RESUMO
Protein folding and evolution are intimately linked phenomena. Here, we revisit the concept of exons as potential protein folding modules across a set of 38 abundant and conserved protein families. Taking advantage of genomic exon-intron organization and extensive protein sequence data, we explore exon boundary conservation and assess the foldon-like behavior of exons using energy landscape theoretic measurements. We found deviations in the exon size distribution from exponential decay indicating selection in evolution. We show that when taken together there is a pronounced tendency to independent foldability for segments corresponding to the more conserved exons, supporting the idea of exon-foldon correspondence. While 45% of the families follow this general trend when analyzed individually, there are some families for which other stronger functional determinants, such as preserving frustrated active sites, may be acting. We further develop a systematic partitioning of protein domains using exon boundary hotspots, showing that minimal common exons correspond with uninterrupted alpha and/or beta elements for the majority of the families but not for all of them.
Assuntos
Éxons , Dobramento de Proteína , Éxons/genética , Humanos , Proteínas/genética , Proteínas/química , Evolução Molecular , Íntrons/genéticaRESUMO
Molecular dynamics simulations have proved extremely useful in investigating the functioning of proteins with atomic-scale resolution. Many applications to the study of RNA also exist, and their number increases by the day. However, implementing MD simulations for RNA molecules in solution faces challenges that the MD practitioner must be aware of for the appropriate use of this tool. In this chapter, we present the fundamentals of MD simulations, in general, and the peculiarities of RNA simulations, in particular. We discuss the strengths and limitations of the technique and provide examples of its application to elucidate small RNA's performance.
Assuntos
Simulação de Dinâmica Molecular , Proteínas , RNA Mensageiro , Proteínas/metabolismo , RNA/genética , Conformação ProteicaRESUMO
The discovery of new protein topologies with entanglements and loop-crossings have shown the impact of local amino acid arrangement and global three-dimensional structures. This phenomenon plays a crucial role in understanding how protein structure relates to folding and function, affecting the global stability, and biological activity. Protein entanglements encompassing knots and non-trivial topologies add complexity to their folding free energy landscapes. However, the initial native contacts driving the threading event for entangled proteins remains elusive. The Pierced Lasso Topology (PLT) represents an entangled topology where a covalent linker creates a loop in which the polypeptide backbone is threaded through. Compared to true knotted topologies, PLTs are simpler topologies where the covalent-loop persists in all conformations. In this work, the PLT protein leptin, is used to visualize and differentiate the preference for slipknotting over plugging transition pathways along the folding route. We utilize the Energy Landscape Visualization Method (ELViM), a multidimensional projection technique, to visualize and distinguish early threaded conformations that cannot be observed in an in vitro experiment. Critical contacts for the leptin threading mechanisms were identified where the competing pathways are determined by the formation of a hairpin loop in the unfolded basin. Thus, prohibiting the dominant slipknotting pathway. Furthermore, ELViM offers insights into distinct folding pathways associated with slipknotting and plugging providing a novel tool for de novo design and in vitro experiments with residue specific information of threading events in silico.
Assuntos
Leptina , Dobramento de Proteína , Modelos Moleculares , Leptina/química , Software , Peptídeos , Conformação Proteica , TermodinâmicaRESUMO
Phytases [myo-inositol(1,2,3,4,5,6) hexakisphosphate phosphohydrolases] are phytate-specific phosphatases not present in monogastric animals. Nevertheless, they are an essential supplement to feeding such animals and for human special diets. It is crucial, hence, the biotechnological use of phytases with intrinsic stability and activity at the acid pHs from gastric environments. Here we use Metadynamics (METADY) simulations to probe the conformational space of the Aspergillus nidulans phytase and the differential effects of pH and glycosylation in this same space. The results suggest that strategic combinations of pH and glycosylation affect the stability of native-like conformations and alternate these structures from a metastable to a stable profile. Furthermore, the protein segments previously reported as more thermosensitive in phytases from this family present a pivotal role in the conformational changes at different conditions, especially H2, H5-7, L8, L10, L12, and L17. Also, the glycosylations and the pH-dependent charge balance modulate the mobility and interactions at these same regions, with consequences for the surface solvation and active site exposition. Finally, although the glycosylations have stabilized the native structure and improved the substrate docking at all the studied pHs, the data suggest a higher phytate receptivity at catalytic poses for the unglycosylated structure at pH 6.5 and the glycosylated one at pH 4.5. This behavior agrees with the exact change in optimum pH reported for this enzyme, expressed on low or high glycosylating systems. We hope the results and insights presented here will be helpful in future approaches for rational engineering of technologically promising phytases and intelligent planning of their heterologous expression systems and conditions for use.Communicated by Ramaswamy H. Sarma.
RESUMO
The flexibility of the ATP synthase's ß subunit promotes its role in the ATP synthase rotational mechanism, but its domains stability remains unknown. A reversible thermal unfolding of the isolated ß subunit (Tß) of the ATP synthase from Bacillus thermophilus PS3, tracked through circular dichroism and molecular dynamics, indicated that Tß shape transits from an ellipsoid to a molten globule through an ordered unfolding of its domains, preserving the ß-sheet residual structure at high temperature. We determined that part of the stability origin of Tß is due to a transversal hydrophobic array that crosses the ß-barrel formed at the N-terminal domain and the Rossman fold of the nucleotide-binding domain (NBD), while the helix bundle of the C-terminal domain is the less stable due to the lack of hydrophobic residues, and thus the more flexible to trigger the rotational mechanism of the ATP synthase.
Assuntos
Temperatura Alta , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Trifosfato de Adenosina/química , Dicroísmo Circular , Dobramento de Proteína , Desnaturação ProteicaRESUMO
Ankyrin (ANK) repeat proteins are coded by tandem occurrences of patterns with around 33 amino acids. They often mediate protein-protein interactions in a diversity of biological systems. These proteins have an elongated non-globular shape and often display complex folding mechanisms. This work investigates the energy landscape of representative proteins of this class made up of 3, 4 and 6 ANK repeats using the energy-landscape visualisation method (ELViM). By combining biased and unbiased coarse-grained molecular dynamics AWSEM simulations that sample conformations along the folding trajectories with the ELViM structure-based phase space, one finds a three-dimensional representation of the globally funnelled energy surface. In this representation, it is possible to delineate distinct folding pathways. We show that ELViMs can project, in a natural way, the intricacies of the highly dimensional energy landscapes encoded by the highly symmetric ankyrin repeat proteins into useful low-dimensional representations. These projections can discriminate between multiplicities of specific parallel folding mechanisms that otherwise can be hidden in oversimplified depictions.
RESUMO
Protein synthesis by the ribosome is coordinated by an intricate series of large-scale conformational rearrangements. Structural studies can provide information about long-lived states, however biological kinetics are controlled by the intervening free-energy barriers. While there has been progress describing the energy landscapes of bacterial ribosomes, very little is known about the energetics of large-scale rearrangements in eukaryotic systems. To address this topic, we constructed an all-atom model with simplified energetics and performed simulations of subunit rotation in the yeast ribosome. In these simulations, the small subunit (SSU; ~1MDa) undergoes spontaneous and reversible rotations (~8°). By enabling the simulation of this rearrangement under equilibrium conditions, these calculations provide initial insights into the molecular factors that control dynamics in eukaryotic ribosomes. Through this, we are able to identify specific inter-subunit interactions that have a pronounced influence on the rate-limiting free-energy barrier. We also show that, as a result of changes in molecular flexibility, the thermodynamic balance between the rotated and unrotated states is temperature-dependent. This effect may be interpreted in terms of differential molecular flexibility within the rotated and unrotated states. Together, these calculations provide a foundation, upon which the field may begin to dissect the energetics of these complex molecular machines.
RESUMO
ß-glucosidases (EC 3.2.1.21) have been described as essential to second-generation biofuel production. They act in the last step of the lignocellulosic saccharification, cleaving the ß - 1,4 glycosidic bonds in cellobiose to produce two molecules of glucose. However, ß-glucosidases have been described as strongly inhibited by glucose, causing an increment of cellobiose concentration. Also, cellobiose is an inhibitor of other enzymes used in this process, such as exoglucanases and endoglucanases. Hence, the engineering of thermostable and glucose-tolerant ß-glucosidases has been targeted by many studies. In this study, we performed high sampling accelerated molecular dynamics for a wild glucose-tolerant GH1 ß-glucosidase (Bgl1A), a wild non-tolerant (Bgl1B), and a set of glucose-tolerant Bgl1B's mutants: V302F, N301Q/V302F, F172I, V227M, G246S, T299S, and H228T. Our results suggest that point mutations promissory to induce glucose tolerance trend to enhance the mobility of the flexible loops around the active site. Mutations affected B and C loops regions, and an αß-hairpin motif between them. Conformational clusters and free energy landscape profiles suggest that the mobility acquired by mutants allows a higher closure of the substrate channel. This closure is compatible with a higher impedance for glucose entrance and stimulus of its withdrawal. Based on mutants' structural analyses, we inferred that both the direct stereochemical effect on the glucose path and the changes in the mobility affect glucose tolerance. We hope these results be useful for the rational design of glucose-tolerant and industrially promising enzymes.Communicated by Ramaswamy H. Sarma.
Assuntos
Celobiose , Mutação Puntual , Biocombustíveis , Glucose , Especificidade por Substrato , beta-Glucosidase/genética , beta-Glucosidase/metabolismoRESUMO
ß-Glucosidases are enzymes with high importance for many industrial processes, catalyzing the last and limiting step of the conversion of lignocellulosic material into fermentable sugars for biofuel production. However, ß-glucosidases are inhibited by high concentrations of the product (glucose), which limits the biofuel production on an industrial scale. For this reason, the structural mechanisms of tolerance to product inhibition have been the target of several studies. In this study, we performed in silico experiments, such as molecular dynamics (MD) simulations, free energy landscape (FEL) estimate, Poisson-Boltzmann surface area (PBSA), and grid inhomogeneous solvation theory (GIST) seeking a better understanding of the glucose tolerance and inhibition mechanisms of a representative GH1 ß-glucosidase and a GH3 one. Our results suggest that the hydrophobic residues Y180, W350, and F349, as well the polar one D238 act in a mechanism for glucose releasing, herein called "slingshot mechanism", dependent also on an allosteric channel (AC). In addition, water activity modulation and the protein loop motions suggest that GH1 ß-Glucosidases present an active site more adapted to glucose withdrawal than GH3, in consonance with the GH1s lower product inhibition. The results presented here provide directions on the understanding of the molecular mechanisms governing inhibition and tolerance to the product in ß-glucosidases and can be useful for the rational design of optimized enzymes for industrial interests.
Assuntos
Glucose/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , beta-Glucosidase/química , Aminoácidos , Domínio Catalítico , Glucose/metabolismo , Cinética , Ligantes , Conformação Molecular , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , beta-Glucosidase/metabolismoRESUMO
Staphylococcus aureus is an important cause of resistant healthcare-associated infections. It has been shown that the wall teichoic acid (WTA) may be an important drug target acting on antibiotic-resistant cells. The UDP-N-acetylglucosamine 2-epimerase, MnaA, is one of the first enzymes on the pathway for the biosynthesis of the WTA. Here, detailed molecular dynamics simulations of S. aureus MnaA were used to characterize the conformational changes that occur in the presence of UDP and UDP-GlcNac and also the energetic landscape associated with these changes. Using different simulation techniques, such as ABMD and GAMD, it was possible to assess the energetic profile for the protein with and without ligands in its active site. We found that there is a dynamic energy landscape that has its minimum changed by the presence of the ligands, with a closed structure of the enzyme being more frequently observed for the bound state while the unbound enzyme favors an opened conformation. Further structural analysis indicated that positively charged amino acids associated with UDP and UDP-GlcNac interactions play a major role in the enzyme opening movement. Finally, the energy landscape profiled in this work provides important conclusions for the design of inhibitor candidates targeting S. aureus MnaA.
Assuntos
Infecções Estafilocócicas/enzimologia , Staphylococcus aureus/enzimologia , Ácidos Teicoicos/química , Sequência de Aminoácidos , Aminoácidos/química , Carboidratos Epimerases/química , Carboidratos Epimerases/metabolismo , Carboidratos Epimerases/ultraestrutura , Domínio Catalítico/efeitos dos fármacos , Parede Celular/enzimologia , Farmacorresistência Bacteriana/genética , Metabolismo Energético/genética , Glucosamina/análogos & derivados , Glucosamina/química , Humanos , Ligantes , Simulação de Dinâmica Molecular , Conformação Proteica/efeitos dos fármacos , Domínios Proteicos/genética , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Difosfato de Uridina/químicaRESUMO
A statistical analysis of circa 20,000 X-ray structures evidenced the effects of temperature of data collection on protein intramolecular distances and degree of compaction. Identical chains with data collected at cryogenic ultralow temperatures (≤160K) showed a radius of gyration (Rg) significantly smaller than at moderate temperatures (≥240K). Furthermore, the analysis revealed the existence of structures with a Rg significantly smaller than expected for cryogenic temperatures. In these ultracompact cases, the unusually small Rg could not be specifically attributed to any experimental parameter or crystal features. Ultracompaction involves most atoms and results in their displacement toward the center of the molecule. Ultracompact structures on average have significantly shorter van der Waals and hydrogen bonds than expected for ultralow temperature structures. In addition, the number of van der Waals contacts was larger in ultracompact than in ultralow temperature structures. The structure of these ultracompact states was analyzed in detail and the implication and possible causes of the phenomenon are discussed.