Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.717
Filtrar
1.
Animals (Basel) ; 14(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38998049

RESUMO

Snow leopards (Panthera uncia) are elusive predators inhabiting high-altitude and mountainous rugged habitats. The current study was conducted in the Yanchiwan National Nature Reserve, Gansu Province, China, to assess the habitat suitability of snow leopards and identify key environmental factors inducing their distribution. Field data collected between 2019 and 2022 through scat sampling and camera trapping techniques provided insights into snow leopard habitat preferences. Spatial distribution and cluster analyses show distinct hotspots of high habitat suitability, mostly concentrated near mountainous landscapes. While altitude remains a critical determinant, with places above 3300 m showing increased habitat suitability, other factors such as soil type, human footprint, forest cover, prey availability, and human disturbance also play important roles. These variables influence ecological dynamics and are required to assess and manage snow leopard habitats. The MaxEnt model has helped us to better grasp these issues, particularly the enormous impact of human activities on habitat suitability. The current study highlights the importance of altitude in determining snow leopard habitat preferences and distribution patterns in the reserve. Furthermore, the study underscores the significance of considering elevation in conservation planning and management strategies for snow leopards, particularly in mountainous regions. By combining complete environmental data with innovative modeling tools, this study not only improves local conservation efforts but also serves as a model for similar wildlife conservation initiatives around the world. By understanding the environmental factors driving snow leopard distribution, conservation efforts can be more efficiently directed to ensure the long-term survival of this endangered species. This study provides valuable insights for evidence-based conservation efforts to safeguard the habitats of snow leopards amidst emerging anthropogenic pressure and environmental fluctuations.

2.
J Environ Manage ; 366: 121734, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38981256

RESUMO

This paper presents an overview of the scholarly works employing the life cycle assessment (LCA) approach to evaluate the environmental impact of construction and demolition waste (CDW) fine fractions derived from concrete elements throughout their life cycle. Unlike conventional studies, this work addresses the challenge of reducing the carbon footprint associated with CDW-based building materials, emphasizing environmental impact mitigation. The study highlights that approximately 30% of CDW is landfilled, 50% is recycled, and 20% is used as fill material, underscoring the potential for increasing recycling rates through improved processing techniques and management practices. In the reviewed studies, most research has been conducted in Europe, Asia, the USA, and China. The primary and secondary data sources for the life cycle inventory (LCI) vary depending on the study region and locality. By exploring innovative practices and critical stages in CDW fine fractions utilization for concrete components, the study aims to contribute to greener construction practices and sustainable resource management. The distinctive aspect of this research lies in its comprehensive review of CDW-based aggregates, binders, and alternative cementitious materials, highlighting the significance of sustainable energy resources and transportation strategies in enhancing the sustainability of CDW-derived concrete. Key findings highlight the necessity of sustainable energy for pretreatment and optimized transportation strategies, including route planning and vehicle selection, to produce greener CDW fine fraction-based building materials. Additionally, the study suggests key steps and parameters required for defining the system boundary and preparing the inventory for conducting an LCA of building materials based on CDW fine fractions. Through a detailed analysis of environmental burdens at each production stage, this study seeks to promote the adoption of greener concrete solutions worldwide. The use of CDW in concrete production promotes environmental sustainability and greener concrete regardless of the region.

3.
Sci Total Environ ; 947: 174460, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971255

RESUMO

This study explores sustainable methods to mitigate nitrogen (N) loss in agriculture amid rising food demands and limited arable land. It examines sewage sludge (SS) as an alternative to synthetic N fertilizers. SS is rich in nitrogen (4.21 ± 0.42 %) and phosphorus (3.60 ± 0.72 %), making it suitable for nutrient recovery and soil enhancement. Unfavorable sludge management methods result in the loss of 950,000 tons of nitrogen, meeting almost 10 % of the EU's nitrogen fertilization demand. This research evaluates SS treatment methods, including chemical conversion, thermal treatment, and biological composting, focusing on nitrogen conservation efficiency. Results show nitrogen loss during hydrolysis is minimized at pH 4 to 8 but increases significantly as ammonia (NH3) at pH 9 to 11, ranging from 4.2 % to 9 %. Neutralizing the hydrolysate is crucial; using solid KOH resulted in 13.5 % nitrogen loss, 11 times more than using slightly alkaline ash (1.22 %). Adding ash during drying reduced nitrogen emissions by 30 % compared to traditional drying at 105 °C. Improving the C/N ratio with food residues reduced nitrogen losses by 46.3 % during composting. These findings highlight the importance of pH control in chemical processes and temperature regulation in thermal treatments. Adding residues from other processes, such as biomass combustion waste, enhances SS processing conditions. Understanding nitrogen retention mechanisms is crucial for the environmental sustainability of SS usage. Efficient nitrogen retention strategies improve the fertilization value of SS and reduce its environmental footprint by lowering greenhouse gas emissions, particularly ammonia. Reducing nitrogen loss during SS treatment significantly lowers ammonia emissions, a major contributor to greenhouse gas emissions. These results help determine optimal methods for managing and processing SS to minimize emissions and increase agricultural usability.

4.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000177

RESUMO

Combining commercial antibiotics with adjuvants to lower their minimum inhibitory concentration (MIC) is vital in combating antimicrobial resistance. Evaluating the ecotoxicity of such compounds is crucial due to environmental and health risks. Here, eugenol was assessed as an adjuvant for 7 commercial antibiotics against 14 pathogenic bacteria in vitro, also examining its acute ecotoxicity on various soil and water organisms (microbiota, Vibrio fischeri, Daphnia magna, Eisenia foetida, and Allium cepa). Using microdilution methods, checkerboard assays, and kinetic studies, the MICs for eugenol were determined together with the nature of its combinations with antibiotics against bacteria, some unexposed to eugenol previously. The lethal dose for the non-target organisms was also determined, as well as the Average Well Color Development and the Community-Level Physiological Profiling for soil and water microbiota. Our findings indicate that eugenol significantly reduces MICs by 75 to 98%, which means that it could be a potent adjuvant. Ecotoxicological assessments showed eugenol to be less harmful to water and soil microbiota compared to studied antibiotics. While Vibrio fischeri and Daphnia magna were susceptible, Allium cepa and Eisenia foetida were minimally affected. Given that only 0.1% of eugenol is excreted by humans without metabolism, its environmental risk when used with antibiotics appears minimal.


Assuntos
Aliivibrio fischeri , Antibacterianos , Daphnia , Eugenol , Testes de Sensibilidade Microbiana , Eugenol/farmacologia , Antibacterianos/farmacologia , Animais , Daphnia/efeitos dos fármacos , Aliivibrio fischeri/efeitos dos fármacos , Ecotoxicologia , Cebolas/efeitos dos fármacos , Microbiologia do Solo , Adjuvantes Farmacêuticos/farmacologia , Bactérias/efeitos dos fármacos
5.
J Environ Manage ; 366: 121755, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003903

RESUMO

The COVID-19 pandemic impacted the solar power industry, business, and supply chain for 2019-2021, and installations are falling behind the mission plan. However, Indian PV manufacturers see it as a chance to engage in solar manufacturing to establish a competitive, sustainable, and robust domestic solar industry instead of import-based installations. Given the country's current environmental concerns, green and sustainable local manufacturing is the only viable alternative. By conducting a life cycle assessment (LCA), this study compared the environmental impacts generated by the five most promising photovoltaic technologies-mono-silicon, polysilicon, copper indium gallium selenide (CIGS), cadmium telluride (CdTe), and passivated emitter and rear contact (PERC) solar modules considering manufacturing in India. The study utilizes the ReCiPe method supported by Ecoinvent 3 databases and Simapro V9.0 software, and the functional unit for the data collection is in 'per square meter', which is later converted to 'per kWh' standard for comparison with the existing studies. The system boundary selected is from cradle to gate. The results demonstrate that cadmium telluride (CdTe) is the best technology for Indian climatic conditions in terms of environmental impact, with a global warming potential of 0.015 kg CO2 eq/kWh, stratospheric ozone depletion of 5.41E-09 kg CFC11 eq/kWh, human carcinogenic and non-carcinogenic toxicity of 6.67E-04 kg 1,4-DCB/kWh and 1.48E-02 kg 1,4-DCB/kWh, respectively and fine particulate matter formation of 3.96E-05 kg PM 2.5 eq/kWh assuming a lifetime of 25 years for these modules. CIGS follows CdTe in almost every environmental impact category.

6.
Eur J Pharm Sci ; : 106848, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986719

RESUMO

Transdermal drug delivery is suitable for low-molecular-weight drugs with specific lipophilicity, like fentanyl, which is widely used for cancer-induced pain management. However, fentanyl's transdermal therapy displays high intra-individual variability. Factors like skin characteristics at application sites and ambient temperature contribute to this variation. In this study, we developed a physics-based digital twin of the human body to cope with this variability and propose better adapted setups. This twin includes an in-silico skin model for drug penetration, a pharmacokinetic model, and a pharmacodynamic model. Based on the results of our simulations, applying the patch on the flank (side abdominal area) showed a 15.3% higher maximum fentanyl concentration in the plasma than on the chest. Additionally, the time to reach this maximum concentration when delivered through the flank was 19.8 h, which was 10.3 h earlier than via the upper arm. Finally, this variation led to an 18% lower minimum pain intensity for delivery via the flank than the chest. Moreover, the impact of seasonal changes on ambient temperature and skin temperature by considering the activity level was investigated. Based on our result, the fentanyl uptake flux by capillaries increased by up to 11.8% from an inactive state in winter to an active state in summer. We also evaluated the effect of controlling fentanyl delivery by adjusting the temperature of the patch to alleviate the pain to reach a mild pain intensity (rated three on the VAS scale). By implementing this strategy, the average pain intensity decreased by 1.1 points, and the standard deviation for fentanyl concentration in plasma and average pain intensity reduced by 37.5% and 33.3%, respectively. Therefore, our digital twin demonstrated the efficacy of controlled drug release through temperature regulation, ensuring the therapy toward the intended target outcome and reducing therapy outcome variability. This holds promise as a potentially useful tool for physicians.

7.
Front Vet Sci ; 11: 1449218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011321

RESUMO

[This corrects the article DOI: 10.3389/fvets.2024.1352235.].

8.
Polymers (Basel) ; 16(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39000620

RESUMO

The waste management of plastic has become a pressing environmental issue, with polyethylene terephthalate (PET) being one of the major contributors. To address this challenge, the utilization of recycled PET fibers and strips in geotechnical engineering applications for soil stabilization has gained considerable attention. This review aims to provide a comprehensive study of the geotechnical engineering properties of recycled-PET-reinforced soils. The review examines various factors influencing the performance of PET-reinforced soils, including PET percent content, fiber length, and aspect ratio. It evaluates the mechanical properties, like shear strength, compressibility, bearing capacity, hydraulic behavior, and durability of recycled-PET-reinforced soils. The findings reveal PET reinforcement enhances shear strength, reduces settlement, and increases the bearing capacity and stability of the soil. However, it is observed that the incorporation of recycled PET fibers and strips does not lead to a significant impact on the dry density of the soil. Finally, an environmental and cost comparison analysis of recycled PET fibers and strips was conducted. This review serves as a valuable resource for researchers, engineers, and practitioners involved in the field, offering insights into the geotechnical properties of PET-reinforced soils and outlining future research directions to maximize their effectiveness and sustainability.

9.
J Clin Med ; 13(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38999297

RESUMO

Background/Objectives: While the economic cost of adult spinal deformity (ASD) surgery has been studied extensively, its environmental impact is unknown. The aim of this study is to determine the carbon footprint (CF) associated with ASD surgery. Methods: ASD patients who underwent > four levels of corrective surgery between 2017 and 2021 were included. The open group included a posterior-only, single-stage technique, while the minimally invasive surgery (MIS) group was defined as the use of lateral interbody fusion and percutaneous posterior screw fixation. The two groups were propensity-score matched to adjust for baseline demographic, surgical, and radiographic characteristics. Data on all disposables and reusable instruments, anesthetic gas, and non-gas medications used during surgery were collected from medical records. The CF of transporting, using, and disposing of each product and the footprint of energy use in operating rooms were calculated. The CF produced was evaluated using the carbon dioxide equivalent (CO2e), which is relative to the amount of CO2 with an equivalent global warming potential. Results: Of the 175 eligible patients, 15 pairs (65 ± 9 years, 47% female) were properly matched and analyzed for all variables. The average CF generated per case was 147.7 ± 37.3 kg-CO2e, of which 54% was attributable to energy used to sterilize reusable instruments, followed by anesthetic gas released into the environment (17%) and operating room air conditioning (15%). Conclusions: The CF generated during ASD surgery should be reduced using a multidisciplinary approach, taking into account that different surgical procedures have different impacts on carbon emission sources.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38966951

RESUMO

Despite incineration is an important emission source of toxic pollutants, such as heavy metals and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), it is still one of the most widely used methods for the management of municipal solid waste. The current paper summarizes the results of a 20-year follow-up study of the emissions of PCDD/Fs by a municipal solid waste incinerator (MSWI) in Sant Adrià de Besòs (Catalonia, Spain). Samples of ambient air, soils and herbage were periodically collected near the facility and the content of PCDD/Fs was analyzed. In the last (2017) survey, mean levels in soil were 3.60 ng WHO-TEQ/kg (range: 0.40-10.6), being considerably higher than the mean concentrations of PCDD/Fs in soil samples collected near other MSWIs in Catalonia. Moreover, air PCDD/F concentrations were even higher than those found in a previous (2014) survey, as they increased from 0.026 to 0.044 pg WHO-TEQ/m3. Ultimately, the PCDD/F exposure would be associated to a cancer risk (2.5 × 10-6) for the population living in the surrounding area. Globally, this information indicates that the MSWI of Sant Adrià de Besòs could have had a negative impact on the environment and potentially on public health, being an example of a possible inappropriate management for years. The application of Best Available Techniques to minimize the emission of PCDD/Fs and other chemicals is critical.

11.
Sci Rep ; 14(1): 15268, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961084

RESUMO

This paper reports the fabrication, characterization, and environmental impact analysis of a super-oleophobic (under water) and super-hydrophilic mesh membrane for oily water treatment. In order to prepare mesh membrane, Titania nanoparticles (NPs) were spray coated on mesh stainless steel followed by calcination at 500 °C. After that, the Titania-coated mesh membrane was characterized using contact angle goniometry (CA), XRD, FE-SEM, EDX and elemental mapping. The FE-SEM, EDX, elemental mapping and XRD results confirmed that the Titania NPs were successfully coated on the surface of mesh membrane. CA results demonstrated that the prepared mesh membrane is super-hydrophilic and super-oleo phobic under water conditions, making it suitable for oil/water separation. Subsequently, life cycle assessment (LCA) was performed to determine the environmental impacts of Titania NPs-coated mesh membrane fabrication process. LCA results indicate that electricity and nitrogen contributed the most toward the eighteen environmental impact categories considered for this study.

12.
J Contam Hydrol ; 265: 104392, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38954926

RESUMO

More than 60% of worldwide uranium production is based on the In Situ Recovery mining technique. This exploitation method directly falls within the scope of the applications of reactive transport modelling to optimize uranium production and limit its associated environmental impact. We propose a modelling approach which is able to represent the natural evolution of an aquifer impacted by an ISR test performed using sulfuric acid. The model is calibrated on a 12 year-long data series obtained from 12 monitoring wells surrounding an ISR pilot cell. Through this process-based approach, we simulate the impact of several remediation strategies that can be considered in these contexts. In particular, we model the impact of Pump & Treat combined with reverse osmosis, as well as the circulation of non-impacted fluids through the reservoir with different operating strategies. Our approach allows to compare the effectiveness of these strategies. For this small-scale ISR pilot, monitored natural attenuation constitutes an interesting approach due to its faster pH recovery time with respect to Pump & Treat (5-10 years to pH ∼ 6), whose efficiency can be improved by the addition of exchangeable cations. Circulation of unimpacted fluids can reduce pH recovery times if performed for periods longer than the ISR exploitation and/or deployed with a delay. Combined with an economic evaluation of their deployment, this modelling approach can help the mining operator select and design optimal remediation strategies from an environmental and economical standpoint.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38963625

RESUMO

As recent geopolitical conflicts and climate change escalate, the effects of war on the atmosphere remain uncertain, in particular in the context of the recent large-scale war between Russia and Ukraine. We use satellite remote sensing techniques to establish the effects that reduced human activities in urban centers of Ukraine (Kharkiv, Donetsk, and Mariupol) have on Land Surface Temperatures (LST), Urban Heat Islands (UHI), emissions, and nighttime light. A variety of climate indicators, such as hot spots, changes in the intensity and area of the UHI, and changes in LST thresholds during 2022, are differentiated with pre-war conditions as a reference period (i.e., 2012-2022). Findings show that nighttime hot spots in 2022 for all three cities cover a smaller area than during the reference period, with a maximum decrease of 3.9% recorded for Donetsk. The largest areal decrease of nighttime UHI is recorded for Kharkiv (- 12.86%). Our results for air quality changes show a significant decrease in carbon monoxide (- 2.7%, based on the average for the three cities investigated) and an increase in Absorbing Aerosol Index (27.2%, based on the average for the three cities investigated) during the war (2022), compared to the years before the war (2019-2021). The 27.2% reduction in nighttime urban light during the first year of the war, compared to the years before the war, provides another measure of conflict-impact in the socio-economic urban environment. This study demonstrates the innovative application of satellite remote sensing to provide unique insights into the local-scale atmospheric consequences of human-related disasters, such as war. The use of high-resolution satellite data allows for the detection of subtle changes in urban climates and air quality, which are crucial for understanding the broader environmental impacts of geopolitical conflicts. Our approach not only enhances the understanding of war-related impacts on urban environments but also underscores the importance of continuous monitoring and assessment to inform policy and mitigation strategies.

14.
Environ Res ; : 119526, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972341

RESUMO

Rainwater Harvesting (RWH) is increasingly recognized as a vital sustainable practice in urban environments, aimed at enhancing water conservation and reducing energy consumption. This study introduces an innovative integration of nano-composite materials as Silver Nanoparticles (AgNPs) into RWH systems to elevate water treatment efficiency and assess the resulting environmental and energy-saving benefits. Utilizing a regression analysis approach with Support Vector Machines (SVM) and K-Nearest Neighbors (KNN), this study will reach the study objective. In this study, the inputs are building attributes, environmental parameters, sociodemographic factors, and the algorithms SVM and KNN. At the same time, the outputs are predicted energy consumption, visual comfort outcomes, ROC-AUC values, and Kappa Indices. The integration of AgNPs into RWH systems demonstrated substantial environmental and operational benefits, achieving a 57% reduction in microbial content and 20% reductions in both chemical usage and energy consumption. These improvements highlight the potential of AgNPs to enhance water safety and reduce the environmental impact of traditional water treatments, making them a viable alternative for sustainable water management. Additionally, the use of a hybrid SVM-KNN model effectively predicted building energy usage and visual comfort, with high accuracy and precision, underscoring its utility in optimizing urban building environments for sustainability and comfort.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38973333

RESUMO

The introduction of invasive species has become an increasing environmental problem in freshwater ecosystems due to the high economic and ecological impacts it has generated. This systematic review covers publications from 2010 to 2020, focusing on non-native invasive freshwater bivalves, a particularly relevant and widespread introduced taxonomic group in fresh waters. We collected information on the most studied species, the main objectives of the studies, their geographical location, study duration, and type of research. Furthermore, we focused on assessing the levels of ecological evidence presented, the type of interactions of non-native bivalves with other organisms and the classification of their impacts. A total of 397 publications were retrieved. The studies addressed a total of 17 species of non-native freshwater bivalves; however, most publications focused on the species Corbicula fluminea and Dreissena polymorpha, which are recognised for their widespread distribution and extensive negative impacts. Many other non-native invasive bivalve species have been poorly studied. A high geographical bias was also present, with a considerable lack of studies in developing countries. The most frequent studies had shorter temporal periods, smaller spatial extents, and more observational data, were field-based, and usually evaluated possible ecological impacts at the individual and population levels. There were 94 publications documenting discernible impacts according to the Environmental Impact Classification for Alien Taxa (EICAT). However, 41 of these publications did not provide sufficient data to determine an impact. The most common effects of invasive bivalves on ecosystems were structural alterations, and chemical and physical changes, which are anticipated due to their role as ecosystem engineers. Despite a considerable number of studies in the field and advances in our understanding of some species over the past decade, long-term data and large-scale studies are still needed to understand better the impacts, particularly at the community and ecosystem levels and in less-studied geographic regions. The widespread distribution of several non-native freshwater bivalves, their ongoing introductions, and high ecological and economic impacts demand continued research. Systematic reviews such as this are essential for identifying knowledge gaps and guiding future research to enable a more complete understanding of the ecological implications of invasive bivalves, and the development of effective management strategies.

16.
Sci Total Environ ; 946: 174494, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969111

RESUMO

Gypsum plays a prominent role in agriculture, being considered an effective alternative to alleviate subsurface acidity due to its higher solubility and containing sulfur. However, another significant aspect is which pose long-term risks of groundwater contamination due to excessive applications of salts, pesticides, and other chemicals that will be leached, or even soil chemical depletion. So far, no study has focused on understanding the impacts of the atmospheric gypsum plume originating from gibbsite mining and processing on the leaching of soil bases and chemical degradation surrounding these sites. In this study, we evaluated the behavior of chemical characteristics in soil profiles distributed along the dispersion of the atmospheric plume and in areas without interference from the industrial sector in the state of Maranhão, Northeast Brazil. Fifty-three sampling points were collected at 7 locations based on the dispersion of the dust plume through wind drift. Each sampling point was represented by three composite soil samples at depths of 0.0-0.20, 0.40-0.60, and 1.00-1.20 m, where the chemical soil characteristics were evaluated. The average levels of Ca, Mg, and K in the studied layers are classified as low, with minimum values below the method's detection limit, and they also show imbalance due to higher concentrations of Ca in the surface layer in areas affected by atmospheric dispersion. The sum and saturation of bases at all depths are classified as low. Higher aluminum saturation values were observed in the deeper soil layers. The gypsum dust altered the soil's chemical characteristics at the evaluated depths; therefore, it is necessary to seek means to mitigate gypsum dust release during gibbsite extraction and processing and ensure that the soils in areas near these enterprises maintain their natural characteristics.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38980488

RESUMO

The rapid increase in aquaculture over the last several decades has led to concerns about the environmental impact of fish feeds relying on marine resources for fishmeal (FM). We aim to assess Nannochloropsis sp. QH25 co-product as a viable and sustainable replacement for FM in juvenile rainbow trout, Oncorhynchus mykiss, feeds. We formulated four experimental diets: a reference (FM based), 33N, 66N, and 100N diet (33%, 66%, and 100% co-product replacement). Rainbow trout were randomly assigned to one of 16 tanks and randomly assigned an experimental diet to consume throughout the experiment (64 days total), with four replicate tanks per diet. We compared the phosphorus (P) and nitrogen (N) digestibility, emissions, and growth between diets and, compared six environmental impacts (biotic resource use (BRU), global warming potential (GWP), water use, land use, marine eutrophication potential (MEP), and freshwater eutrophication potential (FEP)) of each diet. Our results indicate that replacing FM with co-product did not significantly alter growth. P digestibility of the experimental and reference diets was comparable. BRU conversion ratio was significantly lower in the experimental diets. However, there were significantly higher water and land use conversion ratios but insignificantly higher results in GWP, MEP, and FEP between the reference and 100N diet.

18.
Front Vet Sci ; 11: 1352235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855410

RESUMO

Ruminant feed is a major problem for the livestock sector in West African developing countries causing animal nutritional diseases, reducing ruminant production, and creating a massive ecological crisis through greenhouse gas emissions. Alternative feeds, which include agro-industrial by-products, fodder trees, crop residues, insects, fodder legumes, algae, and pulses, constitute enormous feed resources for livestock in Africa. This study was conducted in accordance with the methodological recommendations of PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). We conducted a literature search using Google Scholar, Web of Science, and Scopus to identify documents related to alternative ruminant feeds using the following keywords: alternative feeds, ruminant products, environmental impacts, and West Africa. Those that met the inclusion criteria were included, resulting in 44 articles published between 2013 and 2023. These studies included 45 alternative feeds divided into six groups, including agro-industrial by-products (48.89%), followed by fodder trees (17.78%), crop residues (13.33%), insects (8.89%), fodder legumes (6.67%) and seaweeds (4.44%). Our results revealed that alternative feed resources and their effects on ruminant's performances and environment are poorly known in West Africa, which limits their inclusion in rations and sometimes leads to their misuse. Future research should focus on these aspects in order to make efficient use of these resources to improve ruminant milk and meat production.

19.
Environ Pollut ; : 124424, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909773

RESUMO

Domestic wastewater is a significant reservoir of antibiotic resistance genes, which pose environmental and public health risks. We aimed to define an antibiotic resistome signature, represented by core genes, i.e., shared by ≥90% of the metagenomes of each of three conceptual environmental compartments - wastewater (influent, sludge, effluent), freshwater, and agricultural soil. The definition of resistome signatures would support the proposal of a framework for monitoring treatment efficacy and assessing the impact of treated wastewater discharge into the environment, such as freshwater and agricultural soil. Metagenomic data from 163 samples originating from wastewater (n=81), freshwater (n=58), and agricultural soils (n=24) across different regions (29 countries, 5 continents), were analysed regarding antibiotic resistance diversity, based on annotation against a database that merged CARD and ResFinder databases. The relative abundance of the total antibiotic resistance genes (corresponding to the ratio between the antibiotic resistance genes and total reads number) was not statistically different between raw and treated wastewater, being significantly higher than in freshwater or agricultural soils. The latter had the significantly lowest relative abundance of antibiotic resistance genes. Genes conferring resistance to aminoglycosides, beta-lactams, and tetracyclines were among the most abundant in wastewater environments, while multidrug resistance was equally distributed across all environments. The wastewater resistome signature included 27 antibiotic resistance genes that were detected in at least 90% of the wastewater resistomes, and that were not frequent in freshwater or agricultural soil resistomes. Among these were genes responsible for resistance to tetracyclines (n=8), macrolide-lincosamide-streptogramin B (n=7), aminoglycosides (n=4), beta-lactams (n=3), multidrug (n=2), sulphonamides (n=2), and polypeptides (n=1). This comprehensive assessment provides valuable insights into the dynamics of antibiotic resistance in urban wastewater systems and their potential ecological implications in diverse environmental settings. Furthermore, provides guidance for the implementation of One Health monitoring approaches.

20.
J Dairy Sci ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851579

RESUMO

Greenhouse gas emission from the activities of all productive sectors is currently a topic of foremost importance. The major contributors in the livestock sector are ruminants, especially dairy cows. This study aimed to evaluate and compare 21 equations for predicting enteric methane emissions (EME) developed on the basis of milk traits and fatty acid profiles, which were selected from 46 retrieved through a literature review. We compiled a reference database of the detailed fatty acid profiles, determined by GC, of 992 lactating cows from 85 herds under 4 different dairy management systems. The cows were classified according to DIM, parity order, and dairy system. This database was the basis on which we estimated EME using the selected equations. The EME traits estimated were methane yield (20.63 ± 2.26 g/kg DMI, 7 equations), methane intensity (16.05 ± 2.76 g/kg of corrected milk, 4 equations), and daily methane production (385.4 ± 68.2 g/d, 10 equations). Methane production was also indirectly calculated by multiplying the daily corrected milk yield by the methane intensity (416.6 ± 134.7 g/d, 4 equations). We also tested for the effects of DIM, parity, and dairy system (as a correction factor) on the estimates. In general, we observed little consistency among the EME estimates obtained from the different equations, with exception of those obtained from meta-analyses of a range of data from different research centers. We found all the EME predictions to be highly affected by the sources of variation included in the statistical model: DIM significantly affected the results of 19 of the 21 equations, and parity order influenced the results of 13. Different patterns were observed for different equations with only some of them in accordance with expectations based on the cow's physiology. Finally, the best predictions of daily methane production were obtained when a measure of milk yield was included in the equation or when the estimate was indirectly calculated from daily milk yield and methane intensity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...