new biphasic model for in vitro gas production, offering a detailed analysis of the fermentation process over a 48-h period. Our results revealed that porcine endogenous proteins can undergo rapid fermentation because the maximum gas production rate was higher compared to WPI. This insight is crucial for understanding the dynamics of protein fermentation in pigs. Additionally, we explored the solubility and molecular size of proteins, providing a comprehensive understanding of their fermentation characteristics. We found that endogenous proteins were less soluble compared to WPI but contained more smaller peptides. Unraveling the complexities of protein fermentation in pigs contributes to improvement of feed formulation for optimal gut health.


Assuntos
Proteínas Alimentares , Fermentação , Animais , Suínos , Proteínas Alimentares/metabolismo , Digestão/fisiologia , Íleo/metabolismo , Colo/metabolismo , Colo/microbiologia , Proteínas do Soro do Leite/metabolismo , Conteúdo Gastrointestinal/química
18.
Sci Rep ; 14(1): 16306, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009744

RESUMO

Posttraumatic headache (PTH) is common following traumatic brain injury and impacts quality of life. We investigated descending pain modulation as one possible mechanism for PTH and correlated it to clinical measures. Pain-related evoked potentials (PREP) were recorded in 26 PTH-patients and 20 controls after electrical stimulation at the right hand and forehead with concentric surface electrodes. Conditioned pain modulation (CPM) was assessed using painful cutaneous electric stimulation (PCES) on the right hand as test stimulus and immersion of the left hand into 10 °C-cold water bath as conditioning stimulus based on changes in pain intensity and in amplitudes of PCES-evoked potentials. All participants completed questionnaires assessing depression, anxiety, and pain catastrophising. PTH-patients reported significantly higher pain ratings during PREP-recording in both areas despite similar stimulus intensity at pain threshold. N1P1-amplitudes during PREP and CPM-assessment were lower in patients in both areas, but statistically significant only on the hand. Both, PREP-N1-latencies and CPM-effects (based on the N1P1-amplitudes and pain ratings) were similar in both groups. Patients showed significantly higher ratings for anxiety and depression, which did not correlate with the CPM-effect. Our results indicate generalized hyperalgesia for electrical stimuli in both hand and face in PTH. The lacking correlation between pain ratings and EEG parameters indicates different mechanisms of pain perception and nociception.


Assuntos
Estimulação Elétrica , Cefaleia Pós-Traumática , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Cefaleia Pós-Traumática/fisiopatologia , Medição da Dor , Limiar da Dor , Dor/fisiopatologia , Dor/etiologia , Potenciais Evocados/fisiologia , Eletroencefalografia , Ansiedade/fisiopatologia , Percepção da Dor/fisiologia , Depressão/fisiopatologia , Depressão/etiologia
19.
Biosens Bioelectron ; 262: 116566, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39018981

RESUMO

To achieve highly sensitive and reliable detection of apurinic/apyrimidinic endonuclease 1 (APE1), a critical cancer diagnostic biomarker, we designed a DNA walker-based dual-mode biosensor, utilizing cellular endogenous dual enzymes (APE 1 and Flap endonuclease 1 (FEN 1)) to collaborate in activating and propelling DNA walker motion on DNA-functionalized Au nanoparticles. Incorporating both fluorescence and electrochemical detection modes, this system leverages signal amplification from DNA walker movement and cascade amplification through tandem hybridization chain reactions (HCR), achieving highly sensitive detection of APE 1. In the fluorescence mode, continuous DNA walker movement, initiated by APE1 and driven by FEN1, generates a robust signal response within a concentration range of 0.01-500 U mL-1, presenting a good linearity in the concentration range of 0.01-10 U mL-1, with a detection limit of 0.01 U mL-1. In the electrochemical detection module, the cascade upstream DNA walker and downstream HCR dual signal amplification strategy further enhances the sensitivity of APE1 detection, extending the linear range to 0.01-50 U mL-1 and reducing the detection limit to 0.002 U mL-1. Rigorous validation demonstrates the biosensor's specificity and anti-interference capability against multiple enzymes. Moreover, it effectively distinguishes cancer cells from normal cell lysates, exhibiting excellent stability and consistency in the dual-modes. Overall, our findings underscore the efficacy of the developed dual-mode biosensor for detecting APE1 in serum and cell lysates samples, indicating its potential for clinical applications in disease diagnosis.

20.
Int Ophthalmol ; 44(1): 321, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977562

RESUMO

PURPOSE: To investigate whether the clinical characteristics, treatment and prognosis of endogenous infectious endophthalmitis (EIE) have changed over the past 5 years. METHODS: Retrospectively analyze all articles about EIE published in the PubMed, Web of Science, and Embase databases from 2017 to 2021. RESULTS: A total of 128 patients and 147 eyes (46 left and 60 right) were included in the study. The mean age at diagnosis was 51 ± 19 years. The most common risk factors were diabetes and intravenous drug use. From 2017 to 2021, Klebsiella was the most common pathogenic microorganism (22%), and vitreous culture had the highest positivity rate. The most common complaint was blurred vision. The mean visual acuity (logMAR) at onset was 2.84, and the clinical symptoms were vitreal inflammation and opacity (63%), ocular pain (37%), and conjunctival congestion (36%). The ocular inflammation could be reduced by intraocular antibiotics or vitrectomy. However, the visual prognosis, with a mean logMAR of 2.73; only 50% of the eyes reached a visual acuity level of finger count and above. Changes in diagnostics over the past 5 years have mainly manifested as more diverse microorganism culture methods. In addition to conventional culture methods, PCR, sputum culture and aqueous humour culture are also commonly used for the diagnosis of pathogenic bacteria, improving the positive culture rate and visual prognosis. CONCLUSION: The prognosis of EIE is poor. It is recommended to pay attention to the pathogenic bacteria culture results and accompanying systemic diseases and to diagnose and treat patients as soon as possible.


Assuntos
Antibacterianos , Endoftalmite , Infecções Oculares Bacterianas , Acuidade Visual , Endoftalmite/diagnóstico , Endoftalmite/microbiologia , Endoftalmite/terapia , Humanos , Infecções Oculares Bacterianas/diagnóstico , Infecções Oculares Bacterianas/microbiologia , Infecções Oculares Bacterianas/terapia , Prognóstico , Antibacterianos/uso terapêutico , Vitrectomia/métodos , Estudos Retrospectivos , Corpo Vítreo/microbiologia , Bactérias/isolamento & purificação , Fatores de Risco , Masculino , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...