RESUMO
Bacteriocins from Gram-positive bacteria have been proposed as natural food preservative and there is a need for large-scale production for commercial purposes. The aim of the present work is to evaluate whey, a cheese industrial by-product, for the production and microencapsulation of enterocin CRL35. Whey proved to be a promising basal medium for bacterial growth although the bacteriocin production was quite low. However, it could be much favored with the addition of yeast extract at concentrations as low as 0.5%. Besides improving bacteriocin production, this peptide was successfully microencapsulated by spray drying using whey protein concentrate and a chitosan derivative as wall materials. Microcapsules averaging 10 ± 5 µm diameter were obtained, with good structural integrity and high antimicrobial activity with a stability of at least 12 weeks at 4°C. In summary, sustainable bacteriocin production and microencapsulation was achieved recycling whey or its derivatives. In addition, the formulation owns high antimicrobial activity with a long shelf life. The development of a food preservative may represent a green solution for handling whey.
Assuntos
Bacteriocinas , Conservantes de Alimentos , Antibacterianos/farmacologia , Bacteriocinas/metabolismo , Laticínios , Conservantes de Alimentos/farmacologiaRESUMO
The present paper describes the generation of derivatives from the hybrid peptide called Ent35-MccV, active against Gram-positive and Gram-negative bacteria. This peptide has a triple glycine hinge region between enterocin CRL35 and microcin V. In order to obtain variants of Ent35-MccV with greater biotechnological potential, a saturation mutagenesis was carried out in the hinge region. As a result, we obtained a bank of E. coli strains expressing different mutated hybrid bacteriocins in the central position of the hinge region. From all these variants, we found that the one bearing a tyrosine in the central region of the hinge (Ent35-GYG-MccV) is 2-fold more active against E. coli and 4-fold more active against Listeria than the original peptide Ent35-MccV. This derivative was purified and characterized. The development and evaluation of alternative hinges for Ent35-MccV represents a step forward in the bioengineering of antimicrobial peptides. This approach fosters the rational design of peptides with enhanced antimicrobial activity.
Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bacteriocinas/farmacologia , Escherichia coli/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Sequência de Aminoácidos , Anti-Infecciosos/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Mutagênese Sítio-Dirigida , Mutação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologiaRESUMO
BACKGROUND: Enterocin CRL35 is a class IIa bacteriocin with anti-Listeria activity. Resistance to these peptides has been associated with either the downregulation of the receptor expression or changes in the membrane and cell walls. The scope of the present work was to characterize enterocin CRL35 resistant Listeria strains with MICs more than 10,000 times higher than the MIC of the WT sensitive strain. METHODS: Listeria monocytogenes INS7 resistant isolates R2 and R3 were characterized by 16S RNA gene sequencing and rep-PCR. Bacterial growth kinetic was studied in different culture media. Plasma membranes of sensitive and resistant bacteria were characterized by FTIR and Langmuir monolayer techniques. RESULTS: The growth kinetic of the resistant isolates was slower as compared to the parental strain in TSB medium. Moreover, the resistant isolates barely grew in a glucose-based synthetic medium, suggesting that these cells had a major alteration in glucose transport. Resistant bacteria also had alterations in their cell wall and, most importantly, membrane lipids. In fact, even though enterocin CRL35 was able to bind to the membrane-water interface of both resistant and parental sensitive strains, this peptide was only able to get inserted into the latter membranes. CONCLUSIONS: These results indicate that bacteriocin receptor is altered in combination with membrane structural modifications in enterocin CRL35-resistant L. monocytogenes strains. GENERAL SIGNIFICANCE: Highly enterocin CRL35-resistant isolates derived from Listeria monocytogenes INS7 have not only an impaired glucose transport but also display structural changes in the hydrophobic core of their plasma membranes.
Assuntos
Bacteriocinas/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Bacteriocinas/metabolismo , Membrana Celular/química , Farmacorresistência Bacteriana , Glucose/metabolismo , Listeria monocytogenes/crescimento & desenvolvimento , Lipídeos de Membrana/análise , Testes de Sensibilidade MicrobianaRESUMO
Bacteriocins and microcins are ribosomally synthesized antimicrobial peptides that are usually active against phylogenetically related bacteria. Thus, bacteriocins are active against Gram-positive while microcins are active against Gram-negative bacteria. The narrow spectrum of action generally displayed by bacteriocins from lactic acid bacteria represents an important limitation for the application of these peptides as clinical drugs or as food biopreservatives. The present study describes the design and expression of a novel recombinant hybrid peptide combining enterocin CRL35 and microcin V named Ent35-MccV. The chimerical bacteriocin displayed antimicrobial activity against enterohemorrhagic Escherichia coli and Listeria monocytogenes clinical isolates, among other pathogenic bacteria. Therefore, Ent35-MccV may find important applications in food or pharmaceutical industries.