Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Diabetes Complications ; 38(8): 108801, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38935979

RESUMO

INTRODUCTION: Hyperglycemia-induced endothelial cell injury is one of the main causes of diabetic vasculopathy. Fat mass and obesity-associated protein (FTO) was the first RNA N6-methyladenosine (m6A) demethylase identified; it participates in the pathogenesis of diabetes. However, the role of FTO in hyperglycemia-induced vascular endothelial cell injury remains unclear. MATERIALS AND METHODS: The effects of FTO on cellular m6A, autophagy, oxidative stress, proliferation, and cytotoxicity were explored in human umbilical vein endothelial cells (HUVECs) treated with high glucose (33.3 mmol/mL) after overexpression or pharmacological inhibition of FTO. MeRIP-qPCR and RNA stability assays were used to explore the molecular mechanisms by which FTO regulates autophagy. RESULTS: High glucose treatment increased m6A levels and reduced FTO protein expression in HUVECs. Wild-type overexpression of FTO markedly inhibited reactive oxygen species generation by promoting autophagy, increasing endothelial cell proliferation, and decreasing the cytotoxicity of high glucose concentrations. The pharmacological inhibition of FTO showed the opposite results. Mechanistically, we identified Unc-51-like kinase 1 (ULK1), a gene responsible for autophagosome formation, as a downstream target of FTO-mediated m6A modification. FTO overexpression demethylated ULK1 mRNA and inhibited its degradation in an m6A-YTHDF2-dependent manner, leading to autophagy activation. CONCLUSIONS: Our study demonstrates the functional importance of FTO-mediated m6A modification in alleviating endothelial cell injury under high glucose conditions and indicates that FTO may be a novel therapeutic target for diabetic vascular complications.

2.
Mol Cell Endocrinol ; 590: 112261, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38679361

RESUMO

Hyperglycemia is a key contributor to diabetic macrovascular and ocular complications. It triggers a cascade of cellular damage, particularly in the retinal microvascular endothelial cells (RMECs). However, the underlying molecular mechanisms remain only partially understood. This study hypothesizes that CircZNF609 plays a pivotal role in mediating high glucose-induced damage in RMECs by modulating miR-150-5p and its downstream target genes, thereby affecting cellular survival, apoptosis, and oxidative stress. Gene expression datasets (GSE193974 and GSE160308) and clinical samples were used to investigate the expression levels of CircZNF609 and its interaction with miR-150-5p in the context of diabetic retinopathy (DR). Our results demonstrate that CircZNF609 is upregulated in both peripheral blood stem cells from DR patients and high glucose-stimulated hRMECs. Functional experiments reveal that silencing CircZNF609 improves cell viability, reduces apoptosis, inhibits tube formation, and modulates oxidative stress markers, whereas CircZNF609 overexpression exacerbates these effects. Moreover, miR-150-5p, a microRNA, was found to be negatively regulated by CircZNF609 and downregulated in DR. Its overexpression mitigates high glucose-induced cell injury. Our findings suggest a novel mechanism whereby CircZNF609 exacerbates high glucose-induced endothelial cell damage by sponging miR-150-5p, implicating the CircZNF609/miR-150-5p axis as a potential therapeutic target in diabetic retinopathy.


Assuntos
Apoptose , Retinopatia Diabética , Células Endoteliais , Glucose , MicroRNAs , Estresse Oxidativo , RNA Circular , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Glucose/farmacologia , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Retinopatia Diabética/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Estresse Oxidativo/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Microvasos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos
3.
BMC Infect Dis ; 24(1): 335, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509522

RESUMO

BACKGROUND: Lung endothelial barrier injury plays an important role in the pathophysiology of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Mesenchymal stem cells (MSCs) therapy has shown promise in ARDS treatment and restoration of the impaired barrier function. It has been reported that Wnt5a shows protective effects on endothelial cells. Therefore, the study aimed to investigate whether overexpression of Wnt5a could promote the protective effects of MSCs on Lipopolysaccharide (LPS)-induced endothelial cell injury. METHODS: To evaluate the protective effects of MSCs overexpressing Wnt5a, we assessed the migration, proliferation, apoptosis, and angiogenic ability of endothelial cells. We assessed the transcription of protective cellular factors using qPCR and determined the molecular mechanism using Western blot analysis. RESULTS: Overexpression of Wnt5a upregulated the transcription of protective cellular factors in MSCs. Co-culture of MSCWnt5a promoted endothelial migration, proliferation and angiogenesis, and inhibited endothelial cell apoptosis through the PI3K/AKT pathway. CONCLUSIONS: Overexpression of Wnt5a promoted the therapeutic effect of MSCs on endothelial cell injury through the PI3K/AKT signaling. Our study provides a novel approach for utilizing genetically modified MSCs in the transplantation therapy for ARDS.


Assuntos
Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório , Humanos , Lipopolissacarídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células Endoteliais , Transdução de Sinais , Células-Tronco Mesenquimais/metabolismo , Síndrome do Desconforto Respiratório/terapia
4.
Discov Med ; 36(180): 121-128, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273752

RESUMO

BACKGROUND: Curcumin is a kind of natural hydrophobic polyphenol isolated from the stem of the Curcuma plant. To investigate regulatory curcumin effect on atherosclerotic endothelial cell injury. METHODS: 30 male ApoE-/- mice were selected and divided into the control group, model group, and curcumin group (n = 10). The curcumin group was treated with curcumin by gavage. Body weight, atherosclerotic plaque area, plaque cap thickness, blood lipid levels, total cholesterol (TC), triacylglycerol (TG), low-density lipoprotein cholesterol (LDL-C) content, nitric oxide (NO) content, interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α) content and circulating endothelial cell number of mice in each group were detected. Western blot detected NACHT, LRR, and receptor family pyrin domain-containing 3 (NLRP3) and Asc-type amino acid transporter protein 1 (ASC) protein level in mice. Human aortic endothelial cells (HAEC) were cultured to establish an atherosclerotic endothelial cell injury model in vivo. Cell counting kit-8 (CCK-8) detected the cell viability of each group. RESULTS: Body weight, atherosclerotic plaque area, plaque cap thickness, TC, TG, and LDL-C content of blood lipid levels of the curcumin group were obviously reduced as compared with the model group (p < 0.05), the content of NO and the number of circulating endothelial cells in curcumin group were obviously decreased (p < 0.05). The cell viability of the curcumin group was obviously higher than that of the model group (p < 0.05). The NO content of the curcumin group was lower than the model group (p < 0.05). The content of IL-1ß and TNF-α in the curcumin group was obviously lower than in the model group (p < 0.05). Compared with the model group, the expression of receptor family pyrin domain-containing 3 (NLRP3) and ASC protein in the curcumin group was decreased obviously (p < 0.05). CONCLUSION: Curcumin improves endothelial cell injury in atherosclerosis by inhibiting the expression of NLRP3 inflammatory bodies.


Assuntos
Aterosclerose , Curcumina , Placa Aterosclerótica , Camundongos , Humanos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Curcumina/metabolismo , Placa Aterosclerótica/metabolismo , Células Endoteliais , Fator de Necrose Tumoral alfa , LDL-Colesterol/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Lipídeos , Peso Corporal , Inflamassomos/metabolismo
5.
Microvasc Res ; 151: 104612, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839527

RESUMO

BACKGROUND AND OBJECTIVE: Literature has reported that circular RNAs (circRNAs) are crucially associated with diabetic retinopathy (DR). Furthermore, circEHMT1 has been identified to maintain endothelial cell barrier function. This study aimed to investigate the mechanisms that regulate aberrant circEHMT1 expression and its role in the pathogenesis of DR. METHODS: In this study, retinal microvascular endothelial cells were exposed to a high glucose (HG) environment, and subsequently, tube formation and intercellular junction proteins were evaluated. Furthermore, the biological functions of circEHMT1 and its potential regulatory factor, eIF4A3, in microvascular endothelial cells under HG conditions were also assessed. In addition, the regulatory role of eIF4A3 on circEHMT1 expression was confirmed. Moreover, to elucidate the in vivo functions of eIF4A3 and circEHMT1, streptozotocin (STZ) was used to establish a DR model in rats. RESULTS: It was revealed that HG condition decreased circEHMT1 and eIF4A3 expressions and reduced ZO-1, Claudin-5, and Occludin levels in retinal microvascular endothelial cells. Furthermore, it was observed that eIF4A3 could regulate the expression of circEHMT1. Overexpression of eIF4A3 or circEHMT1 under HG conditions improved endothelial cell injury and decreased tube-formation ability. Additionally, in the DR rat model, eIF4A3 overexpression restored circEHMT1 levels and ameliorated retinal vasculature changes. CONCLUSION: Altogether, eIF4A3 regulates circEHMT1 expression, thereby affecting microvascular endothelial cell injury and tube formation. Further understanding the regulatory effect of eIF4A3 on circEHMT1 may provide novel therapeutic targets for DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Animais , Ratos , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Retina/metabolismo , Vasos Retinianos/patologia
6.
CEN Case Rep ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38055184

RESUMO

A 62-year-old man with type 2 diabetes was admitted because of a decrease in estimated glomerular filtration rate from 72 to 17.5 mL/min/1.73 m2 in 10 years and development of widespread bullous skin lesions. His hemoglobin A1c level had been maintained at 6.0-7.0% for 10 years with a dipeptidyl peptidase (DPP)-4 inhibitor. Skin biopsy showed typical bullous pemphigoid, and kidney biopsy showed tubulointerstitial nephritis with eosinophilic infiltration and glomerular endothelial cell proliferation. After discontinuing the DPP-4 inhibitor, skin lesions improved, and renal decline slowed. This case indicates that DPP-4 inhibitors can cause not only skin lesions but also renal disease.

7.
Artigo em Inglês | MEDLINE | ID: mdl-37818575

RESUMO

BACKGROUND: Hypertension damages endothelial cells, causing vascular remodelling. It is caused by Ang II-induced endothelial cell (EC) destruction. The long noncoding RNA (lncRNAs) are emerging regulators of endothelium homeostasis. Injured endothelium expresses lncRNA taurine-upregulated gene 1 (TUG1), which may mediate endothelial cell damage, proliferation, apoptosis, and autophagy and contribute to cardiovascular disease. However, uncertainty surrounds the function of lncRNA TUG1, on arterial endothelium cell damage. OBJECTIVE: This research aimed to investigate the role and mechanism of lncRNA TUG1 in vascular endothelial cell injury. METHOD: A microarray analysis of lncRNA human gene expression was used to identify differentially expressed lncRNAs in human umbilical vein endothelial cell (HUVEC) cultures. The viability, apoptosis, and migration of Ang II-treated HUVECs were then evaluated. In order to investigate the role of lncRNA TUG1 in hypertension, qRT-PCR, western blotting, and RNA-FISH were used to examine the expression of TUG1 in SHR mice. RESULTS: Ang II-activated HUVECs and SHR rats' abdominal aortas highly express the lncRNA TUG1. LncRNA TUG1 knockdown in HUVECs could increase cell viability, reduce apoptosis, and produce inflammatory factors. In SHR rat abdominal aortas, lncRNA TUG1 knockdown promoted proliferation and inhibited apoptosis. HE spotting showed that lncRNA TUG1 knockdown improved SHR rats' abdominal aorta shape. lncRNA TUG1 knockdown promotes miR-9- 5p, which inhibits CXCR4 following transcription. The lncRNA TUG1/miR-9-5p/CXCR4 axis and vascular cell injury were also examined. MiR-9-5p silencing or CXCR4 overexpression lowered cell survival, apoptosis, and lncRNA TUG1-induced IL-6 and NO expression. CONCLUSION: lncRNA TUG1 suppression could reduce Ang II-induced endothelial cell damage by regulating and targeting miR-9-5p to limit CXCR4 expression and open new vascular disease research pathways.

8.
Acute Med Surg ; 10(1): e896, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808968

RESUMO

The endothelial glycocalyx covers the lumen of blood vessels throughout the body and plays an important role in endothelial homeostasis. Advances in electron microscopy techniques have provided clues to better understand the structure and composition of identical vascular endothelial glycocalyx. The morphology and thickness of the endothelial glycocalyx differ from organ to organ. The content of the endothelial glycocalyx covering the vascular lumen differs even in the brain, heart, and lungs, which have the same continuous capillaries. Various types of inflammation are known to attenuate the endothelial glycocalyx; however, we found that the morphology of the glycocalyx damaged by acute inflammation differed from that damaged by chronic inflammation. Acute inflammation breaks the endothelial glycocalyx unevenly, whereas chronic inflammation leads to the overall shortening of the endothelial glycocalyx. The same drug has different effects on the endothelial glycocalyx, depending on the location of the target blood vessels. This difference in response may reflect not only the size and shape of the endothelial glycocalyx but also the different constituents. In the cardiac tissue, the expression of glypican-1, a core protein of the endothelial glycocalyx, was enhanced. By contrast, in the pulmonary tissue, the expression of heparan sulfate 6-O-sulfotransferase 1 and endothelial cell-specific molecule-1 significantly increased in the treatment group compared with that in the no-treatment group. In this review, we present the latest findings on the evolution of the vascular endothelial glycocalyx and consider the microstructural differences.

9.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(8): 1425-1431, 2023 Aug 20.
Artigo em Chinês | MEDLINE | ID: mdl-37712281

RESUMO

OBJECTIVE: To investigate the protective effect of Danshenxinkun B against oxidized low-density lipoprotein (ox-LDL)- induced human umbilical vein endothelial cell (HUVEC) injury and explore the underlying mechanism. METHODS: HUVECs cultured in the presence of 10% fetal bovine serum were treated with ox-LDL (100 µg/mL), ox-LDL+0.1% dimethyl sulfoxide (DMSO), or ox-LDL+Danshenxinkun B (100 ng/mL, dissolved in DMSO) for 24 h. The changes in lactate dehydrogenase (LDH) release was detected, and qRT-PCR was used to detect the mRNA expressions of nuclear factor-κB1 (NF-κB1), nucleotide binding oligomerization domain-like receptor family pyrin domain protein 3 (NLRP3), gasdermin D (GSDMD) and interleukin- 1ß (IL-1ß). The protein expressions of NF-κB1, NLRP3, caspase-1, IL-1ß and GSDMD-N were detected with Western blotting. Immunofluorescence assay was performed to examine the changes in GSDMD expression in the cells. RESULTS: Compared with the normal control cells, the cells treated with ox-LDL alone or in combination with DMSO exhibited significantly increased LDH release, mRNA expressions of NF-κB1, NLRP3, GSDMD, and IL- 1ß and the protein levels of NF-κB1, NLRP3, IL- 1ß, GSDMD-N and caspase-1 (P<0.01), which were all significantly lowered by treatment with Danshenxinkun B (P<0.05 or 0.01). Danshenxinkun B treatment significantly inhibited GSDMD expression on the cell membrane and restricted its entry into the cell nucleus. CONCLUSION: Danshenxinkun B alleviates ox-LDL-induced HUVEC injury possibly by suppressing pyroptosis mediated by NLRP3 inflammatory bodies and inhibiting the NF-κB/NLRP3 signaling pathway.


Assuntos
NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Piroptose , Dimetil Sulfóxido , Células Endoteliais da Veia Umbilical Humana , Lipoproteínas LDL/efeitos adversos , Caspase 1 , RNA Mensageiro
10.
BMC Nephrol ; 24(1): 286, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773103

RESUMO

BACKGROUND: Endothelial dysfunction is common in patients undergoing chronic haemodialysis, and is a major cause of posterior reversible encephalopathy syndrome (PRES). Recently, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been shown to cause endothelial dysfunction by infecting vascular endothelial cells. Several cases of neurological complications in patients without kidney dysfunction, and only a few cases in patients with chronic kidney disease, have been reported in the literature. However, no previous report has yet described PRES associated with SARS-CoV-2 infection among patients undergoing maintenance dialysis. CASE PRESENTATION: A 54-year-old woman undergoing maintenance haemodialysis was admitted to our hospital for status epilepticus. She had developed end-stage kidney disease (ESKD) secondary to diabetic nephropathy. Seven days prior to admission, she had developed fever and was diagnosed with COVID-19. Subsequently her blood pressure increased from 160/90 mmHg to 190/100 mmHg. On admission, she presented with severe hypertension (> 220/150 mmHg), unconsciousness, and epilepticus. CT tomography revealed no signs of brain haemorrhage. Cranio-spinal fluid (CSF) examination revealed no signs of encephalitis, and CSF polymerase chain reaction (PCR) for SARS-CoV-2 was negative. MRI findings revealed focal T2/FLAIR hyperintensity in the bilateral parietooccipital regions, leading to the diagnosis of PRES. Deep sedation and strict blood pressure control resulted in a rapid improvement of her symptoms, and she was discharged without sequelae. CONCLUSIONS: We report the first case of PRES associated with SARS-CoV-2 infection in a patient undergoing maintenance haemodialysis. Patients undergoing maintenance haemodialysis are at high risk of PRES because of several risk factors. SARS-CoV-2 infection causes direct invasion of endothelial cells by binding to angiotensin-converting enzyme 2 (ACE2), initiating cytokine release, and hypercoagulation, leading to vascular endothelial cell injury and increased vascular leakage. In the present case, SARS-CoV-2 infection possibly be associated with the development of PRES.


Assuntos
COVID-19 , Síndrome da Leucoencefalopatia Posterior , Doenças Vasculares , Humanos , Feminino , Pessoa de Meia-Idade , Síndrome da Leucoencefalopatia Posterior/etiologia , Síndrome da Leucoencefalopatia Posterior/complicações , COVID-19/complicações , Células Endoteliais , SARS-CoV-2 , Diálise Renal/efeitos adversos , Doenças Vasculares/complicações
11.
Hum Cell ; 36(6): 1901-1914, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37632629

RESUMO

Endothelial cell injury is confirmed to be the initial step in the atherosclerosis (AS) process. Here, we tried to elucidate the role of liver kinase B1 (LKB1) and adenosine phosphate protein kinase (AMPK) in modulating vascular endothelial cells (VECs) in AS. High-fat feed (HFD)-induced AS rat models were prepared and treated with AMPK activator A-769662 alone or combined with chloroquine. An analysis of VEC injury, inflammation response, and autophagy followed it. The M1 linear ubiquitination of LKB1 was assessed by co-immunoprecipitation. The interaction between LKB1 and AMPK was analyzed. Primary aortic VECs were isolated and induced by LPS to verify the effects of LKB1 and AMPK on VEC injury in AS. Activation of AMPK reduced the VEC injury and inflammatory response of VECs and promoted autophagy caused by AS. LKB1 could regulate the activation of AMPK in AS. M1 linear ubiquitination enhanced LKB1 activity and increased AMPK activation to protect against VEC injury in AS, which was validated by in vitro experiments. Our current study highlighted that M1 linear ubiquitination of LKB1 may induce the activation of LKB1 to activate AMPK, which inhibited VEC injury in AS.

12.
Nephron ; 147 Suppl 1: 41-45, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37276843

RESUMO

Kidney transplant recipients are immunocompromised hosts at risk for comorbidity and mortality due to infection. Currently, there are no established guidelines for the management of immunosuppressed transplant recipients with coronavirus disease 2019 (COVID-19). The impact of COVID-19 and its therapeutic management on chronic active antibody-mediated rejection (CAAMR) are still unclear. Here, we report a case of CAAMR exacerbation with endarteritis and intimal fibrosis after COVID-19. A 41-year-old female kidney transplant recipient with CAAMR was admitted to a local hospital with moderately severe COVID-19. Her doses of tacrolimus and mycophenolate mofetil were reduced, and she was administered methylprednisolone pulse and antiviral drugs. This resulted in a good clinical course and she was discharged in 15 days. During and after hospitalization, the immunosuppressants were gradually returned to the baseline levels. However, about 1.5 months after discharge, the serum creatinine level became elevated. An indication kidney biopsy showed CAAMR with intimal fibrosis and endarteritis in all interlobular arteries. An increase of immunosuppressant led to a decrease of the serum creatinine level. Factors contributing to CAAMR with intimal fibrosis and endarteritis may include (1) insufficient immunosuppression due to changes in the levels of immunosuppressive; (2) overlap with endothelial cell injury caused by COVID-19, and (3) an immune-activated state associated with COVID-19. COVID-19 is a life-threatening disease that can result in unexpected changes in immunological status. Possible allograft rejection should be carefully managed in such patients.


Assuntos
COVID-19 , Endarterite , Transplante de Rim , Humanos , Feminino , Adulto , Transplante de Rim/métodos , Endarterite/tratamento farmacológico , Creatinina , Transplantados , Imunossupressores/efeitos adversos , Anticorpos , Fibrose , Rejeição de Enxerto
13.
Exp Cell Res ; 429(2): 113688, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37315759

RESUMO

Vascular endothelial cells (VECs) injury is the first step in the pathogenesis of atherosclerosis (AS). Mitochondrial dysfunction plays a significant role in VECs injury, but the underlying mechanisms are still unclear. Here, the human umbilical vein endothelial cells were exposed to 100 µg/mL oxidized low-density lipoprotein for 24 h to establish AS model in vitro. We reported that mitochondrial dynamics disorder is a prominent feature of VECs in AS models and associated with mitochondrial dysfunction. Moreover, the knockdown of dynamin-related protein 1 (DRP1) in AS model significantly alleviated the mitochondrial dynamics disorder and VECs injury. On the contrary, DRP1 overexpression significantly aggravated this injury. Interestingly, atorvastatin (ATV), a classical anti-atherosclerotic drug, prominently inhibited the expression of DRP1 in AS models and similarly alleviated the mitochondrial dynamics disorder and VECs injury in vitro and in vivo. At the same time, we found that ATV alleviated VECs damage but did not significantly reduce lipid concentration in vivo. Our findings provide a potential therapeutic target of AS and a new mechanism of the anti-atherosclerotic effect of ATV.


Assuntos
Aterosclerose , Dinaminas , Humanos , Atorvastatina/farmacologia , Atorvastatina/metabolismo , Atorvastatina/uso terapêutico , Dinaminas/genética , Dinaminas/metabolismo , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/prevenção & controle , Apoptose
14.
Discov Med ; 35(174): 36-44, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37024440

RESUMO

BACKGROUND: Cardiovascular disease, one of the most common types of disease in clinical practice today, carries a very high risk of disability and death. This research aims to examine genome-wide changes in injured human dermal microvascular endothelial cells (HDMECs) using the Ribonucleic Acid sequencing (RNA-Seq) technique, and to search for key genes influencing N6-methyladenosine (m6A) methylation, thus gaining new insights into future clinical diagnosis and treatment of cardiovascular diseases (CVDs) and laying a foundation for follow-up research. METHODS: Impaired HDMECs (injury group), established by endotoxin intervention, were analyzed by RNA-Seq for differentially expressed genes (DEGs) relative to normal HDMECs (control group). Then, DEGs that might be associated with m6A methylation were selected for expression blocking to observe m6A methylation alterations. The migration, angiogenesis, and inflammatory response of damaged HDMECs were detected by cell scratch assay, western blotting, and Enzyme-linked Immunosorbent Assay (ELISA) experiments, respectively. RESULTS: In this study, 20 DEGs were screened out from the two groups by RNA-Seq, of which 17 were up-regulated and 3 were down-regulated. The C-C motif chemokine receptor 10 (CCR10) was selected for subsequent analysis. Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) identified elevated CCR10 expression and reduced m6A methylation levels in the injury group (p < 0.05). After blocking CCR10 expression in damaged HDMECs by BI6901 (a CCR10 specific blocker) m6A methylation, cell activity, vascular endothelial growth factor A (VEGFA) and CD31 protein expression, as well as relative length and branches of tube formation were found to be increased compared with the injury group, while the levels of inflammatory factors interleukin-1 (IL-1), interleukin-1 (IL-6) and tumor necrosis factor-α (TNF-α) were decreased (p < 0.05). CONCLUSIONS: Blocking CCR10 expression can activate m6A methylation, promote cell activity, inhibit inflammatory reactions and alleviate HDMEC injury, which may become a breakthrough in future diagnosis and treatment of cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Fator A de Crescimento do Endotélio Vascular , Humanos , Células Endoteliais , Metilação , Expressão Gênica , Quimiocinas , Receptores CCR10
15.
Molecules ; 28(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770995

RESUMO

(1) Objective: Traditional Chinese medicine (TCM) plays an important role in the treatment of numerous illnesses. As a classic Chinese medicine, Wendan Decoction (WDD) encompasses a marvelous impact on the remedy of hyperlipidemia. It is known that hyperlipidemia leads to cardiovascular injury, therefore anti-vascular endothelial cell injury (AVECI) may be an underlying molecular mechanism of WDD in the cure of hyperlipidemia. However, there is no relevant research on the effect of WDD on vascular endothelial cells and its pharmacodynamic substances. Therefore, the purpose of this study was to investigate the protective effect of WDD on vascular endothelial cells. (2) Methods: The chemical constituents of WDD were determined by LC-MS/MS technology. The protective effects of 16 batches of WDD on samples from human umbilical vein endothelial cells (HUVECs) were evaluated. Finally, gray relation analysis (GRA) and partial least squares regression (PLSR) were used to analyze the potential correlation between chemical ingredients and AVECI. (3) Results: The results indicated that WDD had apparent protective effect on endothelial cells, and pharmacological properties in 16 batches of WDD tests were apparently discrepant. The GRA and PLSR showed that trigonelline, liquiritin, hesperidin, hesperetin, scopoletin, morin, quercetin, isoliquiritigenin, liquiritigenin and formononetin may be the active ingredients of AVECI in WDD. (4) Conclusions: WDD has a protective effect on endothelial cell injury induced by palmitic acid, which may be related to its component content. This method was suitable for the search of active components in classical TCM.


Assuntos
Medicamentos de Ervas Chinesas , Hiperlipidemias , Humanos , Ácido Palmítico/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Medicamentos de Ervas Chinesas/química , Medicina Tradicional Chinesa , Células Endoteliais da Veia Umbilical Humana , Hiperlipidemias/tratamento farmacológico
16.
China Pharmacy ; (12): 1524-1528, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-976282

RESUMO

The injury of vascular endothelial cells is not only the initial condition to promote the occurrence of early atherosclerosis (AS) plaques, but also an important link in the pathogenesis of AS. The microRNA (miRNA), as an important medium of intercellular communication and gene regulatory factor, can affect vascular endothelial function and participate in the development of AS. The molecular mechanism of miRNA’s multi-target intervention in vascular endothelial cell injury has become a hot topic in the research of cardiovascular diseases. Monomers of traditional Chinese medicines such as ginsenoside Rb2 and paeonol, as well as traditional Chinese medicine for resolving phlegm and removing blood stasis could regulate miRNA to improve endothelial cell inflammation; astragaloside Ⅳ, dihydromyricetin and notoginsenoside could target miRNA and inhibit vascular endothelial oxidative stress; Danhong injection, Jianpi qutan and huayu prescription and paeonol could affect endothelial autophagy through miRNA; resveratrol, Bushen huoxue formula and Bushen tongmai formula could inhibit vascular endothelial aging by miRNA; dendrobine played an active role in regulating miRNA and improving endoplasmic reticulum stress. In the future, more in- depth research is needed on the effectiveness, mechanism of action, diagnosis and treatment plans, and safety of targeted regulation of miRNA for AS therapy by traditional Chinese medicine.

17.
Exp Ther Med ; 24(6): 737, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36478888

RESUMO

Atherosclerosis (AS) is an important cause of common vascular diseases. The present study aimed to investigate whether Krüppel like transcription factor 2 (KLF2) could protect against endothelial cell injury and promote cholesterol excretion from foam cells through autophagy. An in vitro AS model was established by the induction of oxidized low-density lipoprotein (ox-LDL) for human umbilical vein endothelial cells (HUVECs). Phorbol-12-myristate-13-acetate (PMA)-induced THP-1 monocytes were differentiated into macrophages which were transformed to foam cells by ox-LDL incubation. The expression of KLF2, adhesion factors, cholesterol efflux regulatory proteins and autophagy-associated proteins in HUVECs or/and THP-1 monocytes was detected by reverse transcription-quantitative PCR and western blot analysis. HUVECs viability, levels of inflammatory factors, formation of foam cells and cholesterol efflux were respectively analyzed by CCK-8 assay, ELISA and Oil Red O staining. KLF2 expression was decreased in ox-LDL-induced HUVECs. KLF2 overexpression attenuated ox-LDL-induced endothelial cell injury, as evidenced by increased cell viability and decreased levels of TNF-α, IL-6, IL-1ß, intercellular adhesion molecule 1, vascular cell adhesion molecule-1 and E-selectin. In addition, KLF2 overexpression inhibited the formation of THP-1 macrophage-derived foam cells and promoted lipid efflux. ox-LDL induced decreased KLF2 expression in THP-1 macrophage derived foam cells and KLF2 overexpression activated Nrf2 expression and enhanced autophagy. In conclusion, KLF2 alleviated endothelial cell injury and inhibited the formation of THP-1 macrophage-derived foam cells by activating Nrf2 and enhancing autophagy.

18.
Am J Transl Res ; 14(9): 6596-6603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247301

RESUMO

OBJECTIVE: To investigate the mechanism of factor-alpha-related protein 9 (CTRP9) in mitigating the vascular endothelial cell (VEC) injury in patients with hypertensive heart disease (HHD) by the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) axis. METHODS: 43 patients with HHD admitted to our hospital from February 2018 to February 2019 were included in the study group, and another 39 healthy controls from the same period were the reference group. The total protein of transfected VECs was detected by western blotting, and the proliferation rate of the VECs was determined by Cell Counting Kit-8 (CCK-8). The levels of CTRP9, high sensitivity C-reactive protein (hs-CRP), thrombomodulin (TM), and von Willebrand factor (vWF) were detected by ELISA. The mechanism of CTRP9 in alleviating VEC injury in HHD patients by inhibiting the PI3K/Akt/mTOR axis was analyzed. RESULTS: The two groups did not differ in terms of their general data (P>0.05). The CTRP9 level in the study group was higher than in the reference group (P<0.001). Study group had higher levels of endothelin-1 (ET-1), hs-CRP, TM, vWF (P<0.001), and markedly lower phospho-PI3K (p-PI3K) and phospho-protein kinase B (p-AKT) protein levels (P<0.05). Compared to the reference group, the proliferation capacity of trophoblast cells in the study group was sharply decreased (P<0.05). The study group had lower phosphorylation levels of PI3K, Akt, and mTOR proteins than the reference group (P<0.05). Phosphorylation of Akt occurred at 15 min and reached its peak at 30 min. A drastically reduced invasion capacity of VECs was observed in the study group compared to the reference group (P<0.05). CONCLUSIONS: CTRP9 mitigates VEC injury in patients with HHD by inhibiting the PI3K/Akt/mTOR axis.

19.
J Inflamm Res ; 15: 3207-3217, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668916

RESUMO

Purpose: Carotid artery stenosis (CAS) is a leading cause of cerebral infarction, its early diagnosis and intervention are necessary. In light of the important role of microRNAs (miRNAs) in cerebrovascular disease, this study aimed to investigate the expression pattern and clinical significance of serum miR-455-5p in the onset and development of CAS, as well as its underlying mechanism. Patients and Methods: Seventy patients with asymptomatic CAS were recruited, and the development of cerebral ischemia events (CIEs) was recorded during the five-years follow-up. qRT-PCR was performed for the serum miR-455-5p detection. ROC curve was applied for the diagnostic ability evaluation. By constructing multivariable logistic or cox regression model, odds ratio (OR) or hazard ratio (HR) were calculated to assess the impact of each risk factor on independent variables. Human aortic endothelial cells (HAECs) were treated with ox-LDL to induce endothelial cell damage. The role of miR-455-5p in the cell viability, apoptosis, oxidative stress and inflammatory response was detected. Results: Serum miR-455-5p showed low expression in cases with CAS, and had an independent influence on the degree of CAS. The diagnostic ability of serum miR-455-5p to diagnose CAS was determined via ROC curve, with the AUC of 0.927. During follow-up, patients with low miR-455-5p expression showed high incidence of CIEs. In multivariable cox regression model, degree of CAS and miR-455-5p were significant risk factors for the development of CIEs in the CAS patients. In vitro, miR-455-5p was at a low expression in HAECs cell models and can prevent cells from ox-LDL induced cell apoptosis, oxidative stress and inflammatory response. SOCS3 was a target gene of miR-455-5p and upregulated in ox-LDL treated cells. Conclusion: Down-regulated expression of serum miR-455-5p is hopeful to be used as a biomarker for the early diagnosis of CAS. MiR-455-5p is an independent risk factor for the degree of CAS, and has a certain predictive value for the development of CIEs. That might be associated with the protective role of miR-455-5p against ox-LDL-induced endothelial cell injury via targeting SOCS3.

20.
Bioengineered ; 13(5): 12558-12571, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35603423

RESUMO

Atherosclerosis (AS) is one of the most common vascular diseases. The endothelial injury theory indicates that atherosclerotic plaque is the result of endothelial cell injury. Recent studies have revealed that circRNAs are abnormally expressed in AS cell models, which are implicated in the regulation of various cell behaviors. In this study, we showed the downregulation of circNMD3 in AS, and studied its role in the model of endothelial cell injury by proliferation and apoptosis assay, caspase 3 activity assay, and ELISA. We also identified and validated its downstream targets by luciferase reporter assay, RNA pull-down experiment, Western blot, and RT-qPCR. CircNMD3 overexpression or miR-498 knockdown could inhibit the ox-LDL (oxidatively modified low-density lipoprotein)-induced injury in HUVEC (human umbilical vein endothelial cells), while the co-transfection of miR-498 mimic or siRNA targeting BAMBI (BMP and activin membrane bound inhibitor) attenuated the protective effect of circNMD3 overexpression. Overall, our data suggest that circNMD3 regulates the miR-498/BAMBI axis in endothelial cells to protect ox-LDL-induced damages. As a molecular sponge of miR-498, circNMD3 regulates the level of miR-498, which in turn modulates BAMBI expression and suppresses ox-LDL-induced injury in HUVECs.


Assuntos
Aterosclerose , MicroRNAs , Ativinas/metabolismo , Ativinas/farmacologia , Apoptose/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Proliferação de Células/genética , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Lipoproteínas LDL/metabolismo , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...