Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 959
Filtrar
1.
Arq. bras. oftalmol ; Arq. bras. oftalmol;88(1): e2023, 2025. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1568848

RESUMO

ABSTRACT Purpose: The epithelial-mesenchymal transition of human lens epithelial cells plays a role in posterior capsule opacification, a fibrotic process that leads to a common type of cataract. Hyaluronic acid has been implicated in this fibrosis. Studies have investigated the role of transforming growth factor (TGF)-β2 in epithelial-mesenchymal transition. However, the role of TGF-β2 in hyaluronic acid-mediated fibrosis of lens epithelial cell remains unknown. We here examined the role of TGF-β2 in the hyaluronic acid-mediated epithelial-mesenchymal transition of lens epithelial cells. Methods: Cultured human lens epithelial cells (HLEB3) were infected with CD44-siRNA by using the Lipofectamine 3000 transfection reagent. The CCK-8 kit was used to measure cell viability, and the scratch assay was used to determine cell migration. Cell oxidative stress was analyzed in a dichloro-dihydro-fluorescein diacetate assay and by using a flow cytometer. The TGF-β2 level in HLEB3 cells was examined through immunohistochemical staining. The TGF-β2 protein level was determined through western blotting. mRNA expression levels were determined through quantitative real-time polymerase chain reaction. Results: Treatment with hyaluronic acid (1.0 μM, 24 h) increased the epithelial-mesenchymal transition of HLEB3 cells. The increase in TGF-β2 levels corresponded to an increase in CD44 levels in the culture medium. However, blocking the CD44 function significantly reduced the TGF-β2-mediated epithelial-mesenchymal transition response of HLEB3 cells. Conclusions: Our study showed that both CD44 and TGF-β2 are critical contributors to the hyaluronic acid-mediated epithelial-mesenchymal transition of lens epithelial cells, and that TGF-β2 in epithelial-mesenchymal transition is regulated by CD44. These results suggest that CD44 could be used as a target for preventing hyaluronic acid-induced posterior capsule opacification. Our findings suggest that CD44/TGF-β2 is crucial for the hyaluronic acid-induced epithelial-mesenchymal transition of lens epithelial cells.

2.
Mol Carcinog ; 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412414

RESUMO

We hypothesized that cell energy metabolic profiles correlate with normal, dysplastic, and tumor cell/tissue statuses and may be indicators of aggressiveness in oral squamous cell carcinoma (OSCC) cells. The energy-related proteins that were differentially expressed in human OSCC fragments (n = 3) and their adjacent epithelial tissue (TAE) were verified using mass spectrometry (MS). Immunohistochemistry for 4-hydroxynonenal (4-HNE) was performed to evaluate the oxidative stress patterns in OSCC (n = 10), epithelial dysplasia (n = 9), and normal epithelial (n = 4) biopsies. The metabolic energy profile of OSCC aggressiveness was investigated in human OSCC cell lines with different levels of epithelial-mesenchymal transition proteins. The genes associated with the proteins found by MS in this study were analyzed using survival analysis (OS), whereas the genes associated with a poorer prognosis were analyzed using context-specific expression, Gene Ontology (GO) and Cancer Hallmarks for function enrichment analysis. The rationale for all experimental approach was to investigate whether the variation in energy metabolism profile accompanies the different phenotypes (from epithelial to mesenchymal) during the epithelial-mesenchymal transition. All OSCC fragments exhibited an increase in glycolysis-related proteins and a decrease in mitochondrial activity compared to the TAE region (p < 0.05), probably due to the downregulation of pyruvate dehydrogenase and antioxidant proteins. Additionally, the OSCC cell lines with a mesenchymal profile (SCC4, SCC9, and SCC25) had a lower mitochondrial mass and membrane potential and generated lower levels of reactive oxygen and nitrogen species than the TAE region. When we analyzed 4-HNE, the reactive species levels were increased in the epithelial regions of OSCC and potentially malignant lesions. A decrease in the levels of 4-HNE/reactive species was observed in the connective tissue underlying the dysplastic regions and the OSCC invasion zone. Based on this scenario, aggressive OSCC is associated with high glycolytic and oxidative metabolism and low mitochondrial and antioxidant activities, which vary according to the differentiation level of the tumor cells and the stage of carcinogenesis.

3.
Mol Med Rep ; 30(6)2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39392037

RESUMO

Germ cell tumors (GCTs) constitute diverse neoplasms arising in the gonads or extragonadal locations. Testicular GCTs (TGCTs) are the predominant solid tumors in adolescents and young men. Despite cisplatin serving as the primary therapeutic intervention for TGCTs, 10­20% of patients with advanced disease demonstrate resistance to cisplatin­based chemotherapy, and epithelial­mesenchymal transition (EMT) is a potential contributor to this resistance. EMT is regulated by various factors, including the snail family transcriptional repressor 2 (SLUG) transcriptional factor, and, to the best of our knowledge, remains unexplored within TGCTs. Therefore, the present study investigated the EMT transcription factor SLUG in TGCTs. In silico analyses were performed to investigate the expression of EMT markers in TGCTs. In addition, a cisplatin­resistant model for TGCTs was developed using the NTERA­2 cell line, and a mouse model was also established. Subsequently, EMT was assessed both in vitro and in vivo within the cisplatin­resistant models using quantitative PCR and western blot analyses. The results of the in silico analysis showed that the different histologies exhibited distinct expression profiles for EMT markers. Seminomas exhibited a lower expression of EMT markers, whereas embryonal carcinomas and mixed GCT demonstrated high expression. Notably, patients with lower SLUG expression had longer median progression­free survival (46.4 months vs. 28.0 months, P=0.022). In the in vitro analysis, EMT­associated genes [fibronectin; vimentin (VIM); actin, α2, smooth muscle; collagen type I α1; transforming growth factor­ß1; and SLUG] were upregulated in the cisplatin­resistant NTERA­2 (NTERA­2R) cell line after 72 h of cisplatin treatment. Consistent with this finding, the NTERA­2R mouse model demonstrated a significant upregulation in the expression levels of VIM and SLUG. In conclusion, the present findings suggested that SLUG may serve a crucial role in connecting EMT with the development of cisplatin resistance, and targeting SLUG may be a putative therapeutic strategy to mitigate cisplatin resistance.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Neoplasias Embrionárias de Células Germinativas , Fatores de Transcrição da Família Snail , Neoplasias Testiculares , Adulto , Animais , Humanos , Masculino , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Embrionárias de Células Germinativas/metabolismo , Neoplasias Embrionárias de Células Germinativas/patologia , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/patologia , Neoplasias Testiculares/genética , Neoplasias Testiculares/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Front Immunol ; 15: 1376655, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39328409

RESUMO

To further understand the impact of deficiency of the autoimmune regulator (Aire) gene during the adhesion of medullary thymic epithelial cells (mTECs) to thymocytes, we sequenced single-cell libraries (scRNA-seq) obtained from Aire wild-type (WT) (Airewt/wt ) or Aire-deficient (Airewt/mut ) mTECs cocultured with WT single-positive (SP) CD4+ thymocytes. Although the libraries differed in their mRNA and long noncoding RNA (lncRNA) profiles, indicating that mTECs were heterogeneous in terms of their transcriptome, UMAP clustering revealed that both mTEC lines expressed their specific markers, i.e., Epcam, Itgb4, Itga6, and Casp3 in resting mTECs and Ccna2, Pbk, and Birc5 in proliferative mTECs. Both cocultured SP CD4+ thymocytes remained in a homogeneous cluster expressing the Il7r and Ccr7 markers. Comparisons of the two types of cocultures revealed the differential expression of mRNAs that encode transcription factors (Zfpm2, Satb1, and Lef1), cell adhesion genes (Itgb1) in mTECs, and Themis in thymocytes, which is associated with the regulation of positive and negative selection. At the single-cell sequencing resolution, we observed that Aire acts on both Aire WT and Aire-deficient mTECs as an upstream controller of mRNAs, which encode transcription factors or adhesion proteins that, in turn, are posttranscriptionally controlled by lncRNAs, for example, Neat1, Malat1, Pvt1, and Dancr among others. Under Aire deficiency, mTECs dysregulate the expression of MHC-II, CD80, and CD326 (EPCAM) protein markers as well as metabolism and cell cycle-related mRNAs, which delay the cell cycle progression. Moreover, when adhered to mTECs, WT SP CD4+ or CD8+ thymocytes modulate the expression of cell activation proteins, including CD28 and CD152/CTLA4, and the expression of cellular metabolism mRNAs. These findings indicate a complex mechanism through which an imbalance in Aire expression can affect mTECs and thymocytes during adhesion.


Assuntos
Proteína AIRE , Adesão Celular , Células Epiteliais , RNA Longo não Codificante , Timócitos , Fatores de Transcrição , Transcriptoma , RNA Longo não Codificante/genética , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Camundongos , Timócitos/metabolismo , Timócitos/imunologia , Timócitos/citologia , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Timo/citologia , Timo/imunologia , Timo/metabolismo , Análise de Célula Única , Redes Reguladoras de Genes , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Técnicas de Cocultura , Perfilação da Expressão Gênica , Camundongos Knockout
5.
Braz J Microbiol ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254798

RESUMO

Streptococcus pneumoniae is an important human pathogen that can colonize the respiratory tract of healthy individuals. The respiratory tract mucosa is thus the first barrier for this pathogen. In this study, we have tested three models of the respiratory epithelium with immune cells: (i) monolayer of A549 human lung epithelial cells, (ii) A549 + macrophages differentiated from the human monocytic THP-1 cell line (dMφ) and (iii) A549 + dMφ + dendritic cells differentiated from THP-1 (dDC) using a two-chamber system. Pneumococcal strains Rx1 (non-encapsulated) and BHN418 (serotype 6B) were incubated with the cells and secretion of IL-6, IL-8, IL-1ß, TNF-α and IL-10 was evaluated. Overall, the models using co-cultures of A549 + dMφ and A549 + dMφ + dDC elicited higher levels of pro-inflammatory cytokines and the non-encapsulated strain elicited an earlier cytokine response. BHN418 pspA (pneumococcal surface protein A) and pspC (pneumococcal surface protein C) knockouts elicited similar cytokine secretion in the co-culture models, whereas BHN18 ply (pneumolysin) knockout induced much lower levels. The results are in accordance with the activation of the inflammasome by Ply. Finally, we evaluated pneumococcal extracellular vesicles (pEVs) in the co-culture models and observed secretion of pro-inflammatory cytokines in the absence of cytotoxicity. Since pEVs are being studied as vaccine candidate against pneumococcal infections, the co-cultures of A549 + dMφ and A549 + dMφ + dDC are simple models that could be used to evaluate pEV vaccine batches.

6.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39125832

RESUMO

It is well established that microRNA-21 (miR-21) targets phosphatase and tensin homolog (PTEN), facilitating epithelial-to-mesenchymal transition (EMT) and drug resistance in cancer. Recent evidence indicates that PTEN activates its pseudogene-derived long non-coding RNA, PTENP1, which in turn inhibits miR-21. However, the dynamics of PTEN, miR-21, and PTENP1 in the DNA damage response (DDR) remain unclear. Thus, we propose a dynamic Boolean network model by integrating the published literature from various cancers. Our model shows good agreement with the experimental findings from breast cancer, hepatocellular carcinoma (HCC), and oral squamous cell carcinoma (OSCC), elucidating how DDR activation transitions from the intra-S phase to the G2 checkpoint, leading to a cascade of cellular responses such as cell cycle arrest, senescence, autophagy, apoptosis, drug resistance, and EMT. Model validation underscores the roles of PTENP1, miR-21, and PTEN in modulating EMT and drug resistance. Furthermore, our analysis reveals nine novel feedback loops, eight positive and one negative, mediated by PTEN and implicated in DDR cell fate determination, including pathways related to drug resistance and EMT. Our work presents a comprehensive framework for investigating cellular responses following DDR, underscoring the therapeutic potential of targeting PTEN, miR-21, and PTENP1 in cancer treatment.


Assuntos
Dano ao DNA , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , MicroRNAs , PTEN Fosfo-Hidrolase , RNA Longo não Codificante , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Transição Epitelial-Mesenquimal/genética , Resistencia a Medicamentos Antineoplásicos/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Apoptose/genética , Transdução de Sinais
7.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39125769

RESUMO

A T-cell-independent (TI) pathway activated by microbiota results in the generation of low-affinity homeostatic IgA with a critical role in intestinal homeostasis. Moderate aerobic exercise (MAE) provides a beneficial impact on intestinal immunity, but the action of MAE on TI-IgA generation under senescence conditions is unknown. This study aimed to determine the effects of long-term MAE on TI-IgA production in young (3 month old) BALB/c mice exercised until adulthood (6 months) or aging (24 months). Lamina propria (LP) from the small intestine was obtained to determine B cell and plasma cell sub-populations by flow cytometry and molecular factors related to class switch recombination [Thymic Stromal Lymphopoietin (TSLP), A Proliferation-Inducing Ligand (APRIL), B Cell Activating Factor (BAFF), inducible nitric oxide synthase (iNOS), and retinal dehydrogenase (RDH)] and the synthesis of IgA [α-chain, interleukin (IL)-6, IL-21, and Growth Factor-ß (TGF-ß)]; and epithelial cells evaluated IgA transitosis [polymeric immunoglobulin receptor (pIgR), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), IL-4] by the RT-qPCR technique. The results were compared with data obtained from sedentary age-matched mice. Statistical analysis was computed with ANOVA, and p < 0.05 was considered to be a statistically significant difference. Under senescence conditions, MAE promoted the B cell and IgA+ B cells and APRIL, which may improve the intestinal response and ameliorate the inflammatory environment associated presumably with the downmodulation of pro-inflammatory mediators involved in the upmodulation of pIgR expression. Data suggested that MAE improved IgA and downmodulate the cytokine pro-inflammatory expression favoring homeostatic conditions in aging.


Assuntos
Envelhecimento , Homeostase , Imunoglobulina A , Camundongos Endogâmicos BALB C , Condicionamento Físico Animal , Animais , Imunoglobulina A/metabolismo , Imunoglobulina A/imunologia , Camundongos , Envelhecimento/imunologia , Citocinas/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Fator Ativador de Células B/metabolismo , Fator Ativador de Células B/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Masculino , Plasmócitos/imunologia , Plasmócitos/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
8.
Biochim Biophys Acta Mol Cell Res ; 1871(8): 119816, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39159686

RESUMO

Exposure to the non-protein amino acid cyanotoxin ß-N-methylamino-L-alanine (BMAA), released by cyanobacteria found in many water reservoirs has been associated with neurodegenerative diseases. We previously demonstrated that BMAA induced cell death in both retina photoreceptors (PHRs) and amacrine neurons by triggering different molecular pathways, as activation of NMDA receptors and formation of carbamate-adducts was only observed in amacrine cell death. We established that activation of Retinoid X Receptors (RXR) protects retinal cells, including retina pigment epithelial (RPE) cells from oxidative stress-induced apoptosis. We now investigated the mechanisms underlying BMAA toxicity in these cells and those involved in RXR protection. BMAA addition to rat retinal neurons during early development in vitro increased reactive oxygen species (ROS) generation and polyADP ribose polymers (PAR) formation, while pre-treatment with serine (Ser) before BMAA addition decreased PHR death. Notably, RXR activation with the HX630 agonist prevented BMAA-induced death in both neuronal types, reducing ROS generation, preserving mitochondrial potential, and decreasing TUNEL-positive cells and PAR formation. This suggests that BMAA promoted PHR death by substituting Ser in polypeptide chains and by inducing polyADP ribose polymerase activation. BMAA induced cell death in ARPE-19 cells, a human epithelial cell line; RXR activation prevented this death, decreasing ROS generation and caspase 3/7 activity. These findings suggest that RXR activation prevents BMAA harmful effects on retinal neurons and RPE cells, supporting this activation as a broad-spectrum strategy for treating retina degenerations.


Assuntos
Diamino Aminoácidos , Toxinas de Cianobactérias , Espécies Reativas de Oxigênio , Epitélio Pigmentado da Retina , Receptores X de Retinoides , Diamino Aminoácidos/farmacologia , Animais , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptores X de Retinoides/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/citologia , Neurônios Retinianos/metabolismo , Neurônios Retinianos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Humanos , Morte Celular/efeitos dos fármacos
10.
Front Vet Sci ; 11: 1415658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113726

RESUMO

Introduction: Corneal ulcers are common lesions in both human and veterinary medicine. However, only a few studies have evaluated the efficacy of cross-linked hyaluronic acid (X-HA) eye drops on corneal wound healing. To our knowledge, this is the first study to demonstrate and compare the efficacy of amniotic membrane extract eye drops (AMEED) and X-HA for corneal wound healing in rats. Material and methods: A total of 15 male Wistar rats (30 eyes) were used in this study. Then, 10 eyes were treated with X-HA, AMEED, or 0.9% saline. After general and topical anesthesia, a superficial corneal ulcer was created using a corneal trephine. The defect was further polished with a diamond burr. Three groups of 10 eyes each were treated with either one drop of 0.75% X-HA or AMEED or 0.9% saline (control), administered every 12 h for a duration of 72 h. The median epithelial defect area (MEDA), expressed as a percentage of the total corneal surface, was measured at 0, 12, 24, 36, 48, and 72 h. Re-epithelization time scores were also evaluated. The Kruskal-Wallis test was used to compare median times for re-epithelization and histopathologic scores between groups, while the Friedman test (for paired data) was employed to compare results from the serial analysis of MEDA and vascularization scores between groups. Results: MEDA was not significantly different between X-HA and AMEED. However, MEDA was significantly smaller in the X-HA group compared to the control group at 36 h (2.73 interquartile range (IQR) 5.52% x 9.95 IQR 9.10%, P=0.024) and 48 h (0.00 IQR 0.26% x 6.30 IQR 8.54%, P=0.030). The overall time for re-epithelization was significantly lower in the X-HA group (3.00 IQR 3.00) compared to the AMEED (6.5 IQR 3.00) and control (7.00 IQR 1.00) groups (P=0.035). Vascularization, hydropic degeneration, and epithelial-stromal separation were significantly less observed in samples in the X-HA-treated compared to samples in the AMEED- and saline-treated groups. Significantly more corneal epithelium cells were labeled for caspase3 in samples from the AMEED- and saline-treated groups compared to those from the X-HA-treated group. Discussion: Topical X-HA has been shown to accelerate corneal epithelial healing. AMEED did not decrease corneal re-epithelialization time. X-HA may also potentially be used as an adjunct therapy for treating corneal ulcers in clinical situations.

11.
Front Pharmacol ; 15: 1432851, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114357

RESUMO

The xenobiotic transporter ABCC4/MRP4 is highly expressed in pancreatic ductal adenocarcinoma (PDAC) and correlates with a more aggressive phenotype and metastatic propensity. Here, we show that ABCC4 promotes epithelial-mesenchymal transition (EMT) in PDAC, a hallmark process involving the acquisition of mesenchymal traits by epithelial cells, enhanced cell motility, and chemoresistance. Modulation of ABCC4 levels in PANC-1 and BxPC-3 cell lines resulted in the dysregulation of genes present in the EMT signature. Bioinformatic analysis on several cohorts including tumor samples, primary patient-derived cultured cells, patient-derived xenografts, and cell lines, revealed a positive correlation between ABCC4 expression and EMT markers. We also characterized the ABCC4 cistrome and identified four candidate clusters in the distal promoter and intron one that showed differential binding of pro-epithelial FOXA1 and pro-mesenchymal GATA2 transcription factors in low ABCC4-expressing HPAF-II and high ABCC4-expressing PANC-1 xenografts. HPAF-II xenografts showed exclusive binding of FOXA1, and PANC-1 xenografts exclusive binding of GATA2, at ABCC4 clusters, consistent with their low and high EMT phenotype respectively. Our results underscore ABCC4/MRP4 as a valuable prognostic marker and a potential therapeutic target to treat PDAC subtypes with prominent EMT features, such as the basal-like/squamous subtype, characterized by worse prognosis and no effective therapies.

12.
Front Cell Dev Biol ; 12: 1435708, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39156975

RESUMO

Introduction: Breast cancer (BC) is the leading cause of death among women, primarily due to its potential for metastasis. As BC progresses, the extracellular matrix (ECM) produces more type-I collagen, resulting in increased stiffness. This alteration influences cellular behaviors such as migration, invasion, and metastasis. Specifically, cancer cells undergo changes in gene expression that initially promote an epithelial-to-mesenchymal transition (EMT) and subsequently, a transition from a mesenchymal to an amoeboid (MAT) migration mode. In this way, cancer cells can migrate more easily through the stiffer microenvironment. Despite their importance, understanding MATs remains challenging due to the difficulty of replicating in vitro the conditions for cell migration that are observed in vivo. Methods: To address this challenge, we developed a three-dimensional (3D) growth system that replicates the different matrix properties observed during the progression of a breast tumor. We used this model to study the migration and invasion of the Triple-Negative BC (TNBC) cell line MDA-MB-231, which is particularly subject to metastasis. Results: Our results indicate that denser collagen matrices present a reduction in porosity, collagen fiber size, and collagen fiber orientation, which are associated with the transition of cells to a rounder morphology with bleb-like protrusions. We quantified how this transition is associated with a more persistent migration, an enhanced invasion capacity, and a reduced secretion of matrix metalloproteinases. Discussion: Our findings suggest that the proposed 3D growth conditions (especially those with high collagen concentrations) mimic key features of MATs, providing a new platform to study the physiology of migratory transitions and their role in BC progression.

13.
J Appl Microbiol ; 135(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39108074

RESUMO

AIMS: To evaluate the prevalence, molecular characteristics, antimicrobial susceptibility, and epithelial invasion of Streptococcus agalactiae strains isolated from pregnant women and newborns in Rio de Janeiro, Brazil. METHODS AND RESULTS: A total of 67 S. agalactiae isolates, 48 isolates from pregnant women and 19 from neonates, were analyzed. Capsular type Ia and V were predominant (35.8%/each). The multilocus sequence typing analysis revealed the presence of 19 STs grouped into 6 clonal complexes with prevalence of CC17/40.3% and CC23/34.3%. The lmb and iag virulence genes were found in 100% of isolates. Four S. agalactiae strains, belonging to CC17/ST1249 and CC23/ST23, were able to adhere to A549 respiratory epithelial cells. Antimicrobial resistance was verified mainly to tetracycline (85%), erythromycin (70.8%), and clindamycin (58.3%). Four S. agalactiae isolates were multidrug resistant. The resistance genes tested were found in 92.5% of isolates for tetM, 58.2% for ermB, 28.4% for mefAE, and 10.4% for tetO. CONCLUSION: The study showed a high prevalence of virulence and antimicrobial genes in S. agalactiae strains isolated from pregnant women and newborns, supporting the idea that continued surveillance is necessary to identify risk factors and perform long-term follow-up in pregnant women and neonates in Rio de Janeiro.


Assuntos
Antibacterianos , Células Epiteliais , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Infecções Estreptocócicas , Streptococcus agalactiae , Streptococcus agalactiae/genética , Streptococcus agalactiae/efeitos dos fármacos , Streptococcus agalactiae/isolamento & purificação , Feminino , Humanos , Brasil , Gravidez , Infecções Estreptocócicas/microbiologia , Antibacterianos/farmacologia , Recém-Nascido , Células Epiteliais/microbiologia , Farmacorresistência Bacteriana/genética , Adulto , Fatores de Virulência/genética , Complicações Infecciosas na Gravidez/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Virulência/genética
14.
Biomedicines ; 12(8)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39200378

RESUMO

Acute myeloid leukemia (AML) is a diverse malignancy originating from myeloid progenitor cells, with significant genetic and clinical variability. Modern classification systems like those from the World Health Organization (WHO) and European LeukemiaNet use immunophenotyping, molecular genetics, and clinical features to categorize AML subtypes. This classification highlights crucial genetic markers such as FLT3, NPM1 mutations, and MLL-AF9 fusion, which are essential for prognosis and directing targeted therapies. The MLL-AF9 fusion protein is often linked with therapy-resistant AML, highlighting the risk of relapse due to standard chemotherapeutic regimes. In this sense, factors like the ZEB, SNAI, and TWIST gene families, known for their roles in epithelial-mesenchymal transition (EMT) and cancer metastasis, also regulate hematopoiesis and may serve as effective therapeutic targets in AML. These genes contribute to cell proliferation, differentiation, and extramedullary hematopoiesis, suggesting new possibilities for treatment. Advancing our understanding of the molecular mechanisms that promote AML, especially how the bone marrow microenvironment affects invasion and drug resistance, is crucial. This comprehensive insight into the molecular and environmental interactions in AML emphasizes the need for ongoing research and more effective treatments.

15.
Curr Top Membr ; 93: 1-25, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39181576

RESUMO

Mammalian cell membranes are very dynamic where they respond to several environmental stimuli by rearranging the membrane composition by basic biological processes, including endocytosis. In this context, receptor-mediated endocytosis, either clathrin-dependent or caveolae-dependent, is involved in different physiological and pathological conditions. In the last years, an important amount of evidence has been reported that kidney function involves the modulation of different types of endocytosis, including renal protein handling. In addition, the dysfunction of the endocytic machinery is involved with the development of proteinuria as well as glomerular and tubular injuries observed in kidney diseases associated with hypertension, diabetes, and others. In this present review, we will discuss the mechanisms underlying the receptor-mediated endocytosis in different glomerular cells and proximal tubule epithelial cells as well as their modulation by different factors during physiological and pathological conditions. These findings could help to expand the current understanding regarding renal protein handling as well as identify possible new therapeutic targets to halt the progression of kidney disease.


Assuntos
Endocitose , Humanos , Animais , Nefropatias/metabolismo , Nefropatias/patologia , Rim/metabolismo , Rim/patologia , Receptores de Superfície Celular/metabolismo
16.
Oral Dis ; 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39155517

RESUMO

OBJECTIVES: To conduct a comprehensive proteomic analysis of normal salivary gland tissue, pleomorphic adenoma (PA), and carcinoma ex-pleomorphic adenoma (CXPA), and validate the proteomic findings using immunohistochemistry. METHODS: Six normal salivary gland tissues, seven PA and seven CXPA samples underwent laser microdissection followed by liquid chromatography coupled to mass spectrometry. Protein identification and quantification were performed using MaxQuant software. Statistical analysis and functional enrichment were conducted using the Perseus platform and STRING tool, respectively. Immunohistochemistry was used for validation. RESULTS: Comparative proteomic analysis revealed 2680 proteins across the three tissue types, with 799 significantly altered between groups. Translocation protein SEC63 homolog, Annexin A6 and Biglycan were up-regulated in CXPA compared to PA. Decorin was markedly up-regulated in both PA and CXPA compared to normal salivary gland (log2 fold changes of 7.58 and 7.38, respectively). Validation confirmed elevated levels of Biglycan and Decorin in the extracellular matrix of CXPA compared to PA. CONCLUSIONS: Proteomic analysis identified differential protein expression patterns associated with malignant transformation of PA into CXPA. Findings indicate a crucial role for extracellular matrix proteins, specifically Biglycan and Decorin, in the tumorigenic progression of PA and CXPA.

17.
Gene ; 929: 148824, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39103057

RESUMO

Proteins of the trefoil factor family (TFF) participate in mucosal repair and are formed by single or tandemly repeated trefoil domains. TFFs have been extensively studied in mammals and amphibians, but they have not been functionally characterized in other animals. Here we report the identification of two genes expressed in the hydroid Hydractinia symbiolongicarpus, predicted to encode trefoil domain-containing peptides, one with four trefoil domains in tandem and the other one with a trefoil domain flanked by two ShKT domains. Differential expression analyses by qPCR after an immune challenge and an induced mechanical damage, reveal that the former gene (hysyTFF) had no significant changes in expression after the inductions. However, the latter (hysyTFF-like) was overexpressed after three hours post immune challenge and was downregulated after the first hour post epithelial damage. Immunoblot analyses using specific IgY antibodies revealed that hysyTFF is secreted as a high molecular weight complex. Finally, whole mount immunofluorescence assays showed that hysyTFF was predominantly expressed in the endoderm of stolons and polyps, and sparsely in the ectoderm of both polyps and larvae. Thus, the tissue distribution and expression dynamics of trefoil factor genes in H. symbiolongicarpus suggest that hysyTFF is part of an ancient mechanism of epithelial restitution, and the newly reported hysyTFF-like might act as an immune effector gene, perhaps encoding an antibacterial peptide.


Assuntos
Hidrozoários , Fatores Trefoil , Animais , Sequência de Aminoácidos , Hidrozoários/genética , Hidrozoários/metabolismo , Filogenia , Distribuição Tecidual , Fatores Trefoil/genética , Fatores Trefoil/metabolismo
18.
Nutrients ; 16(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38999774

RESUMO

Dysregulation of zinc and zinc transporters families has been associated with the genesis and progression of prostate cancer. The prostate epithelium utilizes two types of zinc transporters, the ZIP (Zrt-, Irt-related Protein) and the ZnTs (Zinc Transporter), to transport zinc from the blood plasma to the gland lumen. ZIP transporters uptake zinc from extracellular space and organelle lumen, while ZnT transporters release zinc outside the cells or to organelle lumen. In prostate cancer, a commonly observed low zinc concentration in prostate tissue has been correlated with downregulations of certain ZIPs (e.g., ZIP1, ZIP2, ZIP3, ZIP14) and upregulations of specific ZnTs (e.g., ZnT1, ZnT9, ZnT10). These alterations may enable cancer cells to adapt to toxic high zinc levels. While zinc supplementation has been suggested as a potential therapy for this type of cancer, studies have yielded inconsistent results because some trials have indicated that zinc supplementation could exacerbate cancer risk. The reason for this discrepancy remains unclear, but given the high molecular and genetic variability present in prostate tumors, it is plausible that some zinc transporters-comprising 14 ZIP and 10 ZnT members-could be dysregulated in others patterns that promote cancer. From this perspective, this review highlights novel dysregulation, such as ZIP-Up/ZnT-Down, observed in prostate cancer cell lines for ZIP4, ZIP8, ZnT2, ZnT4, ZnT5, etc. Additionally, an in silico analysis of an available microarray from mouse models of prostate cancer (Nkx3.1;Pten) predicts similar dysregulation pattern for ZIP4, ZIP8, and ZnT2, which appear in early stages of prostate cancer progression. Furthermore, similar dysregulation patterns are supported by an in silico analysis of RNA-seq data from human cancer tumors available in cBioPortal. We discuss how these dysregulations of zinc transporters could impact zinc supplementation trials, particularly focusing on how the ZIP-Up/ZnT-Down dysregulation through various mechanisms might promote prostate cancer progression.


Assuntos
Proteínas de Transporte de Cátions , Neoplasias da Próstata , Zinco , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Zinco/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Animais , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Regulação Neoplásica da Expressão Gênica , Suplementos Nutricionais , Próstata/metabolismo
19.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39000013

RESUMO

Obesity is a global health concern implicated in numerous chronic degenerative diseases, including type 2 diabetes, dyslipidemia, and neurodegenerative disorders. It is characterized by chronic low-grade inflammation, gut microbiota dysbiosis, insulin resistance, glucose intolerance, and lipid metabolism disturbances. Here, we investigated the therapeutic potential of environmental enrichment (EE) to prevent the progression of gut dysbiosis in mice with high-fat diet (HFD)-induced metabolic syndrome. C57BL/6 male mice with obesity and metabolic syndrome, continuously fed with an HFD, were exposed to EE. We analyzed the gut microbiota of the mice by sequencing the 16s rRNA gene at different intervals, including on day 0 and 12 and 24 weeks after EE exposure. Fasting glucose levels, glucose tolerance, insulin resistance, food intake, weight gain, lipid profile, hepatic steatosis, and inflammatory mediators were evaluated in serum, adipose tissue, and the colon. We demonstrate that EE intervention prevents the progression of HFD-induced dysbiosis, reducing taxa associated with metabolic syndrome (Tepidimicrobium, Acidaminobacteraceae, and Fusibacter) while promoting those linked to healthy physiology (Syntrophococcus sucrumutans, Dehalobacterium, Prevotella, and Butyricimonas). Furthermore, EE enhances intestinal barrier integrity, increases mucin-producing goblet cell population, and upregulates Muc2 expression in the colon. These alterations correlate with reduced systemic lipopolysaccharide levels and attenuated colon inflammation, resulting in normalized glucose metabolism, diminished adipose tissue inflammation, reduced liver steatosis, improved lipid profiles, and a significant reduction in body weight gain despite mice's continued HFD consumption. Our findings highlight EE as a promising anti-inflammatory strategy for managing obesity-related metabolic dysregulation and suggest its potential in developing probiotics targeting EE-modulated microbial taxa.


Assuntos
Dieta Hiperlipídica , Disbiose , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Obesidade , Animais , Dieta Hiperlipídica/efeitos adversos , Disbiose/microbiologia , Camundongos , Obesidade/metabolismo , Obesidade/microbiologia , Masculino , Glucose/metabolismo , Camundongos Obesos , Resistência à Insulina , Síndrome Metabólica/metabolismo , Síndrome Metabólica/etiologia , Síndrome Metabólica/microbiologia
20.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39062867

RESUMO

Entamoeba histolytica is the protozoan causative of human amoebiasis. The EhADH adhesin (687 aa) is a protein involved in tissue invasion, phagocytosis and host-cell lysis. EhADH adheres to the prey and follows its arrival to the multivesicular bodies. It is an accessory protein of the endosomal sorting complexes required for transport (ESCRT) machinery. Here, to study the role of different parts of EhADH during virulence events, we produced trophozoites overexpressing the three domains of EhADH, Bro1 (1-400 aa), Linker (246-446 aa) and Adh (444-687 aa) to evaluate their role in virulence. The TrophozBro11-400 slightly increased adherence and phagocytosis, but these trophozoites showed a higher ability to destroy cell monolayers, augment the permeability of cultured epithelial cells and mouse colon, and produce more damage to hamster livers. The TrophozLinker226-446 also increased the virulence properties, but with lower effect than the TrophozBro11-400. In addition, this fragment participates in cholesterol transport and GTPase binding. Interestingly, the TrophozAdh444-687 produced the highest effect on adherence and phagocytosis, but it poorly influenced the monolayers destruction; nevertheless, they augmented the colon and liver damage. To identify the protein partners of each domain, we used recombinant peptides. Pull-down assays and mass spectrometry showed that Bro1 domain interplays with EhADH, Gal/GalNAc lectin, EhCPs, ESCRT machinery components and cytoskeleton proteins. While EhADH, ubiquitin, EhRabB, EhNPC1 and EhHSP70 were associated to the Linker domain, and EhADH, EhHSP70, EhPrx and metabolic enzymes interacted to the Adh domain. The diverse protein association confirms that EhADH is a versatile molecule with multiple functions probably given by its capacity to form distinct molecular complexes.


Assuntos
Entamoeba histolytica , Proteínas de Protozoários , Entamoeba histolytica/patogenicidade , Entamoeba histolytica/metabolismo , Animais , Camundongos , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Humanos , Virulência , Fagocitose , Domínios Proteicos , Entamebíase/parasitologia , Entamebíase/metabolismo , Cricetinae , Trofozoítos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA