Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
J Biol Chem ; 300(9): 107647, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39122010

RESUMO

Curcumin is a plant-derived secondary metabolite exhibiting antitumor, neuroprotective, antidiabetic activities, and so on. We previously isolated Escherichia coli as an enterobacterium exhibiting curcumin-converting activity from human feces, and discovered an enzyme showing this activity (CurA) and named it NADPH-dependent curcumin/dihydrocurcumin reductase. From soil, here, we isolated a curcumin-degrading microorganism (No. 34) using the screening medium containing curcumin as the sole carbon source and identified as Rhodococcus sp. A curcumin-degrading enzyme designated as CurH was purified from this strain and characterized, and compared with CurA. CurH catalyzed hydrolytic cleavage of a carbon-carbon bond in the ß-diketone moiety of curcumin and its analogs, yielding two products bearing a methyl ketone terminus and a carboxylic acid terminus, respectively. These findings demonstrated that a curcumin degradation reaction catalyzed by CurH in the soil environment was completely different from the one catalyzed by CurA in the human microbiome. Of all the curcumin analogs tested, suitable substrates for the enzyme were curcuminoids (i.e., curcumin and bisdemethoxycurcumin) and tetrahydrocurcuminoids. Thus, we named this enzyme curcuminoid hydrolase. The deduced amino acid sequence of curH exhibited similarity to those of members of acetyl-CoA C-acetyltransferase family. Considering results of oxygen isotope analyses and a series of site-directed mutagenesis experiments on our enzyme, we propose a possible catalytic mechanism of CurH, which is unique and distinct from those of enzymes degrading ß-diketone moieties such as ß-diketone hydrolases known so far.

2.
J Mol Biol ; 436(16): 168651, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38866092

RESUMO

In Escherichia coli, many environmental stressors trigger polyphosphate (polyP) synthesis by polyphosphate kinase (PPK1), including heat, nutrient restriction, toxic compounds, and osmotic imbalances. PPK1 is essential for virulence in many pathogens and has been the target of multiple screens for small molecule inhibitors that might serve as new anti-virulence drugs. However, the mechanisms by which PPK1 activity and polyP synthesis are regulated are poorly understood. Our previous attempts to uncover PPK1 regulatory elements resulted in the discovery of PPK1* mutants, which accumulate more polyP in vivo, but do not produce more in vitro. In attempting to further characterize these mutant enzymes, we discovered that the most commonly-used PPK1 purification method - Ni-affinity chromatography using a C-terminal poly-histidine tag - altered intrinsic aspects of the PPK1 enzyme, including specific activity, oligomeric state, and kinetic values. We developed an alternative purification strategy using a C-terminal C-tag which did not have these effects. Using this strategy, we were able to demonstrate major differences in the in vitro response of PPK1 to 5-aminosalicylic acid, a known PPK1 inhibitor, and observed several key differences between the wild-type and PPK1* enzymes, including changes in oligomeric distribution, increased enzymatic activity, and increased resistance to both product (ADP) and substrate (ATP) inhibition, that help to explain their in vivo effects. Importantly, our results indicate that the C-terminal poly-histidine tag is inappropriate for purification of PPK1, and that any in vitro studies or inhibitor screens performed with such tags need to be reconsidered in that light.


Assuntos
Escherichia coli , Histidina , Fosfotransferases (Aceptor do Grupo Fosfato) , Escherichia coli/genética , Escherichia coli/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Histidina/metabolismo , Histidina/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Polifosfatos/metabolismo , Cinética
3.
Artigo em Inglês | MEDLINE | ID: mdl-38689532

RESUMO

Glutamate dehydrogenase (GDH) participates in the energy metabolism of proteins and the synthesis of metabolites important for the organism. In this study, GDH enzyme was purified from the liver of rainbow trout (Oncorhynchus mykiss) by 2',5'-ADP Sepharose 4B affinity chromatography in one step. As a result of this purification process, GDH enzyme was purified 171-fold with 5.83 U/mg protein-specific activity. The characterization experiments presented that the storage stability of the purified GDH enzyme was determined as -80°C; optimum temperature 40°C; it was determined that the optimum ionic strength was 100 mM phosphate buffer and the optimum pH was 8.00. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and PAGE studies showed that the natural molar mass of the purified GDH enzyme was 346.74 kDa, and the molar mass of its subunits was 53.71 kDa. Km and Vmax values for substrates and coenzymes of GDH enzyme purified from rainbow trout liver were calculated, and the lowest Km value was found in NAD+ (1.86 mM) and the highest Vmax value in NH4 + (1.79 U/mL). The effects of some metal ions, vitamins, and solvents on the activity of the purified GDH enzyme were investigated and also IC50 values and inhibition types. The metal ion with the lowest IC50 value is Ag+ (8.65 ± 1.68 µM), and the vitamin is B6 (0.77 ± 0.04 mM). The binding affinities of inhibitors were investigated with molecular docking, based on the conformational state of GDH.

5.
Heliyon ; 10(7): e28667, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38571589

RESUMO

ß-glucosidase hydrolyses the glycosidic bonds in cellobiose and cello-oligosaccharides, a critical step in the saccharification for biofuel production. Hence, the aim of this study was to gain insights into the biochemical and structural properties of a ß-glucosidase from Beauveria bassiana, an entomopathogenic fungus. The ß-glucosidase was purified to homogeneity using salt precipitation, ultrafiltration, and chromatographic techniques, attaining a specific activity of 496 U/mg. The molecular mass of the enzyme was then estimated via SDS-PAGE to be 116 kDa, while its activity pattern was confirmed by zymography using 4-methylumbelliferyl-ß-d-glucopyranoside. Furthermore, the pH optima and temperature of the enzyme were found to be pH 5.0 and 60 °C respectively; its activity was significantly enhanced by Mg2+ and Na+ and was found to be relatively moderate in the presence of ethanol and dichloromethane. Molecular docking of the modelled B. bassiana ß-glucosidase structure with the substrates, viz., 4-nitrophenyl ß-d-glucopyranoside and cellobiose, revealed the binding affinity energies of -7.2 and -6.2 (kcal mol-1), respectively. Furthermore, the computational study predicted Lys-657, Asp-658, and Arg-1000 as the core amino acid residues in the catalytic site of the enzyme. This is the first investigation into a purified ß-glucosidase from B. bassiana, providing valuable insights into the functional properties of carbohydrases from entomopathogenic fungal endophytes.

6.
Enzyme Microb Technol ; 178: 110445, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38581868

RESUMO

The elucidation of the physicochemical properties of glycosidases is essential for their subsequent technological application, which may include saccharide hydrolysis processes and oligosaccharide synthesis. As the application of cloning, purification and enzymatic immobilization methods can be time consuming and require a heavy financial investment, this study has validated the recombinant production of the set of Lacticaseibacillus rhamnosus fucosidases fused with Usp45 and SpaX anchored to the cell wall of Lacticaseibacillus cremoris subsp cremoris MG1363, with the aim of avoiding the purification and stabilization steps. The cell debris harboring the anchored AlfA, AlfB and AlfC fucosidases showed activity against p-nitrophenyl α-L-fucopyranoside of 6.11 ±â€¯0.36, 5.81 ±â€¯0.29 and 9.90 ±â€¯0.58 U/mL, respectively, and exhibited better thermal stability at 50 °C than the same enzymes in their soluble state. Furthermore, the anchored AlfC fucosidase transfucosylated different acceptor sugars, achieving fucose equivalent concentrations of 0.94 ±â€¯0.09 mg/mL, 4.11 ±â€¯0.21 mg/mL, and 4.08 ±â€¯0.15 mg/mL of fucosylgalatose, fucosylglucose and fucosylsucrose, respectively.


Assuntos
Proteínas de Bactérias , Estabilidade Enzimática , Enzimas Imobilizadas , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/química , alfa-L-Fucosidase/metabolismo , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/isolamento & purificação , alfa-L-Fucosidase/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/isolamento & purificação
7.
J Biotechnol ; 385: 42-48, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38479472

RESUMO

Oryzamutaic acids, possessing a nitrogen-containing heterocyclic skeleton, have been isolated and identified from a rice mutant. Although oryzamutaic acids are expected to be functional ingredients, their functionality is difficult to evaluate, because of their wide variety and presence in trace amounts. Furthermore, how oryzamutaic acid is synthesized in vivo is unclear. Therefore, we developed a simple enzymatic synthesis method for these compounds in vitro. We focused on L-lysine ε-dehydrogenase (LysDH) from Agrobacterium tumefaciens, which synthesizes α-aminoadipate-δ-semialdehyde-a precursor of oryzamutaic acids. LysDH was cloned and expressed in Escherichia coli. Analysis of activity revealed that LysDH catalyzed the synthesis of oryzamutaic acid H at neutral pH in vitro. We synthesized 1.6 mg oryzamutaic acid H from 100 mg L-lysine. The synthesized oryzamutaic acid H exhibited UVA absorption, stability of temperature, and stability at a wide pH range. To our knowledge, this study is the first to report the enzymatic synthesis of oryzamutaic acid H in vitro and provides a basis for understanding the mechanisms of oryzamutaic acid synthesis in vivo.


Assuntos
Agrobacterium tumefaciens , Aminoácido Oxirredutases , Agrobacterium tumefaciens/genética , Lisina , Ácidos
8.
Appl Microbiol Biotechnol ; 108(1): 140, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231394

RESUMO

Enzymes have become important tools in many industries. However, the full exploitation of their potential is currently limited by a lack of efficient and cost-effective methods for enzyme purification from microbial production. One technology that could solve this problem is foam fractionation. In this study, we show that diverse natural foam-stabilizing proteins fused as F-Tags to ß-lactamase, penicillin G acylase, and formate dehydrogenase, respectively, are able to mediate foaming and recovery of the enzymes by foam fractionation. The catalytic activity of all three candidates is largely preserved. Under appropriate fractionation conditions, especially when a wash buffer is used, some F-Tags also allow nearly complete separation of the target enzyme from a contaminating protein. We found that a larger distance between the F-Tag and the target enzyme has a positive effect on the maintenance of catalytic activity. However, we did not identify any particular sequence motifs or physical parameters that influenced performance as an F-tag. The best results were obtained with a short helical F-Tag, which was originally intended to serve only as a linker sequence. The findings of the study suggest that the development of molecular tags that enable the establishment of surfactant-free foam fractionation for enzyme workup is a promising method. KEY POINTS: • Foam-stabilizing proteins mediate activity-preserving foam fractionation of enzymes • Performance as an F-Tag is not restricted to particular structural motifs • Separation from untagged protein benefits from low foam stability and foam washings.


Assuntos
Fracionamento Químico , Penicilina Amidase , Formiato Desidrogenases , Indústrias , Tensoativos
9.
Biotechnol Appl Biochem ; 71(1): 202-212, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37904288

RESUMO

In this study, benzohydroxamic acid molecules were synthesized from methyl 4-amino-2-methoxy, methyl 4-amino-3-nitro, methyl 4-amino-3-methyl, and methyl 4-amino-3-chloro benzoate molecules, and the horseradish peroxidase (HRP) enzyme was purified in one step using the affinity chromatography technique for the first time. The IC50 and Ki values for the 4-amino 3-methyl benzohydroxamic acid molecule were 0.136 and 0.132 ± 0.054 µM, respectively, while the IC50 and Ki values for the 4-amino-3-nitro benzohydroxamic acid molecule were 56.00 and 51.90 ± 9.90 µM, respectively. It was found that the IC50 and Ki values for the 4-amino-3-chloro benzohydroxamic acid molecule were 218.33 and 175.67 ± 43.78 µM, respectively, whereas the IC50 and Ki values for the 4-amino-2-methoxy benzohydroxamic acid molecule were 306.00 and 218.00 ± 68.80 µM, respectively. The HRP enzyme was synthesized from 4-amino-2-methoxy hydroxamic acid column with a 35.97% yield 601.13 times, 4-amino-3-nitro hydroxamic acid column, with a 14.00% yield 404.11 times, 4-amino-3-methyl hydroxamic acid column with an 8.70% yield 394.88 times, and 4-amino-3-chloro hydroxamic acid column with a 4.48% yield 284.85 times. Thus, the HRP enzyme was purified in a single step with hydroxamic acids, and its molecular weight was found to be 44 kDa. The optimum pH was 8.0, the optimum temperature was 15°C, and the optimum ionic strength was 0.4 M for the purified HRP enzyme.


Assuntos
Ácidos Hidroxâmicos , Peroxidase do Rábano Silvestre/química , Cromatografia de Afinidade , Peso Molecular
10.
Prep Biochem Biotechnol ; 54(4): 553-563, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37668166

RESUMO

Xylanase finds extensive applications in diverse biotechnological fields such as biofuel production, pulp and paper industry, baking and brewing industry, food and feed industry, and deinking of waste paper. Here, polyethylene glycol (PEG)-phosphate aqueous two-phase system (ATPS) was applied for the purification of an alkaline active and thermotolerant xylanase from a marine source, Cladophora hutchinsiae (C. hutchinsiae). In the purification process, the effects of some experimental factors such as PEG concentration and PEG molar mass, potassium phosphate(K2HP04) concentration, and pH on xylanase distribution were systematically investigated. Relative enzymatic activity and purification factor obtained were 93.21% and 7.18, respectively. A single protein band of 28 kDa was observed on SDS-PAGE. The optimum temperature and pH of xylanase with beechwood xylan were 30 °C and 9.0, respectively. The Lineweaver-Burk graph was utilized to determine the Km (4.5 ± 0.8 mg/mL), Vmax (0.04 ± 0.01 U) and kcat (0.001 s-1) values of the enzyme. It was observed that the purified xylanase maintained 70% of its activity at 4 °C and was found stable at pH 4.0 by retaining almost all of its activity. Enzymatic activity was slightly enhanced with Na+, K+, Ca2+ and acetone. The highest increase in the reducing sugar amount was 53.6 ± 3.8, for orange juice at 50 U/mL enzyme concentration.


Assuntos
Endo-1,4-beta-Xilanases , Sucos de Frutas e Vegetais , Animais , Endo-1,4-beta-Xilanases/metabolismo , Temperatura , Xilanos/metabolismo , Suplementos Nutricionais , Concentração de Íons de Hidrogênio , Estabilidade Enzimática
11.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-1030532

RESUMO

Aims@#Microorganisms play a vital role in the breakdown of natural organic compounds and are valuable objects for worldwide enzyme production. The aim of this study was to identify favorable production conditions for Bacillus amyloliquefaciens D19 protease, followed by the purification and chemical characterization of this novel enzyme to assess its potential applications in various fields.@*Methodology and results@#In this study, favorable conditions of protease production from B. amyloliquefaciens D19 were determined using a medium containing soluble starch (1.5%), earthworm extract (1.0%), yeast extract (0.5%), NaCl (1.0%), at pH 7.0-8.0, 37 °C for 36 h with 150 rpm shaking condition. The protease was purified and had a molecular weight of about 23 kDa. The optimum condition for casein hydrolysis was at 40 °C and pH 6.5-7.0 in the presence of 1.0 mM Na+ or 5.0 mM Zn2+. The enzymatic activity was maintained at 75-100% at 30-50 °C and in pH 6.0-10.0. The values of Vmax and KM were also determined as 1547 U/mg and 6.33 mg/mL, respectively.@*Conclusion, significance and impact of study@#The identified optimal conditions will serve as the foundation for the production of the 23 kDa B. amyloliquefaciens D19 protease, one of the smallest proteases within the Bacillus genus. Moreover, its notable heat resistance, broad pH tolerance, high substrate catalysis and moderate substrate binding affinity make this enzyme a promising candidate for various applications in the food-feed and brewing industries.

12.
Protein Expr Purif ; 216: 106417, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38110108

RESUMO

The thioredoxin system consists of thioredoxin (Trx), thioredoxin reductase (TrxR) and nicotinamide adenine dinucleotide phosphate (NADPH). Spirulina platensis, which is one of the blue-green algae in the form of spiral rings, belongs to the cyanobacteria class. Spirulina platensis can produce Trx under stress conditions. If it can produce Trx, it also has TrxR activity. Therefore, in this study, the TrxR enzyme was purified for the first time from Spirulina platensis, an algae the most grown and also used as a nutritional supplement in the world. A two-step purification process was used: preparation of the homogenate and 2',5'-ADP sepharose 4B affinity chromatography. The enzyme was purified with a purification fold of 1059.51, a recovery yield of 9.7 %, and a specific activity of 5.77 U/mg protein. The purified TrxR was tested for purity by SDS-PAGE. The molecular weight of its subunit was found to be about 45 kDa. Optimum pH, temperature and ionic strength of the enzyme were pH 7.0, 40 °C and 750 mM in phosphate buffer respectively. The Michaelis constant (Km) and maximum velocity of enzyme (Vmax) values for NADPH and 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) are 5 µM and 2.2 mM, and 0.0033 U/mL and 0.0044 U/mL, respectively. Storage stability of the purified enzyme was determined at several temperatures. The inhibition effects of Ag+, Cu2+, Al3+ and Se4+ metal ions on the purified TrxR activity were investigated in vitro. While Se4+ ion increased the enzyme activity, other tested metal ions showed different type of inhibitory effects on the Lineweaver-Burk graphs.


Assuntos
Antioxidantes , Spirulina , Tiorredoxina Dissulfeto Redutase , NADP/metabolismo , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/metabolismo , Cromatografia de Afinidade , Tiorredoxinas/química , Íons , Cinética
13.
Artigo em Inglês | MEDLINE | ID: mdl-37950796

RESUMO

In this study, horseradish peroxidase was extracted, purified, and immobilized on a calcium alginate-starch hybrid support by covalent bonding and entrapment. The immobilized HRP was used for the biodegradation of phenol red dye. A 3.74-fold purification was observed after precipitation with ammonium sulfate and dialysis. An immobilization yield of 88.33%, efficiency of 56.89%, and activity recovery of 50.26% were found. The optimum pH and temperature values for immobilized and free HRP were 5.0 and 50 °C and 6.5 and 60 °C, respectively. The immobilized HRP showed better thermal stability than its free form, resulting in a considerable increase in half-life time (t1/2) and deactivation energy (Ed). The immobilized HRP maintained 93.71% of its initial activity after 45 days of storage at 4 °C. Regarding the biodegradation of phenol red, immobilized HRP resulted in 63.57% degradation after 90 min. After 10 cycles of reuse, the immobilized HRP was able to maintain 43.06% of its initial biodegradative capacity and 42.36% of its enzymatic activity. At the end of 15 application cycles, a biodegradation rate of 8.34% was observed. In conclusion, the results demonstrate that the immobilized HRP is a promising option for use as an industrial biocatalyst in various biotechnological applications.

14.
Methods Protoc ; 6(5)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37888034

RESUMO

The sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) is a membrane protein that is destabilized during purification in the absence of calcium ions. The disaccharide trehalose is a protein stabilizer that accumulates in the yeast cytoplasm when under stress. In the present work, SERCA was purified by including trehalose in the purification protocol. The purified SERCA showed high protein purity (~95%) and ATPase activity. ATP hydrolysis was dependent on the presence of Ca2+ and the enzyme kinetics showed a hyperbolic dependence on ATP (Km = 12.16 ± 2.25 µM ATP). FITC labeling showed the integrity of the ATP-binding site and the identity of the isolated enzyme as a P-type ATPase. Circular dichroism (CD) spectral changes at a wavelength of 225 nm were observed upon titration with ATP, indicating α-helical rearrangements in the nucleotide-binding domain (N-domain), which correlated with ATP affinity (Km). The presence of Ca2+ did not affect FITC labeling or the ATP-mediated structural changes at the N-domain. The use of trehalose in the SERCA purification protocol stabilized the enzyme. The isolated SERCA appears to be suitable for structural and ligand binding studies, e.g., for testing newly designed or natural inhibitors. The use of trehalose is recommended for the isolation of unstable enzymes.

15.
Methods Enzymol ; 689: 303-329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37802576

RESUMO

Aldo-keto reductase family 1C (AKR1C) members transform steroids via their 3-, 17-, and 20-ketosteroid reductase activities. The biochemical study of these enzymes can help to inform their roles in hormone-dependent diseases and develop therapeutic inhibitors. This work describes a protocol to purify AKR1C1-4 members from a bacterial expression system using two chromatography steps. It also describes the basis of discontinuous assays to measure steroid conversion.


Assuntos
Ensaios Enzimáticos , Esteroides , Aldo-Ceto Redutases/genética , Esteroides/metabolismo
16.
J Mol Recognit ; 36(9): e3048, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37551992

RESUMO

The aim of this study was to investigate the inhibitory effects of some pesticides known to have harmful effects on human health on carbonic anhydrase isoenzymes. Therefore, carbonic anhydrase isoenzymes (hCA I and II) were purified from human erythrocytes. The isoenzymes were purified from human erythrocytes by using an affinity column that has the chemical structure of Sepharose-4B-4-(6-amino-hexyloxy)-benzenesulfonamide. The purity of the isoenzymes was checked by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDSPAGE). It was determined that the pesticides used in this study inhibit hCA I and hCA II isoenzymes at different levels in vitro. It was determined that the strongest inhibitor for the hCA I enzyme was Carbofuran (IC50 :6.52 µM; Ki : 3.58 µM) and the weakest one was 1-Naphtol (IC50 :16.55 µM; Ki : 14.4 µM) among these pesticides. It was also found that the strongest inhibitor for the hCA II enzyme was coumatetralil (IC50 :5.06 µM; Ki : 1.62 µM) and the weakest one was Dimethachlor (IC50 14.6 µM; Ki : 8.44 µM).


Assuntos
Anidrases Carbônicas , Praguicidas , Humanos , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Isoenzimas/química , Isoenzimas/metabolismo , Anidrase Carbônica I/química , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/química , Anidrase Carbônica II/metabolismo , Praguicidas/farmacologia , Eritrócitos , Relação Estrutura-Atividade
17.
Nat Prod Res ; : 1-10, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37621192

RESUMO

Peroxidase is a biotechnologically important enzyme. The purification of peroxidase from the root of Citrullus colocynthis was carried out in a simple two-step process with maximum purity level. The sample was extracted in a high salt buffer, and the enzyme was partially purified with a Q-Sepharose anion exchange column. Final purification was carried out with HighLoad 16/600 Superdex G-75 column. The purified protein was analysed with SDS gel electrophoresis, which suggested a single band of approximately 35 kDa. Further, the enzyme was identified with the help of Mass spectrometric analysis using an ESI-QTOF Mass spectrometer. The study will be helpful for the isolation and its commercial uses in biotechnology.

18.
J Biol Chem ; 299(9): 105120, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37527776

RESUMO

Transmembrane protein 2 (TMEM2) was originally identified as a membrane-anchored protein of unknown function. We previously demonstrated that TMEM2 can degrade hyaluronan (HA). Furthermore, we showed that induced global knockout of Tmem2 in adult mice results in rapid accumulation of incompletely degraded HA in bodily fluids and organs, supporting the identity of TMEM2 as a cell surface hyaluronidase. In spite of these advances, no direct evidence has been presented to demonstrate the intrinsic hyaluronidase activity of TMEM2. Here, we directly establish the catalytic activity of TMEM2. The ectodomain of TMEM2 (TMEM2ECD) was expressed as a His-tagged soluble protein and purified by affinity and size-exclusion chromatography. Both human and mouse TMEM2ECD robustly degrade fluorescein-labeled HA into 5 to 10 kDa fragments. TMEM2ECD exhibits this HA-degrading activity irrespective of the species of TMEM2 origin and the position of epitope tag insertion. The HA-degrading activity of TMEM2ECD is more potent than that of HYAL2, a hyaluronidase which, like TMEM2, has been implicated in cell surface HA degradation. Finally, we show that TMEM2ECD can degrade not only fluorescein-labeled HA but also native high-molecular weight HA. In addition to these core findings, our study reveals hitherto unrecognized confounding factors, such as the quality of reagents and the choice of assay systems, that could lead to erroneous conclusions regarding the catalytic activity of TMEM2. In conclusion, our results demonstrate that TMEM2 is a legitimate functional hyaluronidase. Our findings also raise cautions regarding the choice of reagents and methods for performing degradation assays for hyaluronidases.


Assuntos
Hialuronoglucosaminidase , Proteínas de Membrana , Animais , Humanos , Camundongos , Membrana Celular/metabolismo , Fluoresceínas , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
19.
World J Microbiol Biotechnol ; 39(10): 267, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37528302

RESUMO

Invertase, an industrially significant glycoenzyme, was purified from baker's yeast using poly (2-Hydroxyethyl methacrylate) [PHema-Pba] cryogels functionalized with boronic acid. At subzero temperatures, PHema-Pba cryogels were synthesized and characterized using swelling tests, scanning electron microscopy, and Fourier-transform infrared spectroscopy. The surface area of the PHema-Pba cryogels was 14 m2/g with a swelling ratio of 88.3% and macroporosity of 72%. The interconnected macropores of PHema-Pba cryogels were shown via scanning electron microscopy. Invertase binding capacity of PHema-Pba cryogel was evaluated by binding studies in different pH, temperature, and interaction time conditions and the maximum Invertase binding of PHema-Pba cryogel was found as 15.2 mg/g. and 23.7 fold Invertase purification was achieved from baker's yeast using PHema-Pba cryogels. The results show that PHema-Pba cryogels have high Invertase binding capacity and may be used as an alternative method for enzyme purification via boronate affinity systems.


Assuntos
Criogéis , beta-Frutofuranosidase , Criogéis/química , Saccharomyces cerevisiae , Poli-Hidroxietil Metacrilato/química , Ácidos Borônicos , Adsorção
20.
Biomolecules ; 13(7)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37509191

RESUMO

Superoxide dismutase (SOD) is an essential enzyme that eliminates harmful reactive oxygen species (ROS) generating inside living cells. Due to its efficacities, SOD is widely applied in many applications. In this study, the purification of SOD produced from Saccharomyces cerevisiae TBRC657 was conducted to obtain the purified SOD that exhibited specific activity of 513.74 U/mg with a purification factor of 10.36-fold. The inhibitory test revealed that the purified SOD was classified as Mn-SOD with an estimated molecular weight of 25 kDa on SDS-PAGE. After investigating the biochemical characterization, the purified SOD exhibited optimal activity under conditions of pH 7.0 and 35 °C, which are suitable for various applications. The stability test showed that the purified SOD rapidly decreased in activity under high temperatures. To overcome this, SOD was successfully immobilized on bacterial cellulose (BC), resulting in enhanced stability under those conditions. The immobilized SOD was investigated for its ability to eliminate ROS in fibroblasts. The results indicated that the immobilized SOD released and retained its function to regulate the ROS level inside the cells. Thus, the immobilized SOD on BC could be a promising candidate for application in many industries that require antioxidant functionality under operating conditions.


Assuntos
Saccharomyces cerevisiae , Superóxido Dismutase , Saccharomyces cerevisiae/metabolismo , Espécies Reativas de Oxigênio , Superóxido Dismutase/metabolismo , Estresse Oxidativo , Fibroblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA