Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
J Cyst Fibros ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38851923

RESUMO

BACKGROUND: Inhibiting ENaC in the airways of people with cystic fibrosis (pwCF) is hypothesized to enhance mucociliary clearance (MCC) and provide clinical benefit. Historically, inhaled ENaC blockers have failed to show benefit in pwCF challenging this hypothesis. It is however unknown whether the clinical doses were sufficient to provide the required long duration of action in the lungs and questions whether a novel candidate could offer advantages where others have failed? METHODS: Dose-responses with the failed ENaC blockers (VX-371, BI 1265162, AZD5634, QBW276) together with ETD001 (a novel long acting inhaled ENaC blocker) were established in a sheep model of MCC and were used to predict clinically relevant doses that would provide a long-lasting enhancement of MCC in pwCF. In each case, dose predictions were compared with the selected clinical dose. RESULTS: Each of the failed candidates enhanced MCC in the sheep model. Translating these dose-response data to human equivalent doses, predicted that substantially larger doses of each candidate, than were evaluated in clinical studies, would likely have been required to achieve a prolonged enhancement of MCC in pwCF. In contrast, ETD001 displayed a long duration of action (≥16 h) at a dose level that was well tolerated in Phase 1 clinical studies. CONCLUSIONS: These data support that the ENaC blocker hypothesis is yet to be appropriately tested in pwCF. ETD001 has a profile that enables dosing at a level sufficient to provide a long duration of action in a Phase 2 clinical study in pwCF scheduled for 2024.

2.
J Ethnopharmacol ; 330: 118230, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38643862

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ferulic acid (FA) has shown potential therapeutic applications in treating lung diseases. However, the underlying mechanisms by which FA ameliorates acute lung injury (ALI) have not been distinctly elucidated. AIM OF THE STUDY: The project aims to observe the therapeutic effects of FA on lipopolysaccharide-induced ALI and to elucidate its specific mechanisms in regulating epithelial sodium channel (ENaC), which majors in alveolar fluid clearance during ALI. MATERIALS AND METHODS: In this study, the possible pathways of FA were determined through network pharmacology analyses. The mechanisms of FA in ALI were verified by in vivo mouse model and in vitro studies, including primary alveolar epithelial type 2 cells and three-dimensional alveolar organoid models. RESULTS: FA ameliorated ALI by improving lung pathological changes, reducing pulmonary edema, and upregulating the α/γ-ENaC expression in C57BL/J male mice. Simultaneously, FA was observed to augment ENaC levels in both three-dimensional alveolar organoid and alveolar epithelial type 2 cells models. Network pharmacology techniques and experimental data from inhibition or knockdown of IkappaB kinase ß (IKKß) proved that FA reduced the phosphorylation of IKKß/nuclear factor-kappaB (NF-κB) and eliminated the lipopolysaccharide-inhibited expression of ENaC, which could be regulated by nuclear protein NF-κB p65 directly. CONCLUSIONS: FA could enhance the expression of ENaC at least in part by inhibiting the IKKß/NF-κB signaling pathway, which may potentially pave the way for promising treatment of ALI.


Assuntos
Lesão Pulmonar Aguda , Ácidos Cumáricos , Canais Epiteliais de Sódio , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Farmacologia em Rede , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Ácidos Cumáricos/farmacologia , Masculino , Canais Epiteliais de Sódio/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Sódio/metabolismo , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo
3.
J Biol Chem ; 300(4): 105785, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401845

RESUMO

The epithelial sodium channel (ENaC) is essential for mediating sodium absorption in several epithelia. Its impaired function leads to severe disorders, including pseudohypoaldosteronism type 1 and respiratory distress. Therefore, pharmacological ENaC activators have potential therapeutic implications. Previously, a small molecule ENaC activator (S3969) was developed. So far, little is known about molecular mechanisms involved in S3969-mediated ENaC stimulation. Here, we identified an S3969-binding site in human ENaC by combining structure-based simulations with molecular biological methods and electrophysiological measurements of ENaC heterologously expressed in Xenopus laevis oocytes. We confirmed a previous observation that the extracellular loop of ß-ENaC is essential for ENaC stimulation by S3969. Molecular dynamics simulations predicted critical residues in the thumb domain of ß-ENaC (Arg388, Phe391, and Tyr406) that coordinate S3969 within a binding site localized at the ß-γ-subunit interface. Importantly, mutating each of these residues reduced (R388H; R388A) or nearly abolished (F391G; Y406A) the S3969-mediated ENaC activation. Molecular dynamics simulations also suggested that S3969-mediated ENaC stimulation involved a movement of the α5 helix of the thumb domain of ß-ENaC away from the palm domain of γ-ENaC. Consistent with this, the introduction of two cysteine residues (ßR437C - γS298C) to form a disulfide bridge connecting these two domains prevented ENaC stimulation by S3969 unless the disulfide bond was reduced by DTT. Finally, we demonstrated that S3969 stimulated ENaC endogenously expressed in cultured human airway epithelial cells (H441). These new findings may lead to novel (patho-)physiological and therapeutic concepts for disorders associated with altered ENaC function.


Assuntos
Agonistas do Canal de Sódio Epitelial , Canais Epiteliais de Sódio , Indóis , Animais , Humanos , Sítios de Ligação , Agonistas do Canal de Sódio Epitelial/metabolismo , Agonistas do Canal de Sódio Epitelial/farmacologia , Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/metabolismo , Simulação de Dinâmica Molecular , Oócitos/efeitos dos fármacos , Xenopus laevis , Ligação Proteica , Indóis/metabolismo , Indóis/farmacologia
4.
Brain Struct Funct ; 229(3): 681-694, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38305875

RESUMO

Epithelial sodium channel (ENaC) is responsible for regulating Na+ homeostasis. While its physiological functions have been investigated extensively in peripheral tissues, far fewer studies have explored its functions in the brain. Since our limited knowledge of ENaC's distribution in the brain impedes our understanding of its functions there, we decided to explore the whole-brain expression pattern of the Scnn1a gene, which encodes the core ENaC complex component ENaCα. To visualize Scnn1a expression in the brain, we crossed Scnn1a-Cre mice with Rosa26-lsl-tdTomato mice. Brain sections were subjected to immunofluorescence staining using antibodies against NeuN or Myelin Binding Protein (MBP), followed by the acquisition of confocal images. We observed robust tdTomato fluorescence not only in the soma of cortical layer 4, the thalamus, and a subset of amygdalar nuclei, but also in axonal projections in the hippocampus and striatum. We also observed expression in specific hypothalamic nuclei. Contrary to previous reports, however, we did not detect significant expression in the circumventricular organs, which are known for their role in regulating Na+ balance. Finally, we detected fluorescence in cells lining the ventricles and in the perivascular cells of the median eminence. Our comprehensive mapping of Scnn1a-expressing cells in the brain will provide a solid foundation for further investigations of the physiological roles ENaC plays within the central nervous system.


Assuntos
Canais Epiteliais de Sódio , Proteína Vermelha Fluorescente , Sódio , Camundongos , Animais , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Sódio/metabolismo , Hipotálamo/metabolismo
5.
Int J Mol Sci ; 24(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38139392

RESUMO

Epithelial sodium channel (ENaC) are integral to maintaining salt and water homeostasis in various biological tissues, including the kidney, lung, and colon. They enable the selective reabsorption of sodium ions, which is a process critical for controlling blood pressure, electrolyte balance, and overall fluid volume. ENaC activity is finely controlled through proteolytic activation, a process wherein specific enzymes, or proteases, cleave ENaC subunits, resulting in channel activation and increased sodium reabsorption. This regulatory mechanism plays a pivotal role in adapting sodium transport to different physiological conditions. In this review article, we provide an in-depth exploration of the role of proteolytic activation in regulating ENaC activity. We elucidate the involvement of various proteases, including furin-like convertases, cysteine, and serine proteases, and detail the precise cleavage sites and regulatory mechanisms underlying ENaC activation by these proteases. We also discuss the physiological implications of proteolytic ENaC activation, focusing on its involvement in blood pressure regulation, pulmonary function, and intestinal sodium absorption. Understanding the mechanisms and consequences of ENaC proteolytic activation provides valuable insights into the pathophysiology of various diseases, including hypertension, pulmonary disorders, and various gastrointestinal conditions. Moreover, we discuss the potential therapeutic avenues that emerge from understanding these mechanisms, offering new possibilities for managing diseases associated with ENaC dysfunction. In summary, this review provides a comprehensive discussion of the intricate interplay between proteases and ENaC, emphasizing the significance of proteolytic activation in maintaining sodium and fluid balance in both health and disease.


Assuntos
Canais Epiteliais de Sódio , Serina Endopeptidases , Canais Epiteliais de Sódio/metabolismo , Proteólise , Serina Endopeptidases/metabolismo , Serina Proteases , Sódio/metabolismo
6.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958726

RESUMO

In proteinuric renal diseases, the serine protease (SP) plasmin activates the epithelial sodium channel (ENaC) by cleaving its γ subunit. We previously demonstrated that a high-salt (HS) diet provoked hypertension and proteinuria in Dahl salt-sensitive (DS) rats, accompanied by γENaC activation, which were attenuated by camostat mesilate (CM), an SP inhibitor. However, the effects of CM on plasmin activity in DS rats remain unclear. In this study, we investigated the effects of CM on plasmin activity, ENaC activation, and podocyte injury in DS rats. The DS rats were divided into the control diet, HS diet (8.0% NaCl), and HS+CM diet (0.1% CM) groups. After weekly blood pressure measurement and 24-h urine collection, the rats were sacrificed at 5 weeks. The HS group exhibited hypertension, massive proteinuria, increased urinary plasmin, and γENaC activation; CM treatment suppressed these changes. CM prevented plasmin(ogen) attachment to podocytes and mitigated podocyte injury by reducing the number of apoptotic glomerular cells, inhibiting protease-activated receptor-1 activation, and suppressing inflammatory and fibrotic cytokine expression. Our findings highlight the detrimental role of urinary plasmin in the pathogenesis of salt-sensitive hypertension and glomerular injury. Targeting plasmin with SP inhibitors, such as CM, may be a promising therapeutic approach for these conditions.


Assuntos
Hipertensão , Podócitos , Serpinas , Ratos , Animais , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/uso terapêutico , Fibrinolisina , Podócitos/metabolismo , Ratos Endogâmicos Dahl , Serpinas/farmacologia , Cloreto de Sódio na Dieta/farmacologia , Proteinúria/patologia , Pressão Sanguínea , Rim/metabolismo
7.
Immunol Invest ; 52(7): 925-939, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37732637

RESUMO

Acute lung injury (ALI) is a common lung disease with increasing morbidity and mortality rates due to the lack of specific drugs. Impaired alveolar fluid clearance (AFC) is a primary pathological feature of ALI. Epithelial sodium channel (ENaC) is a primary determinant in regulating the transport of Na+ and the clearance of alveolar edema fluid. Therefore, ENaC is an important target for the development of drugs for ALI therapy. However, the role of ENaC in the progression of ALI remains unclear. Inhibition of early growth response factor (EGR-1) expression has been reported to induce a protective effect on ALI; therefore, we evaluated whether EGR-1 participates in the progression of ALI by regulating ENaC-α in alveolar epithelium. We investigated the potential mechanism of EGR-1-mediated regulation of ENaC in ALI. We investigated whether EGR-1 aggravates the pulmonary edema response in ALI by regulating ENaC. ALI mouse models were established by intrabronchial injection of lipopolysaccharides (LPS). Lentiviruses with EGR-1 knockdown were transfected into LPS-stimulated A549 cells. We found that EGR-1 expression was upregulated in the lung tissues of ALI mice and in LPS-induced A549 cells, and was negatively correlated with ENaC-α expression. Knockdown of EGR-1 increased ENaC-α expression and relieved cellular edema in ALI. Moreover, EGR-1 regulated ENaC-α expression at the transcriptional level, and correspondingly promoted pulmonary edema and aggravated ALI symptoms. In conclusion, our study demonstrated that EGR-1 could promote pulmonary edema by downregulating ENaC-α at the transcriptional level in ALI. Our study provides a new potential therapeutic strategy for treatment of ALI.


EGR-1 expression was increased in LPS-induced ALI mice and associated with aggravated pulmonary edemaEGR-1 induced pulmonary edema relying on regulating the expression of ENaC-α at the transcriptional level by manipulating the promoter.


Assuntos
Lesão Pulmonar Aguda , Edema Pulmonar , Animais , Humanos , Camundongos , Células A549 , Lesão Pulmonar Aguda/induzido quimicamente , Canais Epiteliais de Sódio/genética , Lipopolissacarídeos
8.
Front Immunol ; 14: 1241448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638055

RESUMO

Introduction: Although both COVID-19 and non-COVID-19 ARDS can be accompanied by significantly increased levels of circulating cytokines, the former significantly differs from the latter by its higher vasculopathy, characterized by increased oxidative stress and coagulopathy in lung capillaries. This points towards the existence of SARS-CoV2-specific factors and mechanisms that can sensitize the endothelium towards becoming dysfunctional. Although the virus is rarely detected within endothelial cells or in the circulation, the S1 subunit of its spike protein, which contains the receptor binding domain (RBD) for human ACE2 (hACE2), can be detected in plasma from COVID-19 patients and its levels correlate with disease severity. It remains obscure how the SARS-CoV2 RBD exerts its deleterious actions in lung endothelium and whether there are mechanisms to mitigate this. Methods: In this study, we use a combination of in vitro studies in RBD-treated human lung microvascular endothelial cells (HL-MVEC), including electrophysiology, barrier function, oxidative stress and human ACE2 (hACE2) surface protein expression measurements with in vivo studies in transgenic mice globally expressing human ACE2 and injected with RBD. Results: We show that SARS-CoV2 RBD impairs endothelial ENaC activity, reduces surface hACE2 expression and increases reactive oxygen species (ROS) and tissue factor (TF) generation in monolayers of HL-MVEC, as such promoting barrier dysfunction and coagulopathy. The TNF-derived TIP peptide (a.k.a. solnatide, AP301) -which directly activates ENaC upon binding to its a subunit- can override RBD-induced impairment of ENaC function and hACE2 expression, mitigates ROS and TF generation and restores barrier function in HL-MVEC monolayers. In correlation with the increased mortality observed in COVID-19 patients co-infected with S. pneumoniae, compared to subjects solely infected with SARS-CoV2, we observe that prior intraperitoneal RBD treatment in transgenic mice globally expressing hACE2 significantly increases fibrin deposition and capillary leak upon intratracheal instillation of S. pneumoniae and that this is mitigated by TIP peptide treatment.


Assuntos
COVID-19 , Células Endoteliais , Animais , Camundongos , Humanos , Enzima de Conversão de Angiotensina 2/genética , RNA Viral , Espécies Reativas de Oxigênio , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2 , Endotélio
9.
Front Immunol ; 14: 1178410, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37559717

RESUMO

The epithelial sodium channel (ENaC) is a heterotrimer and is widely distributed throughout the kidneys, blood vessels, lungs, colons, and many other organs. The basic role of the ENaC is to mediate the entry of Na+ into cells; the ENaC also has an important regulatory function in blood pressure, airway surface liquid (ASL), and endothelial cell function. Aldosterone, serum/glucocorticoid kinase 1 (SGK1), shear stress, and posttranslational modifications can regulate the activity of the ENaC; some ion channels also interact with the ENaC. In recent years, it has been found that the ENaC can lead to immune cell activation, endothelial cell dysfunction, aggravated inflammation involved in high salt-induced hypertension, cystic fibrosis, pseudohypoaldosteronism (PHA), and tumors; some inflammatory cytokines have been reported to have a regulatory role on the ENaC. The ENaC hyperfunction mediates the increase of intracellular Na+, and the elevated exchange of Na+ with Ca2+ leads to an intracellular calcium overload, which is an important mechanism for ENaC-related inflammation. Some of the research on the ENaC is controversial or unclear; we therefore reviewed the progress of studies on the role of ENaC-related inflammation in human diseases and their mechanisms.


Assuntos
Canais Epiteliais de Sódio , Hipertensão , Humanos , Canais Epiteliais de Sódio/metabolismo , Transdução de Sinais , Sódio/metabolismo , Inflamação
10.
Hypertens Pregnancy ; 42(1): 2232029, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37417251

RESUMO

OBJECTIVE: To assess changes in expression of renal epithelial sodium channel (ENaC) and NEDD4L, a ubiquitin ligase, in urinary extracellular vesicles (UEV) of pre-eclamptic women compared to normal pregnant controls. METHODS: Urine was collected from pre-eclamptic women (PE, n = 20) or during normal pregnancy (NP, n = 20). UEV were separated by differential ultracentrifugation. NEDD4L, α-ENaC and γ-ENaC were identified by immunoblotting. RESULTS: There was no difference in the expression of NEDD4L (p = 0.17) and α-ENaC (p = 0.10). PE subjects showed increased expression of γ-ENaC by 6.9-fold compared to NP (p < 0.0001). CONCLUSION: ENaC expression is upregulated in UEV of pre-eclamptic subjects but was not associated with changes in NEDD4L.


Assuntos
Vesículas Extracelulares , Ubiquitina-Proteína Ligases Nedd4 , Pré-Eclâmpsia , Feminino , Humanos , Gravidez , Canais Epiteliais de Sódio/metabolismo , Vesículas Extracelulares/metabolismo , Rim , Pré-Eclâmpsia/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética
11.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373270

RESUMO

Luteolin (Lut), a natural flavonoid compound existing in Perilla frutescens (L.) Britton, has been proven to play a protective role in the following biological aspects: inflammatory, viral, oxidant, and tumor-related. Lut can alleviate acute lung injury (ALI), manifested mainly by preventing the accumulation of inflammation-rich edematous fluid, while the protective actions of Lut on transepithelial ion transport in ALI were seldom researched. We found that Lut could improve the lung appearance/pathological structure in lipopolysaccharide (LPS)-induced mouse ALI models and reduce the wet/dry weight ratio, bronchoalveolar protein, and inflammatory cytokines. Meanwhile, Lut upregulated the expression level of the epithelial sodium channel (ENaC) in both the primary alveolar epithelial type 2 (AT2) cells and three-dimensional (3D) alveolar epithelial organoid model that recapitulated essential structural and functional aspects of the lung. Finally, by analyzing the 84 interaction genes between Lut and ALI/acute respiratory distress syndrome using GO and KEGG enrichment of network pharmacology, we found that the JAK/STAT signaling pathway might be involved in the network. Experimental data by knocking down STAT3 proved that Lut could reduce the phosphorylation of JAK/STAT and enhance the level of SOCS3, which abrogated the inhibition of ENaC expression induced by LPS accordingly. The evidence supported that Lut could attenuate inflammation-related ALI by enhancing transepithelial sodium transport, at least partially, via the JAK/STAT pathway, which may offer a promising therapeutic strategy for edematous lung diseases.


Assuntos
Lesão Pulmonar Aguda , Luteolina , Camundongos , Animais , Luteolina/farmacologia , Luteolina/uso terapêutico , Lipopolissacarídeos/efeitos adversos , Transdução de Sinais/fisiologia , Sódio/metabolismo , Janus Quinases/metabolismo , Farmacologia em Rede , Fatores de Transcrição STAT/metabolismo , Pulmão/patologia , Lesão Pulmonar Aguda/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Transporte de Íons , Inflamação/metabolismo
12.
Front Cardiovasc Med ; 10: 1130148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123470

RESUMO

A major regulator of blood pressure and volume homeostasis in the kidney is the epithelial sodium channel (ENaC). ENaC is composed of alpha(α)/beta(ß)/gamma(γ) or delta(δ)/beta(ß)/gamma(γ) subunits. The δ subunit is functional in the guinea pig, but not in routinely used experimental rodent models including rat or mouse, and thus remains the least understood of the four subunits. While the δ subunit is poorly expressed in the human kidney, we recently found that its gene variants are associated with blood pressure and kidney function. The δ subunit is expressed in the human vasculature where it may influence vascular function. Moreover, we recently found that the δ subunit is also expressed human antigen presenting cells (APCs). Our studies indicate that extracellular Na+ enters APCs via ENaC leading to inflammation and salt-induced hypertension. In this review, we highlight recent findings on the role of extra-renal ENaC in inflammation, vascular dysfunction, and blood pressure modulation. Targeting extra-renal ENaC may provide new drug therapies for salt-induced hypertension.

13.
Genes Genomics ; 45(7): 855-866, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37133722

RESUMO

BACKGROUND: Non-voltage-gated sodium channel, also known as the epithelial sodium channel (ENaC), formed by heteromeric complexes consisting of SCNN1A, SCNN1B, and SCNN1G, is responsible for maintaining sodium ion and body fluid homeostasis in epithelial cells. However, no systematic study of SCNN1 family members has been conducted in renal clear cell carcinoma (ccRCC) to date. OBJECTIVE: To investigate the abnormal expression of SCNN1 family in ccRCC and its potential correlation with clinical parameters. METHODS: The transcription and protein expression levels of SCNN1 family members in ccRCC were analyzed based on the TCGA database, and were confirmed by quantitative RT-PCR and immunohistochemical staining assays, respectively. The area under curve (AUC) was used to evaluate the diagnostic value of SCNN1 family members for ccRCC patients. RESULTS: The mRNA and protein expression of SCNN1 family members was significantly downregulated in ccRCC compared with normal kidney tissues, which might be due to DNA hypermethylation in the promoter region. It is worth noting that the AUC of SCNN1A, SCNN1B, and SCNN1G were 0.965, 0.979, and 0.988 based on the TCGA database (p < 0.0001), respectively. The diagnostic value was even higher when combing these three members together (AUC = 0.997, p < 0.0001). Intriguingly, the mRNA level of SCNN1A was significantly lower in females compared with males, while SCNN1B and SCNN1G were increased with the progression of ccRCC and remarkably associated with a worse outcome for patients. CONCLUSION: The aberrantly decrease of SCNN1 family members might serve as valuable biomarkers for the diagnosis of ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Masculino , Feminino , Humanos , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Rim/metabolismo , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , RNA Mensageiro/metabolismo
14.
Biomolecules ; 13(4)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-37189326

RESUMO

Dyspnea and progressive hypoxemia are the main clinical features of patients with coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pulmonary pathology shows diffuse alveolar damage with edema, hemorrhage, and the deposition of fibrinogens in the alveolar space, which are consistent with the Berlin Acute Respiratory Distress Syndrome Criteria. The epithelial sodium channel (ENaC) is a key channel protein in alveolar ion transport and the rate-limiting step for pulmonary edema fluid clearance, the dysregulation of which is associated with acute lung injury/acute respiratory distress syndrome. The main protein of the fibrinolysis system, plasmin, can bind to the furin site of γ-ENaC and induce it to an activation state, facilitating pulmonary fluid reabsorption. Intriguingly, the unique feature of SARS-CoV-2 from other ß-coronaviruses is that the spike protein of the former has the same furin site (RRAR) with ENaC, suggesting that a potential competition exists between SARS-CoV-2 and ENaC for the cleavage by plasmin. Extensive pulmonary microthrombosis caused by disorders of the coagulation and fibrinolysis system has also been seen in COVID-19 patients. To some extent, high plasmin (ogen) is a common risk factor for SARS-CoV-2 infection since an increased cleavage by plasmin accelerates virus invasion. This review elaborates on the closely related relationship between SARS-CoV-2 and ENaC for fibrinolysis system-related proteins, aiming to clarify the regulation of ENaC under SARS-CoV-2 infection and provide a novel reference for the treatment of COVID-19 from the view of sodium transport regulation in the lung epithelium.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , SARS-CoV-2 , Furina , Fibrinolisina , Transporte de Íons , Sódio
15.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175488

RESUMO

Epithelial sodium channels (ENaC) are part of a complex network of interacting biochemical pathways and as such are involved in several disease states. Dependent on site and type of mutation, gain- or loss-of-function generated symptoms occur which span from asymptomatic to life-threatening disorders such as Liddle syndrome, cystic fibrosis or generalized pseudohypoaldosteronism type 1. Variants of ENaC which are implicated in disease assist further understanding of their molecular mechanisms in order to create models for specific pharmacological targeting. Identification and characterization of ENaC modifiers not only furthers our basic understanding of how these regulatory processes interact, but also enables discovery of new therapeutic targets for the disease conditions caused by ENaC dysfunction. Numerous test compounds have revealed encouraging results in vitro and in animal models but less in clinical settings. The EMA- and FDA-designated orphan drug solnatide is currently being tested in phase 2 clinical trials in the setting of acute respiratory distress syndrome, and the NOX1/ NOX4 inhibitor setanaxib is undergoing clinical phase 2 and 3 trials for therapy of primary biliary cholangitis, liver stiffness, and carcinoma. The established ENaC blocker amiloride is mainly used as an add-on drug in the therapy of resistant hypertension and is being studied in ongoing clinical phase 3 and 4 trials for special applications. This review focuses on discussing some recent developments in the search for novel therapeutic agents.


Assuntos
Hipertensão , Síndrome de Liddle , Pseudo-Hipoaldosteronismo , Animais , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Hipertensão/metabolismo , Pseudo-Hipoaldosteronismo/metabolismo , Amilorida/farmacologia
16.
Biomed Pharmacother ; 163: 114863, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37172333

RESUMO

Lifeways of worldwide people have changed dramatically amid the coronavirus disease 2019 (COVID-19) pandemic, and public health is at stake currently. In the early stage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, fibrinolytic system is mostly inhibited, which is responsible for the development of hypofibrinolysis, promoting disseminated intravascular coagulation, hyaline membrane formation, and pulmonary edema. Whereas the common feature and risk factor at advanced stage is a large amount of fibrin degradation products, including D-dimer, the characteristic of hyperfibrinolysis. Plasmin can cleave both SARS-CoV-2 spike protein and γ subunit of epithelial sodium channel (ENaC), a critical element to edematous fluid clearance. In this review, we aim to sort out the role of fibrinolytic system in the pathogenesis of COVID-19, as well as provide the possible guidance in current treating methods. In addition, the abnormal regulation of ENaC in the occurrence of SARS-CoV-2 mediated hypofibrinolysis and hyperfibrinolysis are summarized, with the view of proposing an innovative view of epithelial ion transport in preventing the dysfunction of fibrinolytic system during the progress of COVID-19.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Transporte de Íons
17.
Respir Res ; 24(1): 117, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095538

RESUMO

BACKGROUND: Hypoxia is associated with many respiratory diseases, partly due to the accumulation of edema fluid and mucus on the surface of alveolar epithelial cell (AEC), which forms oxygen delivery barriers and is responsible for the disruption of ion transport. Epithelial sodium channel (ENaC) on the apical side of AEC plays a crucial role to maintain the electrochemical gradient of Na+ and water reabsorption, thus becomes the key point for edema fluid removal under hypoxia. Here we sought to explore the effects of hypoxia on ENaC expression and the further mechanism related, which may provide a possible treatment strategy in edema related pulmonary diseases. METHODS: Excess volume of culture medium was added on the surface of AEC to simulate the hypoxic environment of alveoli in the state of pulmonary edema, supported by the evidence of increased hypoxia-inducible factor-1 expression. The protein/mRNA expressions of ENaC were detected, and extracellular signal-regulated kinase (ERK)/nuclear factor κB (NF-κB) inhibitor was applied to explore the detailed mechanism about the effects of hypoxia on epithelial ion transport in AEC. Meanwhile, mice were placed in chambers with normoxic or hypoxic (8%) condition for 24 h, respectively. The effects of hypoxia and NF-κB were assessed through alveolar fluid clearance and ENaC function by Ussing chamber assay. RESULTS: Hypoxia (submersion culture mode) induced the reduction of protein/mRNA expression of ENaC, whereas increased the activation of ERK/NF-κB signaling pathway in parallel experiments using human A549 and mouse alveolar type 2 cells, respectively. Moreover, the inhibition of ERK (PD98059, 10 µM) alleviated the phosphorylation of IκB and p65, implying NF-κB as a downstream pathway involved with ERK regulation. Intriguingly, the expression of α-ENaC could be reversed by either ERK or NF-κB inhibitor (QNZ, 100 nM) under hypoxia. The alleviation of pulmonary edema was evidenced by the administration of NF-κB inhibitor, and enhancement of ENaC function was supported by recording amiloride-sensitive short-circuit currents. CONCLUSIONS: The expression of ENaC was downregulated under hypoxia induced by submersion culture, which may be mediated by ERK/NF-κB signaling pathway.


Assuntos
NF-kappa B , Edema Pulmonar , Camundongos , Humanos , Animais , NF-kappa B/metabolismo , Edema Pulmonar/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imersão , Alvéolos Pulmonares , Hipóxia/metabolismo , Transdução de Sinais , Canais Epiteliais de Sódio/genética , Sódio/metabolismo , Sódio/farmacologia , RNA Mensageiro/metabolismo , Células Epiteliais/metabolismo
18.
Eur J Oral Sci ; 131(2): e12922, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36852977

RESUMO

Taste alteration is a frequently reported side effect in patients receiving the chemotherapeutic agent, irinotecan. However, the way in which irinotecan causes taste disturbance and the type of taste impairment that is affected remain elusive. Here, we used the two-bottle preference test to characterize behavioral taste responses and employed immunohistochemical analyses to clarify the types and mechanisms of taste alteration induced, in mice, by irinotecan administration. Irinotecan administration resulted in a reduced intake of sodium taste solution but had no effect on sweet taste responses, as determined in the two-bottle preference test. In the presence of amiloride, which inhibits the function of the epithelial sodium channel (ENaC) in the periphery, the intake of sodium taste solution was comparable between the irinotecan-treated and control groups. Immunohistochemical analyses revealed that α-ENaC immunoreactivity detected in taste bud cells decreased slowly after irinotecan administration, and that administration of irinotecan had little effect on the number of cells expressing the cellular proliferation marker, Ki67, within or around taste buds. Our results imply that irinotecan administration may be responsible for altered behavioral sodium taste responses originating from ENaC function in the periphery, while being accompanied by the reduction of α-ENaC expression at the apical membrane of taste receptor cells without disturbing taste cell renewal.


Assuntos
Amilorida , Papilas Gustativas , Camundongos , Animais , Amilorida/farmacologia , Amilorida/metabolismo , Sódio/metabolismo , Sódio/farmacologia , Paladar , Irinotecano/metabolismo , Irinotecano/farmacologia , Disgeusia
19.
J Biol Chem ; 299(3): 102914, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36649907

RESUMO

Epithelial Na+ channels (ENaCs) and related channels have large extracellular domains where specific factors interact and induce conformational changes, leading to altered channel activity. However, extracellular structural transitions associated with changes in ENaC activity are not well defined. Using crosslinking and two-electrode voltage clamp in Xenopus oocytes, we identified several pairs of functional intersubunit contacts where mouse ENaC activity was modulated by inducing or breaking a disulfide bond between introduced Cys residues. Specifically, crosslinking E499C in the ß-subunit palm domain and N510C in the α-subunit palm domain activated ENaC, whereas crosslinking ßE499C with αQ441C in the α-subunit thumb domain inhibited ENaC. We determined that bridging ßE499C to αN510C or αQ441C altered the Na+ self-inhibition response via distinct mechanisms. Similar to bridging ßE499C and αQ441C, we found that crosslinking palm domain αE557C with thumb domain γQ398C strongly inhibited ENaC activity. In conclusion, we propose that certain residues at specific subunit interfaces form microswitches that convey a conformational wave during ENaC gating and its regulation.


Assuntos
Canais Epiteliais de Sódio , Oócitos , Animais , Camundongos , Canais Epiteliais de Sódio/metabolismo , Íons , Conformação Molecular , Oócitos/metabolismo , Domínios Proteicos , Xenopus
20.
Am J Physiol Renal Physiol ; 324(1): F1-F11, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302140

RESUMO

Soluble (pro)renin receptor (sPRR), the extracellular domain of (pro)renin receptor (PRR), is primarily generated by site-1 protease and furin. It has been reported that sPRR functions as an important regulator of intrarenal renin contributing to angiotensin II (ANG II)-induced hypertension. Relatively, less is known for the function of sPRR in ANG II-independent hypertension such as mineralocorticoid excess. In the present study, we used a novel mouse model with mutagenesis of the cleavage site in PRR (termed as PRRR279V/L282V or mutant) to examine the phenotype during aldosterone (Aldo)-salt treatment. The hypertensive response of mutant mice to Aldo-salt treatment was blunted in parallel with the attenuated response of plasma volume expansion and renal medullary α-epithelial Na+ channel expression. Moreover, Aldo-salt-induced hypertrophy in the heart and kidney as well as proteinuria were improved, accompanied by blunted polydipsia and polyuria. Together, these results represent strong evidence favoring endogenous sPRR as a mediator of Aldo-salt-induced hypertension and renal injury.NEW & NOTEWORTHY We used a novel mouse model with mutagenesis of the cleavage site of PRR to support soluble PRR as an essential mediator of aldosterone-salt-induced hypertension and also as a potential therapeutic target for patients with mineralocorticoid excess. We firstly report that soluble PRR-dependent pathway medicates the Na+-retaining action of aldosterone in the distal nephron, which opens up a new area for a better understanding of the molecular basis of renal handling of Na+ balance and blood pressure.


Assuntos
Aldosterona , Hipertensão , Camundongos , Animais , Aldosterona/metabolismo , Receptor de Pró-Renina , Mineralocorticoides , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/metabolismo , Rim/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Renina/metabolismo , Sistema Renina-Angiotensina , Angiotensina II/farmacologia , Sódio/metabolismo , Mutagênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...