Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.745
Filtrar
1.
Am J Psychiatry ; 181(8): 702-704, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39086291

Assuntos
Humanos , Criança
2.
Environ Geochem Health ; 46(8): 288, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970676

RESUMO

The combustion of coal in power plants releases significant amounts of polycyclic aromatic hydrocarbons (PAHs), which are highly toxic and carcinogenic. This study assesses the ecological and human health impacts of PAHs contamination from a coal-fired power plant over 8 years. The monitoring site selection considered the distance from the power plant and the prevailing wind direction in the investigated area. The results reveal that, during the monitoring period, PAH levels increased on average by 43%, 61%, and 37% in the zone of the prevailing wind direction, in the area proximate to the power plant, and the zone distant from it, respectively. The site, which has a radius of 4.5 km in the prevailing wind direction, exhibited the highest ecological and human health impacts. Additionally, a strong correlation was observed between environmental and human health impacts, depending on the distance from the power plant, particularly in areas with the prevailing wind direction. These insights contribute to a comprehensive understanding of the intricate dynamics linking power plant emissions, PAHs contamination, and their far-reaching consequences on the environment and human health.


Assuntos
Carvão Mineral , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Centrais Elétricas , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , Humanos , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Vento , Avaliação do Impacto na Saúde
3.
Artigo em Inglês | MEDLINE | ID: mdl-38977140

RESUMO

Cardiovascular diseases (CVD) are the leading cause of global non-communicable disease-related deaths. In recent years there has been increasing discussion about the influence of environmental risk factors, including noise and light, on the occurrence and course of these conditions. Recent studies highlight the impact of road traffic noise on an elevated risk of stroke and increased mortality in the course of coronary artery disease (CAD). In the case of threats arising from light pollution, there are more limited published studies; however, these show an increased hospitalization risk associated with CAD. Existing analyses cannot dismiss these environmental factors, highlighting the need for further research. Future studies should investigate not only road traffic noise but also consider railway and aircraft noise. Additionally, research on light pollution should include younger individuals too. In the future, incorporating individual assessments of noise and light pollution exposure, along with the identification of particularly vulnerable groups, could contribute to refining methods of individual risk stratification and implementing new preventive strategies.

4.
Environ Int ; 190: 108865, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38972112

RESUMO

This study conducted the development of an advanced risk assessment algorithm system and safety management strategies using pesticide residue monitoring data from soils. To understand the status of pesticide residues in agricultural soils, monitoring was performed on 116 types of pesticides currently in use across 300 soil sites. The analysis of the monitoring results, alongside the physicochemical properties of the pesticides, led to the selection of soil half-life as a critical component in residue analysis. The use of Toxicity Exposure Ratio (TER) and Risk Quotient (RQ) for environmental risk assessment, based on monitoring data, presents limitations due to its single-component, conservative approach, which does not align with actual field conditions. Therefore, there is a necessity for a risk assessment process applicable in real-world scenarios. In this research, an efficient and accurate risk assessment algorithm system, along with a safety management model, was developed. Using the physicochemical properties of pesticides (such as soil half-life), monitoring results, and toxicity data, cluster analysis and Principal Component Analysis (PCA) validation identified four pesticides: boscalid, difenoconazole, fluquinconazole, and tebuconazole. The k-mean cluster analysis selected three priority management sites where the contribution of these four pesticides to the RQ was between 94-99 %, showing similar results to the RQ calculated for all pesticides. Predictions made with the developed model for the time required for soil half-life based RQ to drop below 1 at these priority sites showed only a 1-9 day difference between the four pesticides of concern and all pesticides, indicating comparable outcomes. The scenario of replacing high-risk pesticides with those of lower risk demonstrated that the RQ could be consistently maintained at about 50 % level. The results of this study suggest that through monitoring, evaluation, and management, effective and accurate environmental safety management of pesticides in soil can be achieved.

5.
Environ Int ; 190: 108869, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38968831

RESUMO

Assessing the risk of human pathogens in the environment is crucial for controlling the spread of diseases and safeguarding human health. However, conducting a thorough assessment of low-abundance pathogens in highly complex environmental microbial communities remains challenging. This study compiled a comprehensive catalog of 247 human-pathogenic bacterial taxa from global biosafety agencies and identified more than 78 million genome-specific markers (GSMs) from their 17,470 sequenced genomes. Subsequently, we analyzed these pathogens' types, abundance, and diversity within 474 shotgun metagenomic sequences obtained from diverse environmental sources. The results revealed that among the four habitats studied (air, water, soil, and sediment), the detection rate, diversity, and abundance of detectable pathogens in the air all exceeded those in the other three habitats. Air, sediment, and water environments exhibited identical dominant taxa, indicating that these human pathogens may have unique environmental vectors for their transmission or survival. Furthermore, we observed the impact of human activities on the environmental risk posed by these pathogens, where greater amounts of human activities significantly increased the abundance of human pathogenic bacteria, especially in water and air. These findings have remarkable implications for the environmental risk assessment of human pathogens, providing valuable insights into their presence and distribution across different habitats.

6.
J Hazard Mater ; 476: 135087, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964042

RESUMO

Antiviral drugs are a cornerstone in the first line of antiviral therapy and their demand rises consistently with increments in viral infections and successive outbreaks. The drugs enter the waters due to improper disposal methods or via human excreta following their consumption; consequently, many of them are now classified as emerging pollutants. Hereby, we review the global dissemination of these medications throughout different water bodies and thoroughly investigate the associated risk they pose to the aquatic fauna, particularly our vertebrate relative fish, which has great economic and dietary importance and subsequently serves as a major doorway to the human exposome. Our risk assessment identifies eleven such drugs that presently pose high to moderate levels of risk to the fish. The antiviral drugs are likely to induce oxidative stress, alter the behaviour, affect different physiological processes and provoke various toxicological mechanisms. Many of the compounds exhibit elevated bioaccumulation potential, while, some have an increased tendency to leach through soil and contaminate the groundwater. Eight antiviral medications show a highly recalcitrant nature and would impact the aquatic life consistently in the long run and continue to influence the human exposome. Thereby, we call for urgent ecopharmacovigilance measures and modification of current water treatment methods.

7.
Environ Toxicol Chem ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073366

RESUMO

We investigated the occurrence and the environmental risk of eight contaminants of emerging concern (CECs; acetaminophen, naproxen, diclofenac, methylparaben, 17ß-estradiol, sulfathiazole, sulfadimethoxine, and sulfamethazine) in three Brazilian water bodies, namely, the Monjolinho River Basin (São Paulo State), the Mogi Guaçu River (São Paulo State), and the Itapecuru River (Maranhão State) in three sampling campaigns. The CECs were only quantified in surface water samples collected at the Monjolinho River Basin. Acetaminophen, naproxen, and methylparaben were detected in the range of <200 to 575.9 ng L-1, <200 to 224.7 ng L-1, and <200 to 303.6 ng L-1, respectively. The detection frequencies of the three measured compounds were between 33% and 67%. The highest concentrations of CECs were associated with intense urbanization and untreated sewage discharge. Furthermore, CEC concentrations were significantly correlated with total organic carbon, electrical conductivity, and dissolved oxygen levels, suggesting that domestic pollution from urban areas is an important source in the distribution of CECs in the Monjolinho River Basin. The environmental risk assessment indicated a high risk for acetaminophen (risk quotient [RQ] values between 2.1 and 5.8), a medium risk for naproxen (RQs between 0.6 and 0.7), and a low risk for methylparaben (RQs < 0.1) to the freshwater biota of the Monjolinho River Basin. Our findings show potential threats of CECs in Brazilian water bodies, especially in vulnerable areas, and reinforce the need for improvements in environmental regulations to include monitoring and control of these compounds in aquatic systems. Environ Toxicol Chem 2024;00:1-12. © 2024 SETAC.

8.
Environ Geochem Health ; 46(9): 314, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002000

RESUMO

The levels of three phenolic endocrine-disrupting compounds (EDCs), NP, BPA and 4-t-OP were determined in water and sediment collected from sites along the Xiangjiang River, Zunyi, China. The NP, BPA and 4-t-OP concentrations ranged from 18.02 to 311.79 ng/L in the surface water, 16.04-408.12 ng/L in the submerged water, and 21.13-892.37 µg/kg dw in the sediment. NP contamination was most severe in both the river water and sediment. The ranges of the three phenolic EDCs were slightly greater in the submerged water than in the surface water (p > 0.05). The concentrations in the middle reaches were greater than those in the upstream and downstream reaches in both the water and sediment, and significant differences in content were detected in some reaches. The levels of three phenolic EDCs in the water and sediment had a positive correlation. In addition, the distribution coefficient (Kd) indicated that NP was more likely to adsorb to the sediment, and BPA and 4-t-OP were more likely to adsorb to river water. Moreover, the risk quotient (RQ) and hazard quotients (HQ) were used to reveal the environmental and health risks caused by coexposure to the three phenolic pollutants. The results showed that the current pollution is a threat to the environment of the study area and not a threat to the health of the local population.


Assuntos
Compostos Benzidrílicos , Disruptores Endócrinos , Monitoramento Ambiental , Sedimentos Geológicos , Fenóis , Rios , Poluentes Químicos da Água , Disruptores Endócrinos/análise , Rios/química , Poluentes Químicos da Água/análise , China , Fenóis/análise , Medição de Risco , Sedimentos Geológicos/química , Compostos Benzidrílicos/análise
9.
J Hazard Mater ; 476: 135192, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39002479

RESUMO

Microplastics (MPs) are emerging as anthropogenic vectors to form plastisphere, facilitating microbiome colonization and pathogenic dissemination, thus contributing to environmental and health crises across various ecosystems. However, a knowledge gap persists regarding MPs risks and their driving factors in certain unique and vulnerable ecosystems, such as Karst travertine lakes, some of which are renowned World Natural Heritage Sites under ever-increasing tourism pressure. We hypothesized that tourism activities serve as the most important factor of MPs pollution, whereas intrinsic features, including travertine deposition can exacerbate potential environmental risks. Thus, metagenomic approaches were employed to investigate the geographical distribution of the microbiome, antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and their combined environmental risks in Jiuzhaigou and Huanglong, two famous tourism destinations in Southwest China. The plastisphere risks were higher in Huanglong, contradicting our hypothesis that Jiuzhaigou would face more crucial antibiotic risks due to its higher tourist activities. Specifically, the levels of Lipopolysaccharide Lewis and fosD increased by sevenfold and 20-fold, respectively, from upstream to downstream in Huanglong, whereas in Jiuzhaigou, no significant accrual was observed. Structural equation modeling results showed that travertine deposition was the primary contributor to MPs risks in alpine karstic lakes. Our findings suggest that tourism has low impact on MPs risks, possibly because of proper management, and that travertine deposition might act as an MPs hotspot, emphasizing the importance of considering the unique aspects of travertine lakes in mitigating MPs pollution and promoting the sustainable development of World Natural Heritage Sites.

10.
Environ Sci Pollut Res Int ; 31(35): 47742-47756, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007972

RESUMO

For contaminated sites, conceptual site models (CSMs) guide the assessment and management of risks, including remediation strategies. Recent research has expanded diagrammatic CSMs with structural causal modeling to develop what are nominally called conceptual Bayesian networks (CBNs) for environmental risk assessment. These CBNs may also be useful for problems of controlling and preventing offsite contaminant migration, especially for sites containing dense nonaqueous phase liquids (DNAPLs). In particular, the CBNs provide greater clarity on the causal relationships between source term, onsite and offsite migration, and remediation effectiveness characterization for contaminated DNAPL sites compared to traditional CSMs. These ideas are demonstrated by the inclusion of modifying variables, causal pathway analysis, and interventions in CBNs. Additionally, several new extensions of the CBN concept are explored including the representation of measurement variables as lines of evidence and alignment with conventional pictorial CSMs for groundwater modeling. Taken as a whole, the CBNs provide a powerful and adaptable knowledge representation tool for remediating subsurface systems contaminated by DNAPL.


Assuntos
Teorema de Bayes , Água Subterrânea , Água Subterrânea/química , Poluentes Químicos da Água , Medição de Risco , Incerteza , Recuperação e Remediação Ambiental/métodos
11.
Environ Sci Pollut Res Int ; 31(35): 47923-47945, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39012531

RESUMO

The patterns of the potentially toxic elements (PTEs: Cr, Fe, Ni, Cu, Zn, As, Mo, Pb, Hg) distribution in soils were studied together with the health risk assessment in the area of ore mineralization, past gold activity, and tailing effects of the Sarala gold-ore group located in the Republic of Khakassia, Russia. High PTE concentrations were found in soils with the presence of potential negative impact on human health based on the following: local background investigation, according to statistics; geochemical, environmental, and human health risk calculations; and comparative analysis using international and local reference, such as continental crust, clarke, and permissible concentrations. Sources of PTE soil enrichment and pollution were statistically identified in ascending order of degree: geogenic (local background) < geogenic-technogenic (sites with geological exploration traces - trenches) < technogenic (waste tailings). The main pollutants are Hg and As which showed moderate to significant ecological risk. Negative impact of Cr on soils was found. The pollution degree and toxicity (moderate to significant) of other PTEs increase in the location of ore mineralization zone with exploration trenches and waste tailings. Arsenic poses a carcinogenic risk to adults and children upon contact with polluted soils and non-carcinogenic effect on children in areas affected by tailings and ore mineralization zone. The non-carcinogenic effect of Fe on children was found in soils of all sites. The results provide useful information regarding the studied PTEs and their impact on the environment and human health. Such information can be helpful for the state-level decision-making process when addressing solutions for contaminated areas.


Assuntos
Monitoramento Ambiental , Ouro , Mineração , Poluentes do Solo , Solo , Medição de Risco , Poluentes do Solo/análise , Humanos , Solo/química , Federação Russa
12.
Water Res X ; 24: 100232, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39070727

RESUMO

Xanthates, derivatives of xanthic acid, are widely utilized across industries such as agrochemicals, rubber processing, pharmaceuticals, metallurgical, paper and mining to help separate metals from ore. Despite their prevalent use, many registered xanthates lack comprehensive information on potential risks to human health and the environment. The mining sector, a significant consumer of xanthates, drives demand. However, emissions into the environment remain poorly understood, especially concerning water quality. A recent EU parliamentary voting on water legislation highlights the urgency to address water pollution and the potential toxicity of xanthates. While limited data exist on xanthate presence in the environment, existing studies indicate their toxicity and contribution to environmental pollution, primarily due to carbon disulfide, a decomposition product. Concerns are mounting over the release of xanthates and carbon disulfide, particularly in mining areas near populated regions and river tributaries, raising questions about downstream impacts and public health risks. Proposed expansions of xanthate-reliant mining activities in Europe, heighten concerns about emissions and water quality impacts. Current databases lack xanthate-related monitoring data, hindering environmental and health risk assessments. Addressing this gap requires water sampling and chemical analysis and investigations into the use, occurrence, and potential impacts of xanthates from industrial activities on water bodies, including those used for drinking water production is imperative.

13.
J Hazard Mater ; 477: 135308, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053070

RESUMO

In the natural environment, a symphony of environmental factors including sunlight exposure, current fluctuations, sodium chloride concentrations, and sediment dynamics intertwine, potentially magnifying the impacts on the aging process of disposable face masks (DFMs), thus escalating environmental risks. Employing Regular Two-Level Factorial Design, the study scrutinized interactive impacts of ultraviolet radiation, sand abrasion, acetic acid exposure, sodium chloride levels, and mechanical agitation on mask aging. Aging mechanisms and environmental risks linked with DFMs were elucidated through two-dimensional correlation analyses and risk index method. Following a simulated aging duration of three months, a single mask exhibited the propensity to release a substantial quantity of microplastics, ranging from 38,800 ± 360 to 938,400 ± 529 particles, and heavy metals, with concentrations from 0.06 ± 0.02 µg/g (Pb) to 29.01 ± 1.83 µg/g (Zn). Besides, specific contaminants such as zinc ions (24.24 µg/g), chromium (VI) (4.20 µg/g), thallium (I) (0.92 µg/g), tetracycline (0.51 µg/g), and acenaphthene (1.73 µg/g) can be adsorbed significantly by aged masks. The study elucidates pivotal role of interactions between ultraviolet radiation and acetic acid exposure in exacerbating the environmental risks associated with masks, while emphasizing the pronounced influence of many other interactions. The research provides a comprehensive understanding of the intricate aging processes and ensuing environmental risks posed by DFMs, offering valuable insights essential for developing sustainable management strategies in aquatic ecosystems.

14.
Environ Geochem Health ; 46(9): 336, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060460

RESUMO

Despite continuous efforts, eutrophication is still occurring in freshwater and phosphorus (P) is the most important nutrients that drive the eutrophication in rivers and streams. However, little information is available about the distribution of P fractions in river sediment. Here, the sequential extraction approach was used to evaluate the sediment P fractionation and its content in the anthropogenically damaged river Ganga, India. Different sedimentary P fractions viz. exchangeable (Ex-P), aluminum bound (Al-P), iron bound (Fe-P), calcium bound (Ca-P), and organically bound phosphorus (Org-P), were quantified. Significantly higher level of total P was recorded in pre-monsoon season (438.5 ± 95.8 mg/kg), than other [winter (345.7 ± 110.6 mg/kg), post-monsoon (319.2 ± 136.3 mg/kg), and monsoon (288.6 ± 77.3 mg/kg)] seasons. Different P fractions such as Ex-P, Al-P, Fe-P, Ca-P and Org-P varied from 2.88-12.8 mg/kg, 7.64-98.8 mg/kg, 32.2-179.2 mg/kg, 51.97-286.1 mg/kg and 9.3-143.7 mg/kg, respectively, which correspondingly represented 0.5-10.54%, 3.41-20.18%, 17.27-37.82%, 37.35-60.2%, 4.15-25.88% of the Total P with a rank order of P-fractions was Ca-P > Fe-P > Org-P > Al-P > Ex-P. Bio-available P contributes a considerable portion (37.9-46.0%) of total P which may increase the eutrophication to overlying water. Results demonstrate that inorganic P species control the P bio-availability in both time and space. However, an estimated phosphorus pollution index based on sediment total P content showed no ecological risk of phosphorus to Ganga River sediment.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Fósforo , Rios , Estações do Ano , Poluentes Químicos da Água , Índia , Fósforo/análise , Rios/química , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Medição de Risco , Monitoramento Ambiental/métodos , Fracionamento Químico , Eutrofização
15.
Sci Total Environ ; 947: 174629, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38986716

RESUMO

The spatial distribution of black carbon (BC) concentrations was highly variable across different underlying surfaces. Differences in meteorological conditions and emission sources led to great temporal and spatial variations in BC characteristics. As the most important absorbing aerosol, BC can affect radiation, clouds, and surface snow. BC mass concentrations were measured using a seven channel aethalometer (AE-33) in the Urumqi and Taklimakan Deserts from January to December 2022. The aethalometer data, potential source contribution function (PSCF), and concentration-weighted trajectory (CWT) models were used to analyse the variation characteristics, potential sources, and affected areas. Results showed that the BC concentrations in the Taklamakan Desert and Urumqi were in the range of 0-500 ng·m-3, accounting for 66.20 % and 59.50 % of the total, respectively. The backward trajectory simulation of BC mass concentration in the tower and Urumqi using the HYSPLIT model found that the airflow trajectories in the tower in summer corresponded to the BC concentration in the following order: trajectory 4 > trajectory 3 > trajectory 2 > trajectory 1, and trajectory 4 originated from the Turpan airflow accounting for 46.19 % of the total, which corresponded to the highest BC concentration of 621.73 ng·m-3. The trajectories of the airflow in Urumqi in summer corresponded to the BC concentration in the order of high to low, and the BC concentration in summer corresponded to the highest concentration in the Turpan airflow. BC concentrations arranged from high to low were trajectory 1 > trajectory 5 > trajectory 3 > trajectory 4 > trajectory 2. Trajectories 3, 4, and 5 airflow directions were the same, and the airflow trajectory accounted for 47.48 %, corresponding to BC concentrations of 599.82 ng·m-3, 579.99 ng·m-3, and 555.85 ng·m-3, respectively. Tower in the spring compared with other seasons of the CWT value of >400 ng·m-3 had the widest coverage, and Urumqi had more source areas contributing to moderate pollution concentration weights in winter (400 ng·m-3 < CWT < 800 ng·m-3). The conclusions of this study provide a scientific basis for regional environmental management and the formulation of air pollution measures in Xinjiang.

16.
Sci Total Environ ; 947: 174498, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38971247

RESUMO

In this study, the occurrence and distribution of heavy metals in coal gasification fine ash (CGFA) with different particle sizes were investigated to ensure safer disposal and utilization strategies for CGFA. These measures are critical to sustainable industrial practices. This study investigates the distribution and leachability of heavy metals in CGFA, analyzing how these factors vary with particle size, carbon content, and mineral composition. The results demonstrated that larger CGFA particles (>1 mm) encapsulated up to 70 % more heavy metals than smaller particles (<0.1 mm). Cr and Zn were present in higher concentrations in larger CGFA particles, whereas volatile elements such as Zn, Hg, Se, and Pb were found in relatively higher contents in finer CGFA particles. At least 70 % of Hg in CGFA was present in an acid-soluble form of speciation, whereas Cd, Zn, and Pb were mostly present in a reducible form of speciation, which could be attributed to the presence of franklinite. More than 40 % of Cd and Zn in fine CGFA particles exist in an acid-soluble form. With the exception of CGFA_1.18, Se in CGFA mainly existed in an oxidizable form at a ratio of 60 %-80 %. This could be attributed to the presence of bassanite particles as well as the higher affinity of Se for S. In contrast, Cr, Cu, and As were mostly present in residual speciation forms owing to their parasitism in quartz, sillimanite, and amorphous Fe solid solution in CGFA. Additionally, the study revealed that there was no significant relationship between heavy metal content, leaching behavior, and carbon content in CGFA. Based on combined analyses using toxicity characteristic leaching procedure (TCLP) leaching concentrations and risk assessment code (RAC) results, it is recommended to focus on the environmental risks posed by Cd, Cr, Pb, Zn, and Hg in CGFA during their modification and utilization processes.

17.
J Hazard Mater ; 476: 135200, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003807

RESUMO

The study assessed the quality of highway runoff and a stormwater treatment system, focusing on intra-event variations (IEVs: variations within a runoff/effluent event) of the concentration of organic micropollutants (OMPs) including bisphenol-A, alkylphenols, polycyclic aromatic hydrocarbons (PAHs), and petroleum hydrocarbons (PHCs). IEVs of OMPs varied considerably with no particular recurring pattern in highway runoff and presedimentation effluent, displaying sporadic strong first flushes. IEVs are significantly associated with rainfall intensity variations, especially for particle-bound substances such as PAHs and PHCs. However, phenolic substances showed distinct IEV patterns compared to total suspended solids, PAHs, and PHCs, likely due to their higher solubility and mobility. Downstream sand filter (SF) and vegetated biofilter (BFC) mitigated IEVs, leading to more uniform discharge during outflow events. Although BFC's IEVs were indiscernible due to low effluent concentrations, SF's IEVs often peaked at the beginning of events (within the first 100 of ⁓600 m3), exceeding the lowest predicted non-effect concentrations for five PAHs, bisphenol-A, and octylphenol. This study highlights the advantage of IEV analysis over conventional event mean concentration analysis for identifying critical effluent stages, crucial for developing control strategies to protect sensitive water recipients or for reuse applications.

18.
Sci Total Environ ; 948: 174645, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986702

RESUMO

Hydroelectric power facilities can generate episodic total dissolved gas supersaturation (TDGS), which is harmful to aquatic life. We developed a decision tree-based risk assessment to identify the potential for TDGS at hydropower plants and conducted validation measurements at selected facilities. Applying the risk model to Norway's hydropower plants (n = 1696) identified 473 (28 %) high-risk plants characterized by secondary intakes and Francis or Kaplan turbines, which are prone to generating TDGS when air is entrained. More than half of them discharge directly to rivers (283, 17 % of total). Measurements at 11 high-risk plants showed that 8 of them exhibited biologically relevant TDGS (120 % to 229 %). In Austria and Germany, the analysis of hydropower plants was limited due to significant data constraints. Out of 153 hydropower plants in Austria, 80 % were categorized at moderate risk for TDGS. Two Austrian plants were monitored, revealing instances of TDGS in both (up to 125 %). In Germany, out of 403 hydropower plants, 265 (66 %) fell into the moderate risk, with none in the high-risk category. At a dam in the Rhine River, TDGS up to 118 % were observed. Given the uncertainty due to limited data access and the prevalence of run-of-river plants in Austria and Germany, there remains an unclarified risk of TDGS generation in these countries, especially at spillways of dams and below aerated turbines. The results indicate a previously overlooked potential for the generation of biologically harmful TDGS at hydropower installations. It is recommended to systematically screen for TDGS at hydropower installations through risk assessment, monitoring, and, where needed, the implementation of mitigation measures. This is increasingly critical considering the expanding global initiatives in hydropower and efforts to maintain the ecological status of freshwater ecosystems.

19.
J Hazard Mater ; 476: 134998, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38991641

RESUMO

Currently, there is uncertainty about emissions of pharmaceuticals into larger closed ecosystems that are at risk such as the Baltic Sea. There is an increasing need for selecting the right strategies on advanced wastewater treatment. This study analysed 35 pharmaceuticals and iodinated X-ray contrast media in effluents from 82 Wastewater Treatment Plants (WWTPs) across Denmark, Estonia, Finland, Germany, Latvia, Lithuania, Poland and Sweden. Measured concentrations from Finland and Denmark were compared to predicted effluent concentrations using different levels of refinement. The concentrations predicted by the Total Residue Approach, as proposed by the European Medicines Agency, correlated with R2 of 0.18 and 0.031 to measured ones for Denmark and Finland, respectively and the predicted data were significantly higher than the measured ones. These correlations improved substantially to R2 of 0.72 and 0.74 after adjusting for estimated human excretion rates and further to R2 = 0.91 and 0.78 with the inclusion of removal rates in WWTPs. Temporal analysis of compound variations in a closely monitored WWTP showed minimal fluctuation over days and weeks for most compounds but revealed weekly shifts in iodinated X-ray contrast media due to emergency-only operations at X-ray clinics during weekends and an abrupt seasonal change for gabapentin. The findings underscore the limitations of current predictive models and findings (...) demonstrate how these methodologies can be refined by incorporating human pharmaceutical excretion/metabolization as well as removal in wastewater treatment plants to more accurately forecast pharmaceutical levels in aquatic environments.

20.
Huan Jing Ke Xue ; 45(7): 4052-4062, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022953

RESUMO

Microplastics are among the most difficult new pollutants to remove in wastewater treatment plants. In order to explore the occurrence form, size distribution, composition, removal efficiency, migration law, and fate behavior characteristics of microplastic particles in sewage plants, taking a sewage treatment plant in Hohhot as an example, a total of 17 sampling sites were set up. The LAS X software counted the shape, abundance, and size of microplastics and conducted a full-process analysis. The results showed that: fibrous microplastics had the highest abundance and widest distribution and were the main form of existence, accounting for 61.8% of the total abundance; the size of microplastics ranged mainly between 0 and 1.00 mm, and among the four sizes, the abundance of microplastics 0.25 to 0.50 mm in China was the highest, accounting for 32.9%. Among the eight types of plastic components detected, polyester substances (PET, PBT), cellulose, and polypropylene (PP) were the main components, accounting for 25%, 21%, and 17%, respectively. The influent abundance of the sewage plant was (73 ±5) n·L-1, the effluent abundance was (14 ±2) n·L-1, and the overall removal rate was (80.8 ±12.1)%. Among the three treatment stages of the sewage plant, only the primary treatment played a role in removal, and the abundance of microplastics surged in the secondary treatment. Different structures playing a major role in the removal of microplastics were fine grids (49.2 ±7.4)% and secondary sedimentation tanks (92.4 ±13.9)%. Microplastics mainly existed in the form of fibers, fragments, and films. The proportion of fibers was approximately 70%, and the size of fragments was mainly concentrated between 0.50 and 5.00 mm. Most fragments were in the range of 5.00 mm, accounting for 50%, making them the main form apart from fibrous. The film-like size was mostly concentrated in the range of less than 0.50 mm, accounting for more than 10%. Therefore, improving the removal of small-sized fibrous and film-like microplastics and large-sized fragmented microplastic particles can effectively reduce the pollution risk of microplastics in the environment caused by sewage plant drainage.


Assuntos
Cidades , Microplásticos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Microplásticos/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação , China , Esgotos/química , Plásticos , Tamanho da Partícula , Polipropilenos , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...