Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.957
Filtrar
1.
Int J Biol Macromol ; 275(Pt 1): 133565, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950800

RESUMO

In this study, it was aimed to investigate the direct release of BAPs from einkorn flour in one-step process. Thus, the protein extraction step was eliminated, thereby reducing processing cost. Commercial proteases (Alcalase, Flavourzyme, Neutrase, and Trypsin), and crude enzyme from Bacillus mojavensis sp. EBTA7 were used for hydrolyzing einkorn flour (30 %, w/v) solutions at 50-60 °C. The supernatants after centrifugation were used for bioactivity and techno-functionality tests. All hydrolysates demonstrated significant antioxidant capacities, with values ranging from 17.7 to 33.0 µmol TE/g for DPPH, 107 to 190 µmol TE/g for ABTS, and 0.09 to 3.08 mg EDTA/g for ion-chelating activities. Alcalase and Flavourzyme hydrolysis had the highest DPPH activities, while Bacillus mojavensis sp. EBTA7 enzyme yielded relatively high ABTS and ion-chelating activities. Notably, Bacillus mojavensis sp. EBTA7 crude enzyme hydrolysates demonstrated higher oil absorption capacity (2.94 g oil/g hydrolysate), robust emulsion (227 min), and foam stability (94 %) compared to commercial enzymes. FTIR spectroscopy confirmed variations in the secondary structure of peptides. All hydrolysates exhibited negative zeta potentials. The SDS-PAGE showcased MW ranged from 14 to 70 kDa, which was influenced by both the enzyme type and the degree of hydrolysis. Overall, Bacillus mojavensis sp. EBTA7 hydrolysates revealed considerable bio and techno-functional characteristics.

2.
Food Sci Anim Resour ; 44(4): 885-898, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38974730

RESUMO

Ovomucin (OM), which has insoluble fractions is a viscous glycoprotein, found in egg albumin. Enzymatic hydrolysates of OM have water solubility and bioactive properties. This study investigated that the immunostimulatory effects of OM hydrolysates (OMHs) obtained by using various proteolytic enzymes (Alcalase®, bromelain, α-chymotrypsin, Neutrase®, pancreatin, papain, Protamax®, and trypsin) in RAW 264.7 cells. The results showed that OMH prepared with pancreatin (OMPA) produced the highest levels of nitrite oxide in RAW 264.7 cells, through upregulation of inducible nitric oxide synthase mRNA expression. The production of pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin-6 were increased with the cytokines mRNA expression. The effect of OMPA on mitogen-activated protein kinase signaling pathway was increased the phosphorylation of p38, c-Jun NH2-terminal kinase, and extracellular signal-regulated kinase in a concentration-dependent manner. Therefore, OMPA could be used as a potential immune-stimulating agent in the functional food industry.

3.
J Food Sci ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004871

RESUMO

Insoluble dietary fiber (IDF) in soybean meal, due to the insolubility, is one of the major impediments to upcycle the soybean meal for its value-added use. This study converted IDF to soluble dietary fiber (SDF) using ball milling and enzymatic hydrolysis of the IDF. The impact of ball milling and enzymatic hydrolysis on the physicochemical and functional properties of SDF was evaluated. Cellulase, hemicellulase, xylanase, galacturonase, and arabinofuranosidase were employed for hydrolyzing IDF. The results showed that ball milling significantly reduced the particle size of IDF, facilitating enhanced enzymatic hydrolysis and resulting in SDF with lower molecular weight and varied monosaccharide composition. The synergistic effect of ball milling and enzymatic processes with combination of cellulase-xylanase-galacturonase was evident by the improved conversion rates (69.8%) and altered weight-averaged molecular weight (<5900 Da) of the resulting SDF. Rheological and microstructural analyses of the SDF gel indicated that specific enzyme combinations led to SDF gels with distinct viscoelastic properties, pore sizes, and functional capabilities, suitable for varied applications in the food and pharmaceutical sectors. This comprehensive evaluation demonstrates the potential of optimized physical bioprocessing techniques in developing functional ingredients with tailored properties for industrial use.

4.
Biotechnol Biofuels Bioprod ; 17(1): 104, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026332

RESUMO

BACKGROUND: Achieving climate neutrality is a goal that calls for action in all sectors. The requirements for improving waste management and reducing carbon emissions from the energy sector present an opportunity for wastewater treatment plants (WWTPs) to introduce sustainable waste treatment practices. A common biotechnological approach for waste valorization is the production of sugars from lignocellulosic waste biomass via biological hydrolysis. WWTPs produce waste streams such as sewage sludge and screenings which have not yet been fully explored as feedstocks for sugar production yet are promising because of their carbohydrate content and the lack of lignin structures. This study aims to explore the enzymatic hydrolysis of various waste streams originating from WWTPs by using a laboratory-made and a commercial cellulolytic enzyme cocktail for the production of sugars. Additionally, the impact of lipid and protein recovery from sewage sludge prior to the hydrolysis was assessed. RESULTS: Treatment with a laboratory-made enzyme cocktail produced by Irpex lacteus (IL) produced 31.2 mg sugar per g dry wastewater screenings. A commercial enzyme formulation released 101 mg sugar per g dry screenings, corresponding to 90% degree of saccharification. There was an increase in sugar levels for all sewage substrates during the hydrolysis with IL enzyme. Lipid and protein recovery from primary and secondary sludge prior to the hydrolysis with IL enzyme was not advantageous in terms of sugar production. CONCLUSIONS: The laboratory-made fungal IL enzyme showed its versatility and possible application beyond the typical lignocellulosic biomass. Wastewater screenings are well suited for valorization through sugar production by enzymatic hydrolysis. Saccharification of screenings represents a viable strategy to divert this waste stream from landfill and achieve the waste treatment and renewable energy targets set by the European Union. The investigation of lipid and protein recovery from sewage sludge showed the challenges of integrating resource recovery and saccharification processes.

5.
Foods ; 13(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38998633

RESUMO

The use of enzyme immobilisation is becoming increasingly popular in beverage processing, as this method offers significant advantages, such as enhanced enzyme performance and expanded applications, while allowing for easy process termination via simple filtration. This literature review analysed approximately 120 articles, published on the Web of Science between 2000 and 2023, focused on enzyme immobilisation systems for beverage processing applications. The impact of immobilisation on enzymatic activity, including the effects on the chemical and kinetic properties, recyclability, and feasibility in continuous processes, was evaluated. Applications of these systems to beverage production, such as wine, beer, fruit juices, milk, and plant-based beverages, were examined. The immobilisation process effectively enhanced the pH and thermal stability but caused negative impacts on the kinetic properties by reducing the maximum velocity and Michaelis-Menten constant. However, it allowed for multiple reuses and facilitated continuous flow processes. The encapsulation also allowed for easy process control by simplifying the removal of the enzymes from the beverages via simple filtration, negating the need for expensive heat treatments, which could result in product quality losses.

6.
Int J Biol Macromol ; 276(Pt 1): 133739, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002907

RESUMO

Xylose plants (produce xylose from corncob through dilute acid treatment) generate a large amount of corncob residue (CCR), most of which are burned and lacked of valorization. Herein, to address this issue, CCR was directly used as starting material for high-solid loading enzymatic hydrolysis via a simple strategy by combining PFI homogenization (for sufficient mixing) with batch-feeding. A maximum glucose concentration of 187.1 g/L was achieved after the saccharification with a solid loading of 25 wt% and enzyme dosage of 10 FPU/g-CCR. Furthermore, the residue of enzymatic hydrolysis (REH) was directly used as a bio-adhesive for plywood production with both high dry (1.7 MPa) and wet (1.1 MPa) surface bonding strength (higher than the standard (0.7 MPa)), and the excellent adhesion was due to the interfacial crosslinking between the REH adhesive (containing lignin, free glucose, and nanosized fibers) and cell wall of woods. Compared with traditional reported adhesives, the REH bio-adhesive has advantages of formaldehyde-free, good moisture resistance, green process, relatively low cost and easy realization. This study presents a simple and effective strategy for better utilization of CCR, which also provides beneficial reference for the valorization of other kinds of lignocellulosic biomass.

7.
Microb Pathog ; 193: 106771, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969185

RESUMO

Despite modern advances in food hygiene, food poisoning due to microbial contamination remains a global problem, and poses a great threat to human health. Especially, Listeria monocytogenes and Staphylococcus aureus are gram-positive bacteria found on food-contact surfaces with biofilms. These foodborne pathogens cause a considerable number of food poisoning and infections annually. Ovomucin (OM) is a water-insoluble gel-type glycoprotein in egg whites. Enzymatic hydrolysis can be used to improve the bioactive properties of OM. This study aimed to investigate whether ovomucin hydrolysates (OMHs) produced using five commercial enzymes (Alcalase®, Bromelain, α-Chymotrypsin, Papain, and Pancreatin) can inhibit the biofilm formation of L. monocytogenes ATCC 15313, L. monocytogenes H7962, S. aureus KCCM 11593, and S. aureus 7. Particularly, OMH prepared with papain (OMPP; 500 µg/mL) significantly inhibited biofilm formation in L. monocytogenes ATCC 15313, L. monocytogenes H7962, S. aureus KCCM 11593, and S. aureus 7 by 85.56 %, 80.28 %, 91.70 %, and 79.00 %, respectively. In addition, OMPP reduced the metabolic activity, exopolysaccharide production (EPS), adhesion ability, and gene expression associated with the biofilm formation of these bacterial strains. These results suggest that OMH, especially OMPP, exerts anti-biofilm effects against L. monocytogenes and S. aureus. Therefore, OMPP can be used as a natural anti-biofilm agent to control food poisoning in the food industry.


Assuntos
Antibacterianos , Biofilmes , Listeria monocytogenes , Ovomucina , Staphylococcus aureus , Biofilmes/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Ovomucina/farmacologia , Ovomucina/metabolismo , Hidrólise , Aderência Bacteriana/efeitos dos fármacos , Papaína/metabolismo , Testes de Sensibilidade Microbiana , Quimotripsina/metabolismo , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/metabolismo
8.
Biotechnol Biofuels Bioprod ; 17(1): 102, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020440

RESUMO

BACKGROUND: 2-Naphthol, a carbocation scavenger, is known to mitigate lignin condensation during the acidic processing of lignocellulosic biomass, which may benefit downstream processing of the resulting materials. Consequently, various raw materials have demonstrated improved enzymatic saccharification yields for substrates pretreated through autohydrolysis and dilute acid hydrolysis in the presence of 2-naphthol. However, 2-naphthol is toxic to ethanol-producing organisms, which may hinder its potential application. Little is known about the implications of 2-naphthol in combination with the pretreatment of softwood bark during continuous steam explosion in an industrially scalable system. RESULTS: The 2-naphthol-pretreated softwood bark was examined through spectroscopic techniques and subjected to separate hydrolysis and fermentation along with a reference excluding the scavenger and a detoxified sample washed with ethanol. The extractions of the pretreated materials with water resulted in a lower aromatic content in the extracts and stronger FTIR signals, possibly related to guaiacyl lignin, in the nonextractable residue when 2-naphthol was used during pretreatment. In addition, cyclohexane/acetone (9:1) extraction revealed the presence of pristine 2-naphthol in the extracts and increased aromatic content of the nonextractable residue detectable by NMR for the scavenger-pretreated materials. Whole-slurry enzymatic saccharification at 12% solids loading revealed that elevated saccharification recoveries after 48 h could not be achieved with the help of the scavenger. Glucose concentrations of 16.9 (reference) and 15.8 g/l (2-naphthol) could be obtained after 48 h of hydrolysis. However, increased inhibition during fermentation of the scavenger-pretreated hydrolysate, indicated by yeast cell growth, was slight and could be entirely overcome by the detoxification stage. The ethanol yields from fermentable sugars after 24 h were 0.45 (reference), 0.45 (2-naphthol), and 0.49 g/g (2-naphthol, detoxified). CONCLUSION: The carbocation scavenger 2-naphthol did not increase the saccharification yield of softwood bark pretreated in an industrially scalable system for continuous steam explosion. On the other hand, it was shown that the scavenger's inhibitory effects on fermenting microorganisms can be overcome by controlling the pretreatment conditions to avoid cross-inhibition or detoxifying the substrates through ethanol washing. This study underlines the need to jointly optimize all the main processing steps.

9.
Sci Total Environ ; 948: 174780, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39009167

RESUMO

The fish processing industry generates a significant amount of waste, and the recycling of this waste is an issue of global concern. We sought to utilize the heads of cutlassfish (Trichiurus lepturus), which are typically discarded during processing, to produce peptone, which is an important source of amino acids for microbial growth and recombinant protein production. Cutlassfish head muscle (CHM) were isolated, and the optimal protease and reaction conditions for peptone production were determined. The resulting peptone contained 12.22 % total nitrogen and 3.19 % amino nitrogen, with an average molecular weight of 609 Da, indicating efficient hydrolysis of CHM. Growth assays using Escherichia coli have shown that cutlassfish head peptone (CP) supports similar or superior growth compared to other commercial peptones. In addition, when recombinant chitosanase from Bacillus subtilis and human superoxide dismutase were produced in E. coli, CP gave the highest expression levels among six commercial peptones tested. In addition, the expression levels of chitosanase and superoxide dismutase were 20 % and 32 % higher, respectively, in CP medium compared to the commonly used Luria-Bertani (LB) medium. This study demonstrates the potential of using cuttlassfish waste in the production of microbial media, thereby adding significant value to fish waste. The results contribute to sustainable waste management practices and open avenues for innovative uses of fish processing by-products in biotechnological applications.

10.
Sci Total Environ ; 947: 174711, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38997041

RESUMO

Numerous studies have demonstrated that the co-leaching of ores by different silicate bacteria significantly improves the performance of bioleaching systems. Nevertheless, the mechanism of different silicate bacteria synergistically or complementarily enhanced the leaching process of lithium-containing silicate remains unclear. This study discussed the leaching impact of the combined presence of two metabolically distinct silicate bacteria on lepidolite, with the aim of comprehending the synergistic effect resulting from the presence of Bacillus mucilaginosus and Bacillus circulans in the leaching process. The results indicated that the polysaccharides and proteins secreted by bacteria-containing functional groups such as -OH and -COOH, which played an important role in the complex decomposition of ores. Organic acids played the role of acid etching and complexation. Bacillus mucilaginosus and Bacillus circulans exhibited low individual leaching efficiency, primarily due to their weak organic acid secretion. Moreover, the prolific polysaccharide production by Bacillus mucilaginosus led to bacterial aggregation, diminishing contact capability with minerals. Bacillus circulans decomposed the excessive polysaccharides produced by Bacillus mucilaginosus through enzymatic hydrolysis in the co-bioleaching process, providing later nutrient supply for both strains. The symbiosis of the two strains enhanced the synthesis and metabolic capabilities of both strains, resulting in increased organic acid secretion. In addition, protein and humic acid production by Bacillus mucilaginosus intensified, collectively enhancing the leaching efficiency. These findings suggested that the primary metabolic products secreted by different bacterial strains in the leaching process differ. The improvement in bioleaching efficiency during co-leaching was attributed to their effective synergistic metabolism. This work contributes to the construction of an efficient engineering microbial community to improve the efficiency of silicate mineral leaching, and reveals the feasibility of microbial co-culture to improve bioleaching.

11.
Int J Biol Macromol ; 275(Pt 1): 133522, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945325

RESUMO

A facile biphasic system composed of choline chloride (ChCl)-based deep eutectic solvent (DES) and methyl isobutyl ketone (MIBK) was developed to realize the furfural production, lignin separation and preparation of fermentable glucose from Eucalyptus in one-pot. Results showed that the ChCl/1,2-propanediol/MIBK system owned the best property to convert hemicelluloses into furfural. Under the optimal conditions (MRChCl:1,2-propanediol = 1:2, raw materials:DES:MIBK ratio = 1:4:8 g/g/mL, 0.075 mol/L AlCl3·6H2O, 140 °C, and 90 min), the furfural yield and glucose yield reached 65.0 and 92.2 %, respectively. Meanwhile, the lignin with low molecular weight (1250-1930 g/mol), low polydispersity (DM = 1.25-1.53) and high purity (only 0.08-2.59 % carbohydrate content) was regenerated from the biphasic system. With the increase of pretreatment temperature, the ß-O-4, ß-ß and ß-5 linkages in the regenerated lignin were gradually broken, and the content of phenolic hydroxyl groups increased, but the content of aliphatic hydroxyl groups decreased. This research provides a new strategy for the comprehensive utilization of lignocellulose in biorefinery process.

12.
Int J Biol Macromol ; 275(Pt 1): 133457, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945335

RESUMO

Essential oils show several biological properties, such as antimicrobial activity, but have limitations regarding their availability and stability. To maximize their antimicrobial effect and protection against environmental conditions, Pickering-type emulsions were used to vehiculate oregano essential oil (OEO) using cellulose nanofibers (CNF) as emulsion stabilizer. Enzymatic hydrolysis was used to produce CNF from a food industry waste (cassava peel), obtaining an environmentally sustainable emulsion stabilizer. It was evaluated how the different properties of the nanofibers affected the stability of the emulsions. Furthermore, the composition of the dispersed phase was varied (different ratios of OEO and sunflower oil-SO) in view of the target application in biodegradable active coatings. Even at very low concentration (0.01 % w/w), CNF was able to form kinetically stable emulsions with small droplet sizes using oil mixtures (OEO + SO). The stabilization mechanism was not purely Pickering, as there was a reduction in interfacial tension. Excellent antimicrobial activity was observed against bacteria and the fungus Alternaria alternata, demonstrating the ability to apply these emulsions in active systems such as coatings and films. An improvement in the stability of emulsions was observed when using a mixture of oils, which is extremely advantageous considering costs and stability to heat treatments, since the desired antimicrobial activity is maintained for the final application.

13.
Int J Biol Macromol ; 273(Pt 1): 133049, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857727

RESUMO

To enhance the enzymatic digestibility of polyethylene terephthalate (PET), which is highly oriented and crystallized, a polyethylene glycol (PEG) surfactant of varying molecular weights was utilized to improve the stability of mutant cutinase from Humicola insolens (HiC) and to increase the accessibility of the enzyme to the substrate. Leveraging the optimal conditions for HiC hydrolysis of PET, the introduction of 1 % w/v PEG significantly increased the yield of PET hydrolysis products. PEG600 was particularly effective, increasing the yield by 64.58 % compared to using HiC alone. Moreover, the mechanisms by which PEG600 and PEG6000 enhance enzyme digestion were extensively examined using circular dichroism and fluorescence spectroscopy. The results from CD and fluorescence analyses indicated that PEG alters the protein conformation, thereby affecting the catalytic effect of the enzyme. Moreover, PEG improved the affinity between HiC and PET by lowering the surface tension of the solution, substantially enhancing PET hydrolysis. This study suggests that PEG holds considerable promise as an enzyme protector, significantly aiding in the hydrophilic modification and degradation of PET in an environmentally friendly and sustainable manner.


Assuntos
Hidrolases de Éster Carboxílico , Polietilenoglicóis , Polietilenotereftalatos , Tensoativos , Polietilenotereftalatos/química , Polietilenoglicóis/química , Hidrólise , Tensoativos/química , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo
14.
Foods ; 13(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928742

RESUMO

The low rehydration properties of commercial soy protein powder (SPI), a major plant-based food ingredient, have limited the development of plant-based foods. The present study proposes a treatment of soy lecithin modification combined with Alcalase hydrolysis to improve the rehydration of soy protein powder, as well as other processing properties (emulsification, viscosity). The results show that the soy protein-soy lecithin complex powder, which is hydrolyzed for 30 min (SPH-SL-30), has the smallest particle size, the smallest zeta potential, the highest surface hydrophobicity, and a uniform microstructure. In addition, the value of the ratio of the α-helical structure/ß-folded structure was the smallest in the SPH-SL-30. After measuring the rehydration properties, emulsification properties, and viscosity, it was found that the SPH-SL-30 has the shortest wetting time of 3.04 min, the shortest dispersion time of 12.29 s, the highest solubility of 93.17%, the highest emulsifying activity of 32.42 m2/g, the highest emulsifying stability of 98.33 min, and the lowest viscosity of 0.98 pa.s. This indicates that the treatment of soy lecithin modification combined with Alcalase hydrolysis destroys the structure of soy protein, changes its physicochemical properties, and improves its functional properties. In this study, soy protein was modified by the treatment of soy lecithin modification combined with Alcalase hydrolysis to improve the processing characteristics of soy protein powders and to provide a theoretical basis for its high-value utilization in the plant-based food field.

15.
Prep Biochem Biotechnol ; : 1-12, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909283

RESUMO

This research performed cellulase production by Aspergillus fumigatus A4112 and evaluated its potential use in palm oil mill effluent (POME) hydrolysis to recover oil simultaneously with the generation of fermentable sugar useful for biofuel production under non-sterilized conditions. Empty fruit bunch (EFB) without pretreatment was used as carbon source. The combination of nitrogen sources facilitated CMCase production. The maximum activity (3.27 U/mL) was obtained by 1.0 g/L peptone and 1.5 g/L (NH4)2SO4 and 20 g/L EFB at 40 °C for 7 days. High level of FPase activity (39.51 U/mL) was also obtained. Interestingly, the enzyme retained its cellulase activities more than 60% at ambient temperature over 15 days. In enzymatic hydrolysis, Triton X-100 was an effective surfactant to increase total oil recovery in the floating form. High yield of reducing sugar (50.13 g/L) and 21% (v/v) of floating oil was recoverable at 65 °C for 48 h. Methane content of the raw POME increased from 41.49 to 64.94% by using de-oiled POME hydrolysate which was higher than using the POME hydrolysate (59.82%). The results demonstrate the feasibility of the constructed process for oil recovery coupled with a subsequent step for methane yield enhancement in biogas production process that benefits the palm oil industry.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38878161

RESUMO

Chitin is the most productive nitrogen-containing polysaccharide in nature with immense potential for transforming into a range of chemicals. However, its dense crystal structure poses a challenge for depolymerization, limiting its applications. To overcome these challenges, a novel series of deep eutectic solvents (DESs) based on benzyltrimethylammonium chloride (TMBAC) as the hydrogen bond acceptor was developed. These TMBAC-based DESs, in combination with lactic acid, oxalic acid, and malic acid as the hydrogen bond donor demonstrated efficient chitin dissolution, achieving a solubility of up to 12% and an 88% recovery rate of regenerated chitin. The regenerated chitin was characterized using XRD, FT-IR, SEM, and 13C CP-MAS NMR, which indicated the preservation of chitin's chemical structure, a significant decrease in crystallinity, and a reduction in the molecular weight. Furthermore, the enzymatic hydrolysis efficiency of chitin was nearly doubled after treatment with TMBAC-based DESs, surpassing the effectiveness of untreated chitin. This approach holds promise for facilitating subsequent transformation and utilization of chitin.

17.
Poult Sci ; 103(8): 103924, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38908125

RESUMO

A significant quantity of bone-rich poultry by-products must be disposed of by poultry processors. These products still contain a significant amount of nutritionally valuable animal proteins. In the present work, a hydrolysis protocol was optimized to recover the protein fraction of bone-rich poultry by-products while simultaneously minimizing the amount of water required for hydrolysis (thus reducing drying costs) and recycling the hydrolytic broth up to 3 times, to reduce the cost of the proteolytic enzyme. The final hydrolysis conditions involved the use of (protease from B. licheniformis, ≥2.4 U/g; 0.5 V/w of raw material) and a hydrolysis time of 2 h at 65°C. The protein hydrolysate obtained has a high protein content (79-86%), a good amino acid profile (chemical amino acid score equal to 0.7-0.8) and good gastric digestibility (about 30% of peptide bonds are already hydrolyzed before digestion). This supports its use as an ingredient in food, pet food or animal feed formulations.

18.
J Sci Food Agric ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899487

RESUMO

BACKGROUND: Walnut protein (WP) is recognized as a valuable plant protein. However, the poor solubility and functional properties limit its application in the food industry. It is a great requirement to improve the physicochemical properties of WP. RESULTS: Following a 90 min restricted enzymatic hydrolysis period, the solubility of WP significantly increased from 3.24% to 54.54%, with the majority of WP hydrolysates (WPHs) possessing a molecular weight exceeding 50 kDa. Circular dichroism spectra showed that post-hydrolysis, the structure of the protein became more flexible, while the hydrolysis time did not significantly alter the protein's secondary structure. After hydrolysis, WP's surface hydrophobicity significantly increased from 2279 to 6100. Furthermore, WPHs exhibited a strong capacity for icariin loading and micelle formation with critical micelle concentration values of 0.71, 0.99 and 1.09 mg mL-1, respectively. Moreover, similar immuno-enhancement activities were observed in WPHs. After exposure to WPHs, the pinocytosis of RAW264.7 macrophages was significantly improved. WPH treatment also increased the production of nitric oxide, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in macrophages. Up-regulation of mRNA expressions of IL-6, inducible nitric oxide synthase (iNOS) and TNF-α was observed in a dose-dependent manner. CONCLUSION: The enhancement of functionality and bioactivity in WP can be achieved through the application of limited enzyme digestion with trypsin. This process effectively augments the nutritional value and utility of the protein, making it a valuable component in various dietary applications. © 2024 Society of Chemical Industry.

19.
Bioresour Technol ; 406: 131053, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944318

RESUMO

Lignocellulose presents a promising alternative to fossil fuels. Monitoring the mass and size changes of lignocellulosic particles without disrupting the process can assist in adjusting pretreatment and enzymatic hydrolysis, where conventional sieving methods fall short. A method utilizing focused beam reflectance measurement (FBRM) was developed to establish mathematical correlations between FBRM chord information (chord length and count) and particle characteristics (weight and size) quantified through sieving. Results indicate particle size exhibits a linear correlation with the square weighted median chord length (Lsqr) with R2 at 0.93. Further, real-time bulk particle mass can be predicted using Lsqr and chord count (R2 0.98). These correlations are applicable in range 53 µm to 358.5 µm. Real-time monitoring of enzymatic hydrolysis of corn stalks has demonstrated the practical applicability of FBRM. This study introduces a novel approach for online characterization of lignocellulosic particles, thereby enhancing lignocellulosic biorefineries.


Assuntos
Lignina , Tamanho da Partícula , Lignina/química , Zea mays/química , Hidrólise , Biotecnologia/métodos
20.
Food Chem ; 458: 140139, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38943952

RESUMO

The aim of this work was to develop, for the first time, sustainable strategies, based on the use of Ultrasound-Assisted Extraction, Natural Deep Eutectic Solvents, and Pressurized Liquid Extraction, to extract proteins from lime (Citrus x latifolia) peels and to evaluate their potential to release bioactive peptides. PLE showed the largest extraction of proteins (66-69%), which were hydrolysed using three different enzymes (Alcalase 2.4 L FG, Alcalase®PURE 2.4 L, and Thermolysin). The in vitro antioxidant and antihypertensive activities of released peptides were evaluated. Although all hydrolysates showed antioxidant and antihypertensive activity, the hydrolysate obtained with Thermolysin showed the most significant values. Since the Total Phenolic Content in all hydrolysates was low, peptides were likely the main contributors to these bioactivities. Hydrolysates were analyzed by UHPLC-QTOF-MS and a total of 98 different peptides were identified. Most of these peptides were rich in amino acids associated with antioxidant activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...