RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Persian medicine (TPM), people often use herbal infusions as a dosage form to treat diseases related to hyperglycemia, known as 'dam-kardeh'. Traditionally, herbal preparations of Eryngium bungei Boiss. (E. b), Tragopogon buphthalmoides (DC.) Boiss. (T. b), Salvia hydrangea DC. ex Benth. (S. h), and Juniperus polycarpos K. Koch. (J. p) are used to manage diabetes in Iran. However, there is no evidence of their effectiveness in controlling glucose levels and their mechanisms remain unclear. AIM OF THE STUDY: This study aimed to investigate whether traditional doses of plant infusions can have hypoglycemic and/or anti-hyperglycemic effects during fasting and/or postprandial states and establish the basis for future research on their potential mechanisms of action. MATERIALS AND METHODS: The effects of traditional doses of herbal extracts on blood glucose levels in STZ-NA-induced hyperglycemic rats were investigated in 2-h acute tests during fasting and postprandial states (with a glucose load). In addition, the potential inhibitory effect in vitro of enzymes involved in relevant pathways, such as gluconeogenesis (fructose-1,6-bisphosphatase, FBPase and glucose-6-phosphatase, G6Pase), carbohydrate breakdown (intestinal α-glucosidases), and insulin sensitivity (protein tyrosine phosphatase 1B, PTP-1B) was evaluated. Acute toxicity tests were carried out and HPLC-SQ-TOF was used to analyze the chemical profiles of the plant extracts. RESULTS: In the fasting state, T. b, S. h, and E. b were as effective as glibenclamide in lowering blood glucose levels in hyperglycemic rats. Moreover, all three suppressed G6Pase and FBPase enzymatic activity by 90-97% and 80-91%, respectively. On the other hand, significant postprandial hypoglycemic efficacy was observed for E. b, S. h, and T. b. Based on the AUC values, T. b caused a reduction comparable to the therapeutic efficacy of repaglinide. When investigating the possible mechanisms of action involved in this activity, E. b, S. h, and T. b showed significant inhibition of PTP-1B in vitro (>70%). Finally, all plant extracts showed no signs of acute toxicity. Several compounds that may contribute to biological activities were identified, including phenolic acids and flavonoid glycosides. CONCLUSIONS: The present study supports the traditional use of T. b, E. b and S. h for the control of diabetes in the fasting and postprandial state. Moreover, these plants were found to be rich in bioactive compounds with hypoglycemic and antihyperglycemic activities. On the other hand, J. p, showed a modest effect only in the fasting state and after 90 min. Further studies are needed to expand these results by analyzing the chemical composition and using complementary experimental models.
Assuntos
Glicemia , Diabetes Mellitus Experimental , Jejum , Hipoglicemiantes , Extratos Vegetais , Período Pós-Prandial , Animais , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/sangue , Masculino , Irã (Geográfico) , Ratos , Medicina Persa , Ratos Wistar , Hiperglicemia/tratamento farmacológico , Plantas Medicinais/química , Estreptozocina , Juniperus/químicaRESUMO
Peanut production could be increased through plant growth-promoting rhizobacteria (PGPR). In this regard, the present field research aimed at elucidating the impact of PGPR on peanut yield, soil enzyme activity, microbial diversity, and structure. Three PGPR strains (Bacillus velezensis, RI3; Bacillus velezensis, SC6; Pseudomonas psychrophila, P10) were evaluated, along with Bradyrhizobium japonicum (BJ), taken as a control. PGPR increased seed yield by 8%, improving the radiation use efficiency (4-14%). PGPR modified soil enzymes (fluorescein diacetate activity by 17% and dehydrogenase activity by 28%) and microbial abundance (12%). However, PGPR did not significantly alter microbial diversity; nonetheless, it modified the relative abundance of key phyla (Actinobacteria > Proteobacteria > Firmicutes) and genera (Bacillus > Arthrobacter > Pseudomonas). PGPRs modified the relative abundance of genes associated with N-fixation and nitrification while increasing genes related to N-assimilation and N-availability. PGPR improved agronomic traits without altering rhizosphere diversity.
Assuntos
Arachis , Bacillus , Bradyrhizobium , Metagenômica , Pseudomonas , Rizosfera , Microbiologia do Solo , Solo , Arachis/microbiologia , Arachis/crescimento & desenvolvimento , Arachis/metabolismo , Arachis/genética , Bacillus/genética , Bacillus/metabolismo , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Bradyrhizobium/crescimento & desenvolvimento , Bradyrhizobium/fisiologia , Pseudomonas/genética , Pseudomonas/fisiologia , Pseudomonas/crescimento & desenvolvimento , Solo/química , Produção Agrícola/métodos , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/enzimologia , Bactérias/isolamento & purificação , Biodiversidade , Fixação de Nitrogênio , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismoRESUMO
Folate metabolism is required for important biochemical processes that regulate cell functioning, but its role in female reproductive physiology in cattle during peri- and post-conceptional periods has not been thoroughly explored. Previous studies have shown the presence of folate in bovine oviductal fluid, as well as finely regulated gene expression of folate receptors and transporters in bovine oviduct epithelial cells (BOECs). Additionally, extracellular folic acid (FA) affects the transcriptional levels of genes important for the functioning of BOECs. However, it remains unknown whether the anatomical and cyclic features inherent to the oviduct affect regulation of folate metabolism. The present study aimed to characterize the gene expression pattern of folate cycle enzymes in BOECs from different anatomical regions during the estrous cycle and to determine the transcriptional response of these genes to increasing concentrations of exogenous FA. A first PCR screening showed the presence of transcripts encoding dihydrofolate reductase (DHFR), methylenetetrahydrofolate reductase (MTHFR), and methionine synthase (MTR) in bovine reproductive tissues (ovary, oviduct and uterus), with expression levels in oviductal tissues comparable to, or even higher than, those detected in ovarian and uterine tissues. Moreover, expression analysis through RT-qPCR in BOECs from the ampulla and isthmus during different stages of the estrous cycle demonstrated that folate metabolism-related enzymes exhibited cycle-dependent variations. In both anatomical regions, DHFR was upregulated during the preovulatory stage, while MTHFR and MTR exhibited increased expression levels during the postovulatory stage. Under in vitro culture conditions, ampullary and isthmic cells were cultured in the presence of 10, 50, and 100 µM FA for 24 h. Under these conditions, isthmus epithelial cells exhibited a unique transcriptional response to exogenous FA, showing a pronounced increase in MTR expression levels. Our results suggest that the expression of folate metabolism-related genes in BOECs is differentially regulated during the estrous cycle and may respond to exogenous levels of folate. This offers a new perspective on the transcriptional regulation of genes associated with the folate cycle in oviductal cells and provides groundwork for future studies on their functional and epigenetic implications within the oviductal microenvironment.
Assuntos
Ciclo Estral , Ácido Fólico , Animais , Feminino , Bovinos , Ciclo Estral/metabolismo , Ácido Fólico/farmacologia , Ácido Fólico/metabolismo , Tubas Uterinas/metabolismo , Tubas Uterinas/efeitos dos fármacos , Oviductos/metabolismo , Oviductos/efeitos dos fármacos , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacosRESUMO
We report the draft genome sequence of Raoultella terrigena strain Ech2A causing soft rot on pepper. To verify pathogenicity, Koch's postulates were performed on sweet pepper. Genes encoding pectinolytic enzymes were found in the genome.
RESUMO
The genus Bothrops are considered Category 1 of medical importance by the World Health Organization, responsible for approximately 85 % of snakebites occurring throughout Brazil. Main factors determining snake venom variations can be genetics, diet, gender, geographic distribution, age, or even seasonality. In this study, we compared the composition of protein profile, biochemical activities, and immunorecognition of toxins present in the venom of eight adults of Bothrops species (B. alternatus, B. atrox, B. jararaca, B. jararacussu, B. leucurus, B. moojeni, B. neuwiedi and B. pauloensis). The following methods were used to analyze the venoms: protein dosage; electrophoresis in polyacrylamide gel containing SDS; High Performance Liquid Chromatography - Reverse Phase; enzymatic activities, western blotting and Enzyme Linked Immuno Sorbent Assay. The results show inter and intraspecific differences in the electrophoretic profile. LAAO and PLA2 activities, in general, were higher in males than females and proteolytic activity was higher in females than males. The bothropic antivenom produced by Instituto Butantan recognized most of the protein bands in all Bothrops species analyzed, with only the regions between 37 and 25 kDa presenting lower intensity. A notable variability in the chromatograms was observed. Bothrops venom demonstrated inter-intraspecific disparities in protein composition and biochemical activity.
RESUMO
Edible and medicinal mushrooms possess excellent nutritional properties due to their incredible versatility in growing on different substrates and producing extracellular enzymes with a wide range of specificity. These features make them excellent candidates for various biotechnological applications. In this context, biotechnological applications using edible and medicinal mushrooms can focus on the bioprocessing of agro-industrial wastes, an economical and environmentally friendly strategy. This review, based on recent original research and scientific reviews, highlights the versatility and potential of mushrooms in terms of sustainability and efficiency. We emphasized the biotechnological applications of edible and medicinal mushrooms and their enzymes including food production with high nutraceutical value by enhancing the quality and flavor of food industry products. Other biotechnological applications addressed in this review were cosmeceutical and biomedical development using mushroom extracts with bioactive compounds; wood pulp pretreatment processes in the pulp and paper industry; bioethanol production; and bioremediation for decontaminating soils and polluted effluents. These applications explain how edible and medicinal mushrooms have gained significance in biotechnology over the years, opening new avenues for innovation. The current tendency to study edible and medicinal mushrooms has gained the attention of researchers because these are still less known organisms becoming an attractive and natural source of novel bioactive compounds that could be integrated into a circular model production.
RESUMO
Epilepsy is a disorder characterized by a predisposition to generate seizures. Levetiracetam (LEV) is an antiseizure drug that has demonstrated oxidant-antioxidant effects during the early stages of epilepsy in several animal models. However, the effect of LEV on oxidant-antioxidant activity during long-term epilepsy has not been studied. Therefore, the objective of the present study was to determine the effects of LEV on the concentrations of five antioxidant enzymes and on the levels of four oxidant stress markers in the hippocampus of rats with temporal lobe epilepsy at 5.7 months after status epilepticus (SE). The results revealed that superoxide dismutase (SOD) activity was significantly greater in the epileptic group (EPI) than in the control (CTRL), CTRL + LEV and EPI + LEV groups. No significant differences were found among the groups' oxidant markers. However, the ratios of SOD/hydrogen peroxide (H2O2), SOD/glutathione peroxidase (GPx) and SOD/GPx + catalase (CAT) were greater in the EPI group than in the CTRL and EPI + LEV groups. Additionally, there was a positive correlation between SOD activity and GPx activity in the EPI + LEV group. LEV-mediated modulation of the antioxidant system appears to be time dependent; at 5.7 months after SE, the role of LEV may be as a stabilizer of the redox state.
Assuntos
Antioxidantes , Catalase , Epilepsia do Lobo Temporal , Glutationa Peroxidase , Levetiracetam , Estresse Oxidativo , Superóxido Dismutase , Animais , Levetiracetam/farmacologia , Levetiracetam/uso terapêutico , Ratos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/metabolismo , Masculino , Superóxido Dismutase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Catalase/metabolismo , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Oxidantes/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Modelos Animais de Doenças , Peróxido de Hidrogênio/metabolismo , Ratos WistarRESUMO
An increase in total drug (small molecules and biologics) approvals by the Food and Drug Administration (FDA) was seen in 2023 compared with the previous year. Cancer remained the disease most targeted by monoclonal antibodies (mAbs), followed by autoimmune conditions. Our data reveal the prevalence of approvals for biologics even during years when the total number of authorizations was low, such as in 2022. Over half the drugs that received the green light in 2023 benefited from expedited programs, as the incidence of many diseases increased. In addition, over half of the biologics approved received Orphan Drug Designation from the FDA. This narrative review delves into details of the most significant approvals in 2023, including mAbs, enzymes, and proteins, explaining their mechanisms of action, differences from previous drugs, placebo, and standards of care, and outcomes in clinical trials. Given the varying number of drugs authorized annually by the U.S. health authority, this review also examines the limits of external influences over the FDA's decisions and independence regarding drug approvals and withdrawals.
RESUMO
Bixin (C25H30O4; 394.51 g/mol) is the main apocarotenoid found in annatto seeds. It has a 25-carbon open chain structure with a methyl ester group and carboxylic acid. Bixin increases the expression of antioxidant enzymes, which may be interesting for counteracting oxidative stress. This study investigated whether bixin-rich annatto extract combined with metformin was able to improve the disturbances observed in high-fat diet (HFD)-induced obesity in mice, with an emphasis on markers of oxidative damage and antioxidant defenses. HFD-fed mice were treated for 8 weeks with metformin (50 mg/kg) plus bixin-rich annatto extract (5.5 and 11 mg/kg). This study assessed glucose tolerance, insulin sensitivity, lipid profile and paraoxonase 1 (PON-1) activity in plasma, fluorescent AGEs (advanced glycation end products), TBARSs (thiobarbituric acid-reactive substances), and the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in the liver and kidneys. Treatment with bixin plus metformin decreased body weight gain, improved insulin sensitivity, and decreased AGEs and TBARSs in the plasma, liver, and kidneys. Bixin plus metformin increased the activities of PON-1, SOD, CAT, and GSH-Px. Bixin combined with metformin improved the endogenous antioxidant defenses in the obese mice, showing that this combined therapy may have the potential to contrast the metabolic complications resulting from oxidative stress.
RESUMO
BACKGROUND: Elevated liver enzyme levels have been associated with metabolic syndrome in both obese and non-obese pediatric populations. This study aims to compare the serum liver enzyme levels in obese adolescents with and without insulin resistance (IR). METHODS: A cross-sectional analysis was conducted involving obese adolescents aged 10-18. We assessed somatometry, serum insulin levels, lipid profiles, and liver enzymes (aspartate aminotransferase [AST], alanine aminotransferase [ALT], and gamma-glutamyl transferase [GGT]). Statistical differences between groups were evaluated using Student's t-test or the Chi-squared test, with IR (wIR) status matched by propensity scores based on body mass index (BMI) z-scores. RESULTS: The study included 365 adolescents with obesity, 229 wIR, and 136 without (woIR). Before matching, the wIR group had a significantly higher BMI z-score (2.21 vs. 2.14, p = 0.032). After matching for BMI z-scores (n = 122 each group), the wIR group displayed significantly higher levels of AST (32.3 vs. 24.7, p < 0.001) and ALT (42.4 vs. 30.9, p < 0.001), but no significant differences were observed in GGT levels (37.4 vs. 32.5, p = 0.855). CONCLUSION: Obese adolescent's wIR exhibit higher serum ALT and AST levels, suggesting that altered AST is a potential risk factor for IR.
INTRODUCCIÓN: Se ha observado asociación entre niveles elevados de enzimas hepáticas y síndrome metabólico en población pediátrica con y sin obesidad. El objetivo del estudio fue comparar los niveles séricos de enzimas hepáticas entre adolescentes con obesidad con y sin resistencia a la insulina (RI). MÉTODOS: Se realizó un estudio transversal en adolescentes con obesidad entre 10 y 18 años. Se analizaron los datos somatometricos, insulina sérica, perfil lipídico y niveles de enzimas hepáticas (aspartato aminotransferasa [AST], alanina aminotransferasa [ALT] y gamma-glutamil transferasa [GGT]). Análisis estadístico: se utilizó t de Student o la prueba de Chi-cuadrado para evaluar diferencias entre grupos. Los pacientes con RI se emparejaron con pacientes sin RI utilizando puntuaciones de propensión basadas en la puntuación z del IMC. RESULTADOS: Se incluyeron un total de 365 adolescentes con obesidad (229 con RI y 136 sin RI). El grupo con RI tuvo un IMC mayor (con RI 2.21 vs sin RI 2.14 p = 0.032). Después de emparejar los grupos según el IMCz (n = 122 por grupo), el grupo con RI tuvo niveles de AST (24.7 vs., 32.3, p < 0.001) y ALT (30.9 vs., 42.4, p < 0.001) significativamente más altos en comparación al grupo sin RI. Sin embargo, no hubo diferencia en los niveles de GTT (37.4 vs 32.5, p = 0.855). CONCLUSIONES: Los niveles séricos de ALT y AST en adolescents con obesidad y RI fueron mayores. La AST alterada fue un factor de riesgo para presentar RI.
Assuntos
Alanina Transaminase , Aspartato Aminotransferases , Índice de Massa Corporal , Resistência à Insulina , Fígado , Obesidade Infantil , Pontuação de Propensão , gama-Glutamiltransferase , Humanos , Adolescente , Estudos Transversais , Feminino , Masculino , Alanina Transaminase/sangue , Criança , Aspartato Aminotransferases/sangue , gama-Glutamiltransferase/sangue , Fígado/enzimologia , Síndrome Metabólica/sangue , Insulina/sangueRESUMO
Resumen Las macroenzimas son complejos de elevado peso molecular que podrían incrementar la actividad enzimática sérica en ausencia de signos y síntomas. Se pueden detectar al ser precipitadas con polietilenglicol. El objetivo del trabajo fue determinar la actividad de las aminotransferasas por el método IFCC, calcular y comparar la media del porcentaje de actividad precipitable (x̄), su intervalo de confianza del 95% (IC95%) y el desvío estándar (DE). Se trabajó con individuos con (n=42) y sin hipertransaminasemia (n=22). Los resultados para uno y otro fueron: porcentaje de actividad precipitable con polietilenglicol (%PPA) (x̄, DE, IC95%) = (28%; 1,82; 27,45%-28,55% y 44%; 24,52; 32,84%-55,16%) y (15%; 13,03; 11,01%-18,99% y 25%; 9,1; 20,96%-29,04%) para ALT y AST, respectivamente (p=0,003 y p=0,001; p<0,05). En conclusión, la estimación de la media poblacional podría ser más precisa en individuos con hipertransaminasemia.
Abstract Macroenzymes are high-molecular-mass complexes that might increase the serum enzymatic activity in the absence of symptoms. An easy-touse method to detect them is the polyethylene glycol precipitation. The aim of this study was to determine aminotransferases activity using the IFCC method, and to calculate the mean percentage of precipitable activity (x̄), its 95% confidence interval (CI95%), and the standard deviation (SD). The study included individuals with (n=42) and without hypertransaminasemia (n=22). The results were: percentaje of precipitable activity (%PPA) (x̄, SD, CI95%) = (28%; 1.82; 27.45%-28.55% and 44%; 24.52; 32.84%-55.16%) and (15%; 13.03; 11.01%-18.99% and 25%; 9.1; 20.96%-29.04%) for ALT and AST, respectively (p=0.003 and p=0.001; p<0.05). In conclusion, the estimation of the population mean could be more precise in individuals with hypertransaminasemia.
Resumo As macroenzimas são complexos de alto peso molecular que poderiam aumentar a atividade enzimática sérica na ausência de sinais e sintomas. Podem ser detectadas ao precipitar com polietilenoglicol. O objetivo do trabalho foi determinar a atividade das aminotransferases pelo método IFCC, calcular e comparar a média da porcentagem de atividade precipitável (x̄), seu intervalo de confiança de 95% (IC95%) e o desvio padrão (DP). O trabalho foi realizado com indivíduos com (n=42) e sem hipertransaminasemia (n=22). Os resultados para os dois foram: porcentagem de atividade precipitável com polietilenoglicol (%PPA) (x̄, DP, IC95%)=(28%; 1,82; 27,45%- 28,55% e 44%; 24,52; 32,84%- 55,16%) e (15%; 13,03; 11,01%-18,99% e 25%; 9,1; 20,96%-29,04%) para ALT e AST, respectivamente (p=0,003 e p=0,001; p<0,05). Concluindo, a estimativa da média populacional poderia ser mais precisa em indivíduos com hipertransaminasemia.
RESUMO
Bacteria can solubilize phosphorus (P) through the secretion of low-molecular-weight organic acids and acidification. However, the genes involved in the production of these organic acids are poorly understood. The objectives of this study were to verify the calcium phosphate solubilization and the production of low-molecular-weight organic acids by diverse genera of phosphate solubilizing bacterial strains (PSBS); to identify the genes related to the synthesis of the organic acids in the genomes of these strains and; to evaluate growth and nutrient accumulation of maize plants inoculated with PSBS and fertilized with Bayóvar rock phosphate. Genomic DNA was extracted for strain identification and annotation of genes related to the organic acids production. A greenhouse experiment was performed with five strains plus 150 mg dm- 3 P2O5 as Bayóvar rock phosphate (BRP) to assess phosphate solubilization contribution to maize growth and nutrition. Paraburkholderia fungorum UFLA 04-21 and Pseudomonas anuradhapurensis UFPI B5-8A solubilized over 60% of Ca phosphate and produced high amounts of citric/maleic and gluconic acids in vitro, respectively. Eleven organic acids were identified in total, although not all strains produced all acids. Besides, enzymes related to the organic acids production were found in all bacterial genomes. Plants inoculated with strains UFPI B5-6 (Enterobacter bugandensis), UFPI B5-8A, and UFLA 03-10 (Paenibacillus peoriae) accumulated more biomass than the plants fertilized with BRP only. Strains UFLA 03-10 and UFPI B5-8A increased the accumulation of most macronutrients, including P. Collectively, the results show that PSBS can increase maize growth and nutrient accumulation based on Bayóvar rock phosphate fertilization.
Assuntos
Bactérias , Fosfatos , Zea mays , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , Zea mays/metabolismo , Fosfatos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Fosfatos de Cálcio/metabolismo , Microbiologia do Solo , Genoma Bacteriano , Desenvolvimento Vegetal , Solubilidade , Gluconatos/metabolismo , Genômica , Fósforo/metabolismo , FilogeniaRESUMO
Fungal lipolytic enzymes play crucial roles in various lipid bio-industry processes. Here, we elucidated the biochemical and structural characteristics of an unexplored fungal lipolytic enzyme (TaLip) from Thermoascus aurantiacus var. levisporus, a strain renowned for its significant industrial relevance in carbohydrate-active enzyme production. TaLip belongs to a poorly understood phylogenetic branch within the class 3 lipase family and prefers to hydrolyze mainly short-chain esters. Nonetheless, it also displays activity against natural long-chain triacylglycerols. Furthermore, our analyses revealed that the surfactant sodium dodecyl sulfate (SDS) enhances the hydrolytic activity of TaLip on pNP butyrate by up to 5.0-fold. Biophysical studies suggest that interactions with SDS may prevent TaLip aggregation, thereby preserving the integrity and stability of its monomeric form and improving its performance. These findings highlight the resilience of TaLip as a lipolytic enzyme capable of functioning in tandem with surfactants, offering an intriguing enzymatic model for further exploration of surfactant tolerance and activation in biotechnological applications.
Assuntos
Esterases , Lipase , Tensoativos , Tensoativos/química , Tensoativos/farmacologia , Lipase/metabolismo , Lipase/química , Esterases/metabolismo , Esterases/química , Dodecilsulfato de Sódio/química , Especificidade por Substrato , Hidrólise , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Ânions/química , Ânions/metabolismo , Estabilidade EnzimáticaRESUMO
Soil microbial traits and functions play a central role in soil organic carbon (SOC) dynamics. However, at the macroscale (regional to global) it is still unresolved whether (i) specific environmental attributes (e.g., climate, geology, soil types) or (ii) microbial community composition drive key microbial traits and functions directly. To address this knowledge gap, we used 33 grassland topsoils (0-10 cm) from a geoclimatic gradient in Chile. First, we incubated the soils for 1 week in favorable standardized conditions and quantified a wide range of soil microbial traits and functions such as microbial biomass carbon (MBC), enzyme kinetics, microbial respiration, growth rates as well as carbon use efficiency (CUE). Second, we characterized climatic and physicochemical properties as well as bacterial and fungal community composition of the soils. We then applied regression analysis to investigate how strongly the measured microbial traits and functions were linked with the environmental setting versus microbial community composition. We show that environmental attributes (predominantly the amount of soil organic matter) determined patterns of MBC along the gradient, which in turn explained microbial respiration and growth rates. However, respiration and growth normalized for MBC (i.e., specific respiration and growth) were more linked to microbial community composition than environmental attributes. Notably, both specific respiration and growth followed distinct trends and were related to different parts of the microbial community, which in turn resulted in strong effects on microbial CUE. We conclude that even at the macroscale, CUE is the result of physiologically decoupled aspects of microbial metabolism, which in turn is partially determined by microbial community composition. The environmental setting and microbial community composition affect different microbial traits and functions, and therefore both factors need to be considered in the context of macroscale SOC dynamics.
Assuntos
Ciclo do Carbono , Carbono , Microbiota , Microbiologia do Solo , Solo , Chile , Carbono/metabolismo , Carbono/análise , Solo/química , Fungos/fisiologia , Bactérias/metabolismo , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Biomassa , PradariaRESUMO
Soil contamination by heavy metals (HM) from pesticides poses a serious environmental threat, affecting sustainability and agricultural productivity. Soil enzymes are essential for biochemical reactions such as organic matter decomposition and nutrient cycling and are vital for maintaining soil health. However, the effects of HM on soil enzyme activity are not yet well understood. This study examined the impact of HM contamination on enzymatic stoichiometry in regions with intensive pesticide use. We selected flower cultivation areas with 5 years (CA1) and 10 years (CA2) of pesticide exposure and a native forest area (NFA) as a reference during the dry and rainy seasons. We measured Cd, Cu, Mn, Pb, and Zn levels and employed ecological risk indices to assess contamination levels. We also analyzed enzyme activities (arylsulfatase, ß-glucosidase, acid phosphatase, urease) and enzymatic stoichiometry. CA2 exhibited the highest concentrations of Cd, Cu, and Mn in both periods, while Zn was highest in both CA1 and CA2. CA2 had higher values for all indices, indicating significant contamination. Compared with NFA, arylsulfatase activity was lower in cultivated areas during both periods, suggesting decreased soil quality. We found negative correlations between Cu, Mn, Zn, and arylsulfatase, as well as a reduction in urease with Cd; these elements also increased microbial C limitation. Our findings show that continuous pesticide input increases HM levels and that enzyme activity and stoichiometry are effective bioindicator of soil contamination. This study underscores the urgent need for guidelines to protect soils from prolonged HM buildup.
Assuntos
Agricultura , Monitoramento Ambiental , Metais Pesados , Praguicidas , Poluentes do Solo , Solo , Poluentes do Solo/análise , Praguicidas/análise , Metais Pesados/análise , Solo/químicaRESUMO
The objective of our study was to investigate the impact of neonatal overfeeding on cognitive functions and neurosteroidogenesis in male rats. Offspring were assigned to either small litters (SL; 4 pups/mother), resulting in increased milk intake and body weight gain, or normal litters (NL; 10 pups/mother). On postnatal day (PND) 21, half of the male rats were euthanized, while the remaining were kept under standard conditions (4 rats/cage) until PND70. At this stage, subjects underwent assessments for locomotor activity, anxiety levels via the elevated plus maze, and episodic-like memory (ELM) tests. By PND90, the rats were euthanized for brain dissection. Utilizing micropunch techniques, dentate gyrus (DG), CA1, and CA3 regions were extracted for analysis of mRNA expression and methylation patterns. At PND21, SL rats exhibited increased body and adipose tissue weights, alongside elevated cholesterol, glucose, and triglyceride levels compared to NL counterparts. By PND90, although metabolic disparities were no longer evident, SL rats demonstrated heightened anxiety-like behavior and diminished performance in ELM tests. Early life changes included a decreased expression of aromatase (P450arom) and 3α-HSD in CA1, with increased levels in CA3 and DG among SL rats. Additionally, PND90 rats from SL exhibited increased P450arom and decreased 5α-reductase 1 (5αR-1) expression in DG. Notably, some of these variations were correlated with changes in methylation patterns of their promoter regions. Our findings reveal that neonatal overfeeding exerts a long-term adverse effect on cognitive abilities and neurosteroidogenic pathways, underscoring the lasting impact of nutritional experiences during critical early postnatal development periods.
RESUMO
To identify daily changes in the digestive physiology of Totoaba macdonaldi, the feed intake, activity (pepsin, trypsin, chymotrypsin, lipase, amylase, and L-aminopeptidase), and gene expression (aminopeptidase and maltase-glucoamylase) of key digestive enzymes were measured in the intestine and the pyloric caeca. Fish were fed for three weeks every four hours during the light period to apparent satiation, and samples were taken every four hours throughout a 24-h cycle under a 12:12 L:D photoperiod. The feed consumption steadily increased until the third feeding (16:00 h, ZT-8) and decreased significantly towards the end of the day. The activity of pepsin and alkaline enzymes (trypsin, chymotrypsin, lipase, amylase, and L-aminopeptidase) exhibited a pattern dependent on the presence of feed, showing a significant reduction during the hours of darkness (ZT-12 to ZT-24). Expression of the intestinal brush border enzyme (L-aminopeptidase) increased during the darkness period in anticipation of the feed ingestion associated with the subsequent light period. The cosinor analysis used to estimate the feed rhythms for all tested enzymes showed that activity in the intestine and pyloric caeca exhibited significant rhythmicity (p < 0.05). However, no rhythmicity was observed in the intestinal expression of maltase-glucoamylase. Our results demonstrate that some of the behavioral and digestive physiology features of totoaba directly respond to rhythmicity in feeding, a finding that should be considered when establishing optimized feeding protocols.
RESUMO
Yeast and fibrolytic enzymes serve as additives incorporated into the nutrition of ruminants to regulate rumen fermentation and increase the digestibility of fiber, thereby enhancing the efficiency of rumen fermentation. Two experiments were conducted to assess the impact of five diets: a control diet without additives, diets with yeast (Saccharomyces cerevisiae) or exogenous fibrolytic enzymes (EFE), and diets with a blend of 0.7yeast + 0.3EFE or 0.7EFE + 0.3Yeast (based on recommended levels in g/kg of total DM). In the first experiment, 40 five-month-old Santa Ines lambs (mean weight 25.0 ± 1.3 kg) were distributed in a completely randomized design (5 treatments and 8 lambs) for 81 days to evaluate performance, ingestive behaviour, and serum metabolites. In the second experiment, 25 Santa Ines male lambs weighing 25.7 ± 4.1 kg were housed in metabolic cages, in a randomized design with 5 treatments and 5 lambs, evaluating digestibility, nitrogen balance, and rumen pH. EFE supplementation increased intakes of dry matter (DM), total digestible nutrients (TDN), and apNDF (mean of 38.1, 5.26, and 27%, respectively) compared to yeast or the 0.7yeast-0.3EFE blend. Feed conversion was most efficient (mean of 27.1%) in lambs fed Yeast, 0.7EFE + 0.3yeast, and the control diet. Lambs fed 0.7yeast + 0.3EFE spent less time eating (mean of 16.5%) and more time idling (mean of 10.75%), whereas EFE-fed lambs spent more time eating (mean of 19.73%), and 0.7EFE + 0.3yeast-fed lambs spent more time ruminating (mean of 20.14%). Control group lambs chewed and ruminated less (means of 24.64 and 17.21%, respectively) compared to other treatments. Lambs on the 0.7yeast + 0.3EFE blend had higher eating and rumination efficiency rates for DM and apNDF (mean of 19.11 and 17.95%, respectively) compared to other additive treatments or individual additives. They also exhibited lower (means 7.59 g/d) urinary N excretion, with improved N retention (mean 3185 g/d) compared to the control group. There were significant effects on serum albumin and cholesterol concentrations, with the 0.7yeast + 0.3EFE blend showing higher albumin (mean 4.08 g/dL) levels, while diets without additives and yeast-EFE blends had higher cholesterol (mean of 62.51 g/dL) concentrations. Including Saccharomyces cerevisiae yeast along with 0.7 yeast + 0.3 EFE blend is recommended when feeding similar lamb diets to those used herein because it improves the efficiency of intake, rumination of DM and NDF, and nitrogen utilization without affecting the lamb performance.
Assuntos
Ração Animal , Dieta , Suplementos Nutricionais , Digestão , Rúmen , Saccharomyces cerevisiae , Animais , Ração Animal/análise , Masculino , Digestão/efeitos dos fármacos , Dieta/veterinária , Suplementos Nutricionais/análise , Fenômenos Fisiológicos da Nutrição Animal , Carneiro Doméstico/fisiologia , Fermentação , Distribuição Aleatória , Fibras na Dieta/análise , Fibras na Dieta/administração & dosagemRESUMO
Plastics derived from fossil fuels are used ubiquitously owing to their exceptional physicochemical characteristics. However, the extensive and short-term use of plastics has caused environmental challenges. The biotechnological plastic conversion can help address the challenges related to plastic pollution, offering sustainable alternatives that can operate using bioeconomic concepts and promote socioeconomic benefits. In this context, using soil from a plastic-contaminated landfill, two consortia were established (ConsPlastic-A and -B) displaying versatility in developing and consuming polyethylene or polyethylene terephthalate as the carbon source of nutrition. The ConsPlastic-A and -B metagenomic sequencing, taxonomic profiling, and the reconstruction of 79 draft bacterial genomes significantly expanded the knowledge of plastic-degrading microorganisms and enzymes, disclosing novel taxonomic groups associated with polymer degradation. The microbial consortium was utilized to obtain a novel Pseudomonas putida strain (BR4), presenting a striking metabolic arsenal for aromatic compound degradation and assimilation, confirmed by genomic analyses. The BR4 displays the inherent capacity to degrade polyethylene terephthalate (PET) and produce polyhydroxybutyrate (PHB) containing hydroxyvalerate (HV) units that contribute to enhanced copolymer properties, such as increased flexibility and resistance to breakage, compared with pure PHB. Therefore, BR4 is a promising strain for developing a bioconsolidated plastic depolymerization and upcycling process. Collectively, our study provides insights that may extend beyond the artificial ecosystems established during our experiments and supports future strategies for effectively decomposing and valorizing plastic waste. Furthermore, the functional genomic analysis described herein serves as a valuable guide for elucidating the genetic potential of microbial communities and microorganisms in plastic deconstruction and upcycling.
Assuntos
Biodegradação Ambiental , Microbiota , Plásticos , Plásticos/metabolismo , Microbiologia do Solo , Polietilenotereftalatos/metabolismo , Poluentes do Solo/metabolismo , Polímeros/metabolismo , Bactérias/metabolismo , Bactérias/genética , Plásticos Biodegradáveis/metabolismo , Consórcios Microbianos , Pseudomonas putida/metabolismo , Pseudomonas putida/genéticaRESUMO
Early life stress (ELS) is a risk factor for the development of chronic diseases resulting from functional alterations of organs in the cardiorespiratory and renal systems. This work studied the changes in oxidative stress enzyme activities (EAs) of SOD, CAT, GPX, GR, GST, NOS, MDA, and FRAP in different organs (heart, liver, kidney, adrenal glands (AGs), and pancreas) of male and female Sprague-Dawley rat pups on postnatal day (PN) 15, immediately after basal and acute or chronic stress conditions were accomplished, as follows: basal control (BC; undisturbed maternal pups care), stress control (SC; 3 h maternal separation on PN15), basal maternal separation (BMS; daily 3 h maternal separation on PN 1-14), and stress maternal separation (SMS; daily 3 h maternal separation on PN 1-14 and 3 h maternal separation on PN15). Acute or long-term stress resulted in overall oxidative stress, increase in EA, and reduced antioxidant capacity in these organs. Some different response patterns, due to precedent SMS, were observed in specific organs, especially in the AGs. Acute stress exposure increases the EA, but chronic stress generates a response in the antioxidant system in some of the organs studied and is damped in response to a further challenge.