Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 587
Filtrar
1.
Reprod Toxicol ; : 108658, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972363

RESUMO

This study aimed to evaluate associations between prenatal and childhood exposure to phthalates and prenatal exposure to polychlorinated biphenyls (PCBs) and the development of 4-year-old children. Urinary metabolites of five phthalates were measured in women upon delivery, as well as serum concentrations of four PCB congeners. Postnatal phthalate metabolites were measured from children's urine obtained at the time of developmental assessment. The primary outcome was cognitive function as evaluated by the Wechsler Preschool and Primary Scale of Intelligence (WPPSI-III) administered at 4 years. Secondary outcomes were motor function and response to sensory stimuli as evaluated by the Developmental Coordination Disorder Questionnaire (DCDQ) and Short Sensory Profile (SSP) that the mothers filled out, respectively. The study included 57 mother-child pairs. Higher maternal phthalate metabolite concentrations were inversely associated with WPPSI-III scores among boys and not among girls. After using linear regression models and controlling for confounding variables, we found that higher levels of monobenzyl phthalate (MBzP) were the ones associated with lower WPPSI-III scores (p=0.004, 95%CI [-14.18; -3.16]), lower DCDQ scores (p=0.007, 95%CI [-6.08; -1.17] and lower SSP scores (p=0.004, 95%CI [-7.47; -1.79]). No association was found between child urinary phthalate metabolite concentrations or maternal PCB blood concentrations and developmental function. These findings indicate that higher prenatal phthalate metabolite levels may be associated with deficits in neurologic development of young boys.

2.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892372

RESUMO

Organochlorine pesticides (OCPs) are a class of environmentally persistent and bioaccumulative pollutants. Among these, ß-hexachlorocyclohexane (ß-HCH) is a byproduct of lindane synthesis, one of the most worldwide widespread pesticides. ß-HCH cellular mechanisms inducing chemical carcinogenesis correspond to many of those inducing chemoresistance, in particular, by the activation of signal transducer and activator of transcription 3 (STAT3) signaling pathways. For this purpose, four cell lines, representative of breast, lung, prostate, and hepatocellular cancers, were treated with ß-HCH, specific tyrosine kinase inhibitors (TKIs), and a STAT3 inhibitor. All cell samples were analyzed by a viability assay, immunoblotting analysis, a wound-healing assay, and a colony formation assay. The results show that ß-HCH reduces the efficacy of TKIs. The STAT3 protein, in this context, plays a central role. In fact, by inhibiting its activity, the efficacy of the anticancer drug is restored. Furthermore, this manuscript aimed to draw the attention of the scientific and socio-healthcare community to the issue of prolonged exposure to contaminants and their impact on drug efficacy.


Assuntos
Antineoplásicos , Hexaclorocicloexano , Inibidores de Proteínas Quinases , Fator de Transcrição STAT3 , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Hexaclorocicloexano/farmacologia , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
3.
Sci Rep ; 14(1): 12899, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839853

RESUMO

While volatile organic compounds (VOCs) impair various organs, their influence on hearing loss (HL) has not been extensively researched. We aimed to identify the association between VOCs and HL or high-frequency hearing loss (HFHL). We extracted data on age, sex, pure tone audiometry, hypertension, occupational noise exposure, and creatinine-corrected urine VOC metabolite concentrations from the eighth Korea National Health and Nutrition Survey. Among the VOC metabolites, N-acetyl-S-(benzyl)-L-cysteine (BMA, P = 0.004), N-acetyl-S-(phenyl)-L-cysteine (SPMA, P = 0.027), and N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (DHBMA, P < 0.001) showed associations with HL. Additionally, HFHL exhibited significant associations with BMA (P = 0.005), 3- and 4-methylhippuric acid (3, 4 MHA, P = 0.049), mandelic acid (MA, P = 0.015), SPMA (P < 0.001), N-acetyl-S-(3-hydroxypropyl)-L-cysteine (3-HPMA, P < 0.001), and DHBMA (P < 0.001). After controlling other factors, DHBMA were associated with HL (P = 0.021) and HFHL (P = 0.014) and exhibited a linear association with the mean hearing level (ß = 0.054, P = 0.024) and high-frequency hearing level (ß = 0.045, P = 0.037). Since 1,3-butadiene may act as an ototoxic material, early screening for workers exposed to 1,3-butadiene and reducing exposure to 1,3-butadiene in everyday life may be helpful to prevent further HL.


Assuntos
Butadienos , Perda Auditiva , Compostos Orgânicos Voláteis , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Perda Auditiva/induzido quimicamente , Perda Auditiva/etiologia , Compostos Orgânicos Voláteis/urina , Compostos Orgânicos Voláteis/efeitos adversos , República da Coreia/epidemiologia , Adulto , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Idoso , Inquéritos Nutricionais , Audiometria de Tons Puros
4.
Front Public Health ; 12: 1396147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846618

RESUMO

Introduction: Ever since the use of bisphenol A (BPA) has been restricted, concerns have been raised regarding the use of its substitutes, such as bisphenol S (BPS) and bisphenol F (BPF). Meanwhile, the EU European Food Safety Authority (EFSA) issued the new tolerable daily intake (TDI) after the latest re-risk assessment for BPA, which enforced the need for cumulative risk assessment in the population. This study was conducted to identify BPA and its substitute's exposure characteristics of the general Taiwanese population and estimate the cumulative risk of bisphenol exposure. Methods: Urine samples (N = 366 [adult, 271; minor, 95]) were collected from individuals who participated in the Taiwan Environmental Survey for Toxicants 2013. The samples were analyzed for BPA, BPS, and BPF through ultraperformance liquid chromatography-tandem mass spectrometry. Daily intake (DI) levels were calculated for each bisphenol. Hazard quotients (HQs) were calculated with the consideration of tolerable DI and a reference dose. Additionally, hazard index (HI; sum of HQs for each bisphenol) values were calculated. Results: Our study found that the median level of BPA was significantly higher in adults (9.63 µg/g creatinine) than in minors (6.63 µg/g creatinine) (p < 0.001). The DI of BPS was higher in female (0.69 ng/kg/day) than in male (0.49 ng/kg/day); however, the DIs of BPF and BPS were higher in boys (1.15 and 0.26 ng/kg/day, respectively) than in girls (0.57 and 0.20 ng/kg/day, respectively). Most HI values exceeded 1 (99% of the participants) after EFSA re-establish the TDI of BPA. Discussion: Our study revealed that the exposure profiles and risk of BPA and its substitute in Taiwanese varied by age and sex. Additionally, the exposure risk of BPA was deemed unacceptable in Taiwan according to new EFSA regulations, and food contamination could be the possible source of exposure. We suggest that the risk of exposure to BPA and its substitutes in most human biomonitoring studies should be reassessed based on new scientific evidence.


Assuntos
Compostos Benzidrílicos , Exposição Ambiental , Fenóis , Sulfonas , Humanos , Fenóis/urina , Fenóis/análise , Fenóis/toxicidade , Compostos Benzidrílicos/urina , Compostos Benzidrílicos/toxicidade , Feminino , Masculino , Taiwan , Adulto , Medição de Risco , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Criança , Pessoa de Meia-Idade , Adolescente , Sulfonas/análise , Adulto Jovem , Idoso , Pré-Escolar , Espectrometria de Massas em Tandem , Monitoramento Ambiental , Inquéritos e Questionários , Poluentes Ambientais/análise
5.
Curr Nutr Rep ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935249

RESUMO

PURPOSE OF REVIEW: Environmental pollutants in air, water, soil, and food are a significant concern due to their potential adverse effects on fetuses, newborns, babies, and children. These chemicals, which pass to fetuses and babies through trans-placental transfer, breast milk, infant formula, dermal transfer, and non-nutritive ingestion, can cause health problems during childhood. This review aims to discuss how exposure to various environmental pollutants in early life stages can disrupt reproductive health in children. RECENT FINDINGS: Environmental pollutants can affect Leydig cell proliferation and differentiation, decreasing testosterone production throughout life. This may result in cryptorchidism, hypospadias, impaired semen parameters, and reduced fertility. Although many studies on female reproductive health cannot be interpreted to support causal relationships, exposure to pollutants during critical windows may subsequently induce female reproductive diseases, including early or delayed puberty, polycystic ovary syndrome, endometriosis, and cancers. There is growing evidence that fetal and early-life exposure to environmental pollutants could affect reproductive health in childhood. Although diet is thought to be the primary route by which humans are exposed to various pollutants, there are no adopted nutritional interventions to reduce the harmful effects of pollutants on children's health. Therefore, understanding the impact of environmental contaminants on various health outcomes may inform the design of future human nutritional studies.

6.
Sci Rep ; 14(1): 13464, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866845

RESUMO

Environmental exposure to heavy metals and metalloids, originating from sources such as mining and manufacturing activities, has been linked to adverse renal effects. This cross-sectional study assessed children's exposure to these elements and its association with urinary kidney injury molecule-1 (KIM-1). We analyzed data from 99 school-aged children residing in nine localities within the state of Colima, Mexico, during the latter half of 2023. Levels of 23 metals/metalloids and urinary KIM-1 were measured using inductively coupled plasma mass spectrometry (ICP-MS) and enzyme-linked immunosorbent assay, respectively. Detectable levels of these contaminants were found in over 91% of participants, with varied exposure profiles observed across locations ( p = 0.019). After adjusting for confounding factors like gender, age, and locality, higher levels of six metals/metalloids (boron, cadmium, cesium, lithium, selenium, zinc) were significantly associated with increased KIM-1 levels. Tailored mitigation efforts are crucial to protect children from regional pollutant burdens. However, limitations exist, as our study did not capture all potential factors influencing heavy metal/metalloid and KIM-1 levels.


Assuntos
Exposição Ambiental , Receptor Celular 1 do Vírus da Hepatite A , Metais Pesados , Humanos , Criança , Feminino , Masculino , Estudos Transversais , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Receptor Celular 1 do Vírus da Hepatite A/análise , Metais Pesados/análise , Metais Pesados/urina , Exposição Ambiental/análise , Exposição Ambiental/efeitos adversos , México , Metaloides/urina , Metaloides/análise , Poluentes Ambientais/análise , Poluentes Ambientais/urina , Adolescente
7.
J Hazard Mater ; 474: 134644, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838520

RESUMO

Nanoplastics, as emerging pollutants, have harmful effects on living organisms and the environment, the mechanisms and extent of which remain unclear. Microalgae, as one of the most important biological groups in the food chain and sensitive environmental indicators to various pollutants, are considered a suitable option for investigating the effects of nanoplastics. In this study, the effects of polystyrene nanoplastics on the growth rate, dry weight, chlorophyll a and carotenoid levels, proline, and lipid peroxidation in the Spirulina platensis were examined. Three concentrations of 0.1, 1, and 10 mg L-1 of PSNPs were used alongside a control sample with zero concentration, with four repetitions in one-liter containers for 20 days under optimal temperature and light conditions. Various analyses, including growth rate, dry weight, proline, chlorophyll a and carotenoid levels, and lipid peroxidation, were performed. The results indicated that exposure to PSNP stress led to a significant decrease in growth rate, dry weight, and chlorophyll a and carotenoid levels compared to the control sample. Furthermore, this stress increased the levels of proline and lipid peroxidation in Spirulina platensis. Morphological analysis via microscopy supported these findings, indicating considerable environmental risks associated with PSNPs.


Assuntos
Carotenoides , Clorofila , Peroxidação de Lipídeos , Microalgas , Poliestirenos , Prolina , Spirulina , Spirulina/efeitos dos fármacos , Spirulina/crescimento & desenvolvimento , Spirulina/metabolismo , Poliestirenos/toxicidade , Carotenoides/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Prolina/metabolismo , Clorofila/metabolismo , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Clorofila A/metabolismo , Nanopartículas/toxicidade
9.
Ecotoxicol Environ Saf ; 281: 116576, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38878562

RESUMO

The accumulation of rare earth elements (REEs) in the global environment poses a threat to plant health and ecosystem stability. Stomata located on leaves serve as the primary site for plant responses to REE-related threats. This study focused on lanthanum [La(III)], a prevalent REE in the atmospheric environment. Using interdisciplinary techniques, it was found that La(III) (≤80 µM) interfered with the fundamental rhythms of stomatal opening, related gene expression, and evapotranspiration in plants. Specifically, when exposed to low concentrations of La(III) (15 and 30 µM), the expression levels of six genes were increased, stomatal opening was enhanced, and the evapotranspiration rate was accelerated. The interference on stomatal rhythms was enhanced with higher concentrations of La(III) (60 and 80 µM), increasing the expression levels of six genes, stomatal opening, and evapotranspiration rate. To counter the interference of low concentrations of La(III) (15 and 30 µM), plants accelerated nutrient replenishment through La(III)-induced endocytosis, which the redundant nutrients enhanced photosynthesis. However, replenished nutrients failed to counter the disruption of plant biological rhythms at higher concentrations of La(III) (60 and 80 µM), thus inhibiting photosynthesis due to nutrient deficit. The interference of La(III) on these biological rhythms negatively affected plant health and ecosystem stability.

10.
Life Sci ; 349: 122730, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38768774

RESUMO

Chronic respiratory diseases (CRDs) represent a significant proportion of global health burden, with a wide spectrum of varying, heterogenic conditions largely affecting the pulmonary system. Recent advances in immunology and respiratory biology have highlighted the systemic impact of these diseases, notably through the elucidation of the lung-eye axis. The current review focusses on understanding the pivotal role of the lung-eye axis in the pathogenesis and progression of chronic respiratory infections and diseases. Existing literature published on the immunological crosstalk between the eye and the lung has been reviewed. The various roles of the ocular microbiome in lung health are also explored, examining the eye as a gateway for respiratory virus transmission, and assessing the impact of environmental irritants on both ocular and respiratory systems. This novel concept emphasizes a bidirectional relationship between respiratory and ocular health, suggesting that respiratory diseases may influence ocular conditions and vice versa, whereby this conception provides a comprehensive framework for understanding the intricate axis connecting both respiratory and ocular health. These aspects underscore the need for an integrative approach in the management of chronic respiratory diseases. Future research should further elucidate the in-depth molecular mechanisms affecting this axis which would pave the path for novel diagnostics and effective therapeutic strategies.


Assuntos
Olho , Pulmão , Humanos , Pulmão/microbiologia , Pulmão/fisiopatologia , Olho/microbiologia , Oftalmopatias/fisiopatologia , Oftalmopatias/etiologia , Animais , Doenças Respiratórias/fisiopatologia , Doenças Respiratórias/microbiologia , Doenças Respiratórias/virologia , Microbiota/fisiologia
11.
J Hazard Mater ; 474: 134724, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38805819

RESUMO

The cardiotoxic effects of various pollutants have been a growing concern in environmental and material science. These effects encompass arrhythmias, myocardial injury, cardiac insufficiency, and pericardial inflammation. Compounds such as organic solvents and air pollutants disrupt the potassium, sodium, and calcium ion channels cardiac cell membranes, leading to the dysregulation of cardiac function. However, current cardiotoxicity models have disadvantages of incomplete data, ion channels, interpretability issues, and inability of toxic structure visualization. Herein, an interpretable deep-learning model known as CardioDPi was developed, which is capable of discriminating cardiotoxicity induced by the human Ether-à-go-go-related gene (hERG) channel, sodium channel (Na_v1.5), and calcium channel (Ca_v1.5) blockade. External validation yielded promising area under the ROC curve (AUC) values of 0.89, 0.89, and 0.94 for the hERG, Na_v1.5, and Ca_v1.5 channels, respectively. The CardioDPi can be freely accessed on the web server CardioDPipredictor (http://cardiodpi.sapredictor.cn/). Furthermore, the structural characteristics of cardiotoxic compounds were analyzed and structural alerts (SAs) can be extracted using the user-friendly CardioDPi-SAdetector web service (http://cardiosa.sapredictor.cn/). CardioDPi is a valuable tool for identifying cardiotoxic chemicals that are environmental and health risks. Moreover, the SA system provides essential insights for mode-of-action studies concerning cardiotoxic compounds.


Assuntos
Aprendizado Profundo , Canal de Sódio Disparado por Voltagem NAV1.5 , Humanos , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Cardiotoxicidade/etiologia , Canal de Potássio ERG1/metabolismo , Canal de Potássio ERG1/antagonistas & inibidores , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/química , Cardiotoxinas/toxicidade , Cardiotoxinas/química
12.
Environ Res ; 252(Pt 4): 119121, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38734291

RESUMO

Extensive utilization of pesticides and herbicides to boost agricultural production increased the environmental health risks, which can be mitigate with the aid of highly sensitive detection systems. In this study, an electrochemical sensor for monitoring the carcinogenic pesticides in the environmental samples has been developed based on sulfur-doped graphitic-carbon nitride-gold nanoparticles (SCN-AuNPs) nanohybrid. Thermal polycondensation of melamine with thiourea followed by solvent exfoliation via ultrasonication leads to SCN formation and electroless deposition of AuNPs on SCN leads to SCN-AuNPs nanohybrid synthesis. The chemical composition, S-doping, and the morphology of the nanohybrid were confirmed by various microscopic and spectroscopic tools. The as-synthesized nanohybrid was fabricated with glassy carbon (GC) electrode for determining the carcinogenic hydrazine (HZ) and atrazine (ATZ) in field water samples. The present sensor exhibited superior electrocatalytic activity than GC/SCN and GC/AuNPs electrodes due to the synergism between SCN and AuNPs and the amperometric studies showed the good linear range of detection of 20 nM-0.5 mM and 500 nM-0.5 mM with the limit of detection of 0.22 and 69 nM (S/N = 3) and excellent sensitivity of 1173.5 and 13.96 µA mM-1 cm-2 towards HZ and ATZ, respectively. Ultimately, the present sensor is exploited in environmental samples for monitoring HZ and ATZ and the obtained results are validated with high-performance liquid chromatography (HPLC) technique. The excellent recovery percentage and close agreement with the results of HPLC analysis proved the practicability of the present sensor. In addition, the as-prepared materials were utilized for the photocatalytic degradation of ATZ and the SCN-AuNPs nanohybrid exhibited higher photocatalytic activity with the removal efficiency of 93.6% at 90 min. Finally, the degradation mechanism was investigated and discussed.


Assuntos
Carcinógenos , Ouro , Grafite , Nanopartículas Metálicas , Poluentes Químicos da Água , Ouro/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Nanopartículas Metálicas/química , Grafite/química , Carcinógenos/análise , Atrazina/análise , Atrazina/química , Enxofre/química , Enxofre/análise , Técnicas Eletroquímicas/métodos , Hidrazinas/análise , Hidrazinas/química , Compostos de Nitrogênio/química , Compostos de Nitrogênio/análise , Nitrilas/química , Nitrilas/análise , Monitoramento Ambiental/métodos
13.
Toxics ; 12(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38787086

RESUMO

Cadmium ion (Cd2+) stress is a major abiotic stressor affecting plant photosynthesis. However, the impact of sustained high-concentration Cd stress on the photosynthetic electron transport chain of aquatic plants is currently unclear. Here, prompt fluorescence (PF), delayed fluorescence (DF), and P700 signals were simultaneously measured to investigate the effect of Cd stress on photosynthesis in water dropwort [Oenanthe javanica (Blume) DC.]. We aimed to elucidate how Cd stress continuously affects the electron transport chain in this species. The PF analysis showed that with prolonged Cd stress, the FJ, FI and FP steadily decreased, accompanied by a positive shift in the K-band and L-band. Moreover, JIP-test parameters, including TRO/ABS, ABS/CSO, TRO/CSO and PIABS, were significantly reduced. The P700 signals showed that exposure to Cd stress hindered both the fast decrease and slow increase phases of the MR transient, ultimately resulting in a gradual reduction in both VPSI and VPSII-PSI. The DF analysis showed a gradual decrease in the I1 and I2 values as the duration of stress from Cd increased. The above results suggested that Cd stress affected the photosynthetic electron transport in water dropwort by influencing the amount of active PSII and PSI, primarily affecting PSII RCs in the early to mid-stages and PSI reductive activity in the later stage.

14.
Comp Biochem Physiol C Toxicol Pharmacol ; 283: 109940, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38777003

RESUMO

Pyrimethanil is a persistent environmental pollutant that poses a significant threat to human health. In this review, we summarize the fungicidal mechanism of pyrimethanil and its toxicological effects on aquatic organisms and mammals, as well as its impact on growth and development as an endocrine disruptor. Additionally, we investigate the metabolism of pyrimethanil in mammals and its molecular mechanism in the occurrence of Alzheimer's disease. Furthermore, this review outlines the influence of climate change on the toxicity of pyrimethanil, emphasizing the need to consider the impact of mixtures of multiple compounds on human health. Finally, we propose several promising future directions for pyrimethanil research, believing that there is a better understanding of the interaction between pyrimethanil and organisms, as well as the development of techniques to remove pyrimethanil, may be the best approach to eliminating the threat posed by this compound.

15.
Environ Toxicol Pharmacol ; 109: 104475, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777114

RESUMO

The present investigation focuses on the identification of popular PhACs in roots, leaves and rice grains, which are cultivated in soil irrigated with waters and wastewater. The present study reveals the presence of PhACs in rice grains from different brands which are available in the current market, which has thus motivated these experiments. The rice plants were cultivated in garden containers and irrigated with three different water sources. All PhAC compounds were recovered within an 89-111 % range using the extraction technique, reproducibility, and sensitivity (LOQ <25 µg/g). Further, PhAC compounds were identified using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QqTOF-MS). Interestingly, several PhAC compounds were detected in rice grains, aligning with hypotheses and findings from published literature. A total of ten (10) PhACs were found in the root, leaf, and rice grain of the 20 popular PhACs that were targeted. The annual exposure and medical dose equivalent for individual PhACs was negligible. According to our knowledge, this study is the first to show the accumulation of several categories (cocktail) of PhACs in rice grains and show the approximate human health risk assessment by its consumption. The study's results provide valuable insights for researchers, policymakers, and agricultural practitioners working on sustainable agriculture and public health.

16.
Metabol Open ; 22: 100287, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38818227

RESUMO

The complex and multidimensional landscape of type 2 diabetes mellitus (T2D) is a major global concern. Despite several years of extensive research, the precise underlying causes of T2D remain elusive, but evidence suggests that it is influenced by a myriad of interconnected risk factors such as epigenetics, genetics, gut microbiome, environmental factors, organelle stress, and dietary habits. The number of factors influencing the pathogenesis is increasing day by day which worsens the scenario; meanwhile, the interconnections shoot up the frame. By gaining deeper insights into the contributing factors, we may pave the way for the development of personalized medicine, which could unlock more precise and impactful treatment pathways for individuals with T2D. This review summarizes the state of knowledge about T2D pathogenesis, focusing on the interplay between various risk factors and their implications for future therapeutic strategies. Understanding these factors could lead to tailored treatments targeting specific risk factors and inform prevention efforts on a population level, ultimately improving outcomes for individuals with T2D and reducing its burden globally.

17.
Environ Sci Technol ; 58(21): 9061-9070, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38743562

RESUMO

Bottlenose dolphins (Tursiops truncatus) are keystone and sentinel species in the world's oceans. We studied correlations between per- and polyfluoroalkyl substances (PFAS) and their stress axis. We investigated associations between plasma biomarkers of 12 different PFAS variants and three cortisol pools (total, bound, and free) in wild T. truncatus from estuarine waters of Charleston, South Carolina (n = 115) and Indian River Lagoon, Florida (n = 178) from 2003 to 2006, 2010-2013, and 2015. All PFAS and total cortisol levels for these dolphins were previously reported; bound cortisol levels and free cortisol calculations have not been previously reported. We tested null hypotheses that levels of each PFAS were not correlated with those of each cortisol pool. Free cortisol levels were lower when PFOS, PFOA, and PFHxS biomarker levels were higher, but free cortisol levels were higher when PFTriA was higher. Bound cortisol levels were higher when there were higher PFDA, PFDoDA, PFDS, PFTeA, and PFUnDA biomarkers. Total cortisol was higher when PFOA was lower, but total cortisol was higher when PFDA, PFDoDA, PFTeA, and PFTriA were higher. Additional analyses indicated sex and age trends, as well as heterogeneity of effects from the covariates carbon chain length and PFAS class. Although this is a cross-sectional observational study and, therefore, could reflect cortisol impacts on PFAS toxicokinetics, these correlations are suggestive that PFAS impacts the stress axis in T. truncatus. However, if PFAS do impact the stress axis of dolphins, it is specific to the chemical structure, and could affect the individual pools of cortisol differently. It is critical to conduct long-term studies on these dolphins and to compare them to populations that have no or little expose to PFAS.


Assuntos
Biomarcadores , Golfinho Nariz-de-Garrafa , Hidrocortisona , Poluentes Químicos da Água , Animais , Golfinho Nariz-de-Garrafa/metabolismo , Hidrocortisona/sangue , Hidrocortisona/metabolismo , Monitoramento Ambiental , Fluorocarbonos , Estresse Fisiológico , Feminino , Masculino , South Carolina , Florida
18.
Sci Total Environ ; 937: 173141, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38761927

RESUMO

This paper summarizes the colonization dynamics of biofilms on microplastics (MPs) surfaces in aquatic environments, encompassing bacterial characteristics, environmental factors affecting biofilm formation, and matrix types and characteristics. The interaction between biofilm and MPs was also discussed. Through summarizing recent literatures, it was found that MPs surfaces offer numerous benefits to microorganisms, including nutrient enrichment and enhanced resistance to environmental stress. Biofilm colonization changes the surface physical and chemical properties as well as the transport behavior of MPs. At the same time, biofilms also play an important role in the fragmentation and degradation of MPs. In addition, we also investigated the coexistence level, adsorption mechanism, enrichment, and transformation of MPs by environmental pollutants mediated by biofilms. Moreover, an interesting aspect about the colonization of biofilms was discussed. Biofilm colonization not only had a great effect on the accumulation of heavy metals by MPs, but also affects the interaction between particles and environmental pollutants, thereby changing their toxic effects and increasing the difficulty of MPs treatment. Consequently, further attention and research are warranted to delve into the internal mechanisms, environmental risks, and the control of the coexistence of MPs and biofilms.


Assuntos
Biofilmes , Microplásticos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise
19.
Environ Res ; 255: 119173, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763280

RESUMO

The rapid development of modern society has led to an increasing severity in the generation of new pollutants and the significant emission of old pollutants, exerting considerable pressure on the ecological environment and posing a serious threat to both biological survival and human health. The skeletal system, as a vital supportive structure and functional unit in organisms, is pivotal in maintaining body shape, safeguarding internal organs, storing minerals, and facilitating blood cell production. Although previous studies have uncovered the toxic effects of pollutants on vertebrate skeletal systems, there is a lack of comprehensive literature reviews in this field. Hence, this paper systematically summarizes the toxic effects and mechanisms of environmental pollutants on the skeletons of vertebrates based on the evolutionary context from fish to mammals. Our findings reveal that current research mainly focuses on fish and mammals, and the identified impact mechanisms mainly involve the regulation of bone signaling pathways, oxidative stress response, endocrine system disorders, and immune system dysfunction. This study aims to provide a comprehensive and systematic understanding of research on skeletal toxicity, while also promoting further research and development in related fields.


Assuntos
Poluentes Ambientais , Peixes , Mamíferos , Animais , Poluentes Ambientais/toxicidade , Osso e Ossos/efeitos dos fármacos , Evolução Biológica , Vertebrados
20.
Chemosphere ; 359: 142332, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754493

RESUMO

Perfluorooctanesulfonic acid (PFOS) is a widely recognized environment pollutant known for its high bioaccumulation potential and a long elimination half-life. Several studies have shown that PFOS can alter multiple biological pathways and negatively affect human health. Considering the direct exposure to the gastrointestinal (GI) tract to environmental pollutants, PFOS can potentially disrupt intestinal homeostasis. However, there is limited knowledge about the effect of PFOS exposure on normal intestinal tissues, and its contribution to GI-associated diseases remains to be determined. In this study, we examined the effect of PFOS exposure on the gene expression profile of intestinal tissues of C57BL/6 mice using RNAseq analysis. We found that PFOS exposure in drinking water significantly downregulates mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a rate-limiting ketogenic enzyme, in intestinal tissues of mice. We found that diets containing the soluble fibers inulin and pectin, which are known to be protective against PFOS exposure, were ineffective in reversing the downregulation of HMGCS2 expression in vivo. Analysis of intestinal tissues also demonstrated that PFOS exposure leads to upregulation of proteins implicated in colorectal carcinogenesis, including ß-catenin, c-MYC, mTOR and FASN. Consistent with the in vivo results, PFOS exposure leads to downregulation of HMGCS2 in mouse and human normal intestinal organoids in vitro. Furthermore, we show that shRNA-mediated knockdown of HMGCS2 in a human normal intestinal cell line resulted in increased cell proliferation and upregulation of key proliferation-associated proteins such as cyclin D, survivin, ERK1/2 and AKT, along with an increase in lipid accumulation. In summary, our results suggest that PFOS exposure may contribute to pathological changes in normal intestinal cells via downregulation of HMGCS2 expression and upregulation of pro-carcinogenic signaling pathways that may increase the risk of colorectal cancer development.


Assuntos
Ácidos Alcanossulfônicos , Carcinogênese , Regulação para Baixo , Fluorocarbonos , Hidroximetilglutaril-CoA Sintase , Camundongos Endogâmicos C57BL , Animais , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Hidroximetilglutaril-CoA Sintase/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Camundongos , Regulação para Baixo/efeitos dos fármacos , Neoplasias Intestinais/induzido quimicamente , Neoplasias Intestinais/metabolismo , Neoplasias Intestinais/patologia , Regulação para Cima/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Intestinos/efeitos dos fármacos , Humanos , Mucosa Intestinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...