Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.495
Filtrar
1.
Stem Cell Res Ther ; 15(1): 195, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956738

RESUMO

BACKGROUND: Nowadays, companion and working dogs hold significant social and economic importance. Dry eye, also known as dry keratoconjunctivitis (KCS), a common disease in ophthalmology, can readily impact a dog's working capacity and lead to economic losses. Although there are several medications available for this disease, all of them only improve the symptoms on the surface of the eye, and they are irritating and not easy to use for long periods of time. Adipose-derived mesenchymal stem cells (ADMSC) are promising candidates for tissue regeneration and disease treatment. However, long-term in vitro passaging leads to stemness loss of ADMSC. Here, we aimed to use ADMSC overexpressing Secreted Protein Acidic and Rich in Cysteine (SPARC) to treat 0.25% benzalkonium chloride-treated dogs with dry eye to verify its efficacy. For in vitro validation, we induced corneal epithelial cell (HCECs) damage using 1 µg/mL benzalkonium chloride. METHODS: Fifteen male crossbred dogs were randomly divided into five groups: normal, dry eye self-healing control, cyclosporine-treated, ADMSC-CMV-treated and ADMSC-OESPARC-treated. HCECs were divided into four groups: normal control group, untreated model group, ADMSC-CMV supernatant culture group and ADMSC-OESRARC supernatant culture group. RESULTS: SPARC-modified ADMSC had the most significant effect on canine ocular surface inflammation, corneal injury, and tear recovery, and the addition of ADMSC-OESPARC cell supernatant also had a salvage effect on HCECs cellular damage, such as cell viability and cell proliferation ability. Moreover, analysis of the co-transcriptome sequencing data showed that SPARC could promote corneal epithelial cell repair by enhancing the in vitro viability, migration and proliferation and immunosuppression of ADMSC. CONCLUSION: The in vitro cell test and in vivo model totally suggest that the combination of SPARC and ADMSC has a promising future in novel dry eye therapy.


Assuntos
Compostos de Benzalcônio , Modelos Animais de Doenças , Síndromes do Olho Seco , Células-Tronco Mesenquimais , Osteonectina , Animais , Cães , Compostos de Benzalcônio/farmacologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Síndromes do Olho Seco/terapia , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/metabolismo , Síndromes do Olho Seco/patologia , Osteonectina/metabolismo , Osteonectina/genética , Masculino , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos
2.
Aging (Albany NY) ; 162024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38976646

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an age-related disease with poor prognosis and limited therapeutic options. Activation of lung fibroblasts and differentiation to myofibroblasts are the principal effectors of disease pathology, but damage and senescence of alveolar epithelial cells, specifically type II (ATII) cells, has recently been identified as a potential trigger event for the progressive disease cycle. Targeting ATII senescence and the senescence-associated secretory phenotype (SASP) is an attractive therapeutic strategy; however, translatable primary human cell models that enable mechanistic studies and drug development are lacking. Here, we describe a novel system of conditioned medium (CM) transfer from bleomycin-induced senescent primary alveolar epithelial cells (AEC) onto normal human lung fibroblasts (NHLF) that demonstrates an enhanced fibrotic transcriptional and secretory phenotype compared to non-senescent AEC CM treatment or direct bleomycin damage of the NHLFs. In this system, the bleomycin-treated AECs exhibit classical hallmarks of cellular senescence, including SASP and a gene expression profile that resembles aberrant epithelial cells of the IPF lung. Fibroblast activation by CM transfer is attenuated by pre-treatment of senescent AECs with the senolytic Navitoclax and AD80, but not with the standard of care agent Nintedanib or senomorphic JAK-targeting drugs (e.g., ABT-317, ruxolitinib). This model provides a relevant human system for profiling novel senescence-targeting therapeutics for IPF drug development.

3.
J Cancer ; 15(13): 4156-4174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947403

RESUMO

Background: Epithelial Cell Transforming Sequence 2 (ECT2) has been implicated in various tumorigenic processes, including proliferation, migration, and invasion. However, its specific role in head and neck squamous cell carcinoma (HNSCC) remains unclear. Methods: This study integrates transcriptomic and single-cell RNA sequencing (scRNA-seq) data to explore the potential role of ECT2 in HNSCC. Differential expression analysis, cell-based assays (including CCK-8 for proliferation, transwell for migration, invasion assays, and flow cytometry for apoptosis and cell cycle analysis), and enrichment analysis were employed to investigate ECT2 expression levels and its regulatory effects on cellular phenotypes. Additionally, Mendelian randomization analysis was utilized to identify genes causally related to HNSCC using publicly available Genome-Wide Association Study (GWAS) data. Results: ECT2 is highly expressed in HNSCC samples and its downregulation inhibits proliferation, migration, invasion, induces apoptosis, and affects the cell cycle transition in HSC-3 cells. Furthermore, differential analysis revealed significant differences in the immune microenvironment and drug sensitivity between high and low ECT2 expression groups. The pathways enriched in different groups include CCR and its related chemokines, as well as HLA in antigen presentation and immune response. There are also significant differences in the sensitivity to drugs such as bortezomib and dasatinib between the two groups. Prognostic models constructed from prognosis-related genes showed significant differences in prognosis between high and low-risk groups. Integration of scRNA-seq data identified Monocyte clusters as high-scoring cell clusters based on genes interacting with ECT2.Mendelian randomization analysis identified three genes (LGALS2, SLC11A1, and TKT) causally related to HNSCC within this cell cluster. Conclusion: The findings suggest that ECT2 overexpression is associated with the survival rate of HNSCC, indicating its potential as a prognostic biomarker for this malignancy.

4.
World J Stem Cells ; 16(6): 728-738, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38948093

RESUMO

BACKGROUND: Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease that affects premature infants. Although mounting evidence supports the therapeutic effect of exosomes on NEC, the underlying mechanisms remain unclear. AIM: To investigate the mechanisms underlying the regulation of inflammatory response and intestinal barrier function by umbilical cord mesenchymal stem cell (UCMSCs) exosomes, as well as their potential in alleviating NEC in neonatal mice. METHODS: NEC was induced in 5-d-old C57BL/6 pups through hypoxia and gavage feeding of formula containing lipopolysaccharide (LPS), after which the mice received human UCMSC exosomes (hUCMSC-exos). The control mice were allowed to breastfeed with their dams. Ileal tissues were collected from the mice and analyzed by histopathology and immunoblotting. Colon tissues were collected from NEC neonates and analyzed by immunofluorescence. Molecular biology and cell culture approaches were employed to study the related mechanisms in intestinal epithelial cells. RESULTS: We found that autophagy is overactivated in intestinal epithelial cells during NEC, resulting in reduced expression of tight junction proteins and an increased inflammatory response. The ability of hUCMSC-exos to ameliorate NEC in a mouse model was dependent on decreased intestinal autophagy. We also showed that hUCMSC-exos alleviate the inflammatory response and increase migration ability in intestinal epithelial cells induced by LPS. CONCLUSION: These results contribute to a better understanding of the protective mechanisms of hUCMSC-exos against NEC and provide a new theoretical and experimental foundation for NEC treatment. These findings also enhance our understanding of the role of the autophagy mechanism in NEC, offering potential avenues for identifying new therapeutic targets.

5.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 619-629, 2024 May 20.
Artigo em Chinês | MEDLINE | ID: mdl-38948275

RESUMO

Objective: Based on the secreted frizzled-related protein 2 (SFRP2)-Wnt/ß-catenin signaling pathway, this study explored the effect and mechanism of Cuiru Keli (CRKL) in the treatment of postpartum hypogalactia. Methods: A rat model of postpartum hypogalactia was established by gavaging 2 mL of 1.6 mg/mL bromocriptine mesylate to female rats on the third day after delivery. Female rats with a delivery time difference of less than 48 hours were selected and randomly assigned to 7 groups, including a normal group (without any modeling or medication), a model group, a CRKL low-dose group of model group model rats receiving CRKL at the dose of 3 g/kg, a CRKL medium-dose group of model rats receiving CRKL at the dose of 6 g/kg, a CRKL high-dose group of model rats receiving CRKL at the dose of 9 g/kg, a positive drug group of model rats receiving domperidone at the dose of 3 mg/kg, and a negative control (NC) group of model rats receiving normal saline. Each group contained 6 rats. Except for the normal and model groups, the remaining 5 groups were continuously administered with the respective intervention drugs at the specified doses by gavage once a day for 10 days. Changes in the total litter mass of the offspring in the 7 groups within 10 days were measured, and HE staining was performed to identify pathological changes in the mammary tissue (MT). Six groups of rats (excluding the positive control group) were used to observe the pathological changes of eosinophils in pituitary tissue. ELISA was performed to determine the content of prolactin (PRL) in serum, immunohistochemical staining was used to determine the expression of prolactin receptor (PRLR) in MT, and RT-qPCR was used to determine the mRNA expression of genes related to lactation in MT. Network pharmacology and molecular docking were used to study the therapeutic effect and mechanism of CRKL on postpartum hypogalactia, particularly whether it acted through the SFRP2-Wnt/ß-catenin signaling pathway. The mechanism of CRKL treatment was further validated by detecting mRNA (RT-qPCR) and protein expression (Western blot) of related pathway genes. Cell experiments were conducted using primary culture rat mammary epithelial cells (RMEC) from rat MT. RMEC were divided into four groups, including a normal group (primary culture RMEC, untreated), SFRP2 overexpression group (primary cultured RMEC treated with SFRP2 overexpression vector), SFRP2 overexpression+CRKL group (receiving treatment for SFRP2 overexpression group plus 10% drug-containing serum), and negative control group (primary culture RMEC treated with empty vector). The effect of CRKL on the expression of lactation-related genes FASN, CSN2, and GLUT1 mRNA after SFRP2 overexpression was detected by RT-qPCR. Results: In this study, CRKL was administered at a dose of 3 g/kg in the CRKL low-dose group, 6 g/kg in the medium-dose group, and 9 g/kg in the high-dose group (P<0.05 or P<0.01). Compared with the model group, CRKL at all doses significantly increased the total litter weight gain of the offsprings within 10 days (P<0.05 or P<0.01), and effectively increased lactation (P<0.01), the area of mammary lobules, and the size and filling of acinar cavities. CRKL at all doses also increased the number of eosinophils that secreted PRL in the pituitary gland of the postpartum hypogalactia rat model, and increased the content of PRL in the serum (P<0.05 or P<0.01). CRKL promoted the secretion and expression of PRL in postpartum hypogalactic model rats. In addition, it significantly promoted the expression of genes related to milk fat, milk protein, and lactose synthesis in MT (P<0.05 or P<0.01). Network pharmacology predicted that the Wnt signaling pathway might be a key pathway for CRKL in treating postpartum hypogalactia. The molecular docking results showed that related chemical components in CRKL had good binding ability with CCND1 and SFRP2. Compared with the model group, CRKL at all doses inhibited the expression of SFRP2 gene in vivo (P<0.01) and activated the mRNA and protein expression of CCND1 and c-Myc in the Wnt/ß-catenin signaling pathway in MT (P<0.05 or P<0.01). Cell experiments showed that, compared to the normal group, SFRP2 overexpression reduced the mRNA expression of milk synthesis-related genes FASN, CSN2, and GLUT1 in RMEC (P<0.01). The CCK8 results indicated that 10% of the drug-containing serum was the effective concentration administered to cells (P<0.01). After administering drug-containing serum, the expression of the lactation-related genes FASN, CSN2, and GLUT1 were up-regulated (compared with the SFRP2 overexpression group, P<0.01). Conclusion: CRKL alleviates postpartum hypogalactia through the SFRP2-Wnt/ß-catenin signaling pathway. SFRP2 might be a potential new target for the diagnosis and treatment of postpartum hypogalactia. This reveals a new mechanism of CRKL in treating postpartum hypogalactia and promotes its clinical application.


Assuntos
Medicamentos de Ervas Chinesas , Período Pós-Parto , Via de Sinalização Wnt , Animais , Feminino , Ratos , Via de Sinalização Wnt/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Período Pós-Parto/metabolismo , Ratos Sprague-Dawley , Gravidez , beta Catenina/metabolismo , beta Catenina/genética
6.
Sci Rep ; 14(1): 15442, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965312

RESUMO

The human intestinal tract is colonized with microorganisms, which present a diverse array of immunological challenges. A number of antimicrobial mechanisms have evolved to cope with these challenges. A key defense mechanism is the expression of inducible antimicrobial peptides (AMPs), such as beta-defensins, which rapidly inactivate microorganisms. We currently have a limited knowledge of mechanisms regulating the inducible expression of AMP genes, especially factors from the host required in these regulatory mechanisms. To identify the host factors required for expression of the beta-defensin-2 gene (HBD2) in intestinal epithelial cells upon a bacterial challenge, we performed a RNAi screen using a siRNA library spanning the whole human genome. The screening was performed in duplicate to select the strongest 79 and 110 hit genes whose silencing promoted or inhibited HBD2 expression, respectively. A set of 57 hits selected among the two groups of genes was subjected to a counter-screening and a subset was subsequently validated for its impact onto HBD2 expression. Among the 57 confirmed hits, we brought out the TLR5-MYD88 signaling pathway, but above all new signaling proteins, epigenetic regulators and transcription factors so far unrevealed in the HBD2 regulatory circuits, like the GATA6 transcription factor involved in inflammatory bowel diseases. This study represents a significant step toward unveiling the key molecular requirements to promote AMP expression in human intestinal epithelial cells, and revealing new potential targets for the development of an innovative therapeutic strategy aiming at stimulating the host AMP expression, at the era of antimicrobial resistance.


Assuntos
Células Epiteliais , Mucosa Intestinal , beta-Defensinas , Humanos , beta-Defensinas/metabolismo , beta-Defensinas/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Transdução de Sinais , Regulação da Expressão Gênica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Interferência de RNA
7.
Adv Exp Med Biol ; 1445: 101-117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38967753

RESUMO

The urinary system comprises kidneys, ureters, bladder, and urethra with its primary function being excretion, referring to the physiological process of transporting substances that are harmful or surplus out of the body. The male reproductive system consists of gonads (testis), vas deferens, and accessory glands such as the prostate. According to classical immunology theory, the tissues and organs mentioned above are not thought to produce immunoglobulins (Igs), and any Ig present in the relevant tissues under physiological and pathological conditions is believed to be derived from B cells. For instance, most renal diseases are associated with uncontrolled inflammation caused by pathogenic Ig deposited in the kidney. Generally, these pathological Igs are presumed to be produced by B cells. Recent studies have demonstrated that renal parenchymal cells can produce and secrete Igs, including IgA and IgG. Glomerular mesangial cells can express and secrete IgA, which is associated with cell survival and adhesion. Likewise, human podocytes demonstrate the ability to produce and secrete IgG, which is related to cell survival and adhesion. Furthermore, renal tubular epithelial cells also express IgG, potentially involved in the epithelial-mesenchymal transition (EMT). More significantly, renal cell carcinoma, bladder cancer, and prostate cancer have been revealed to express high levels of IgG, which promotes tumour progression. Given the widespread Ig expression in the urinary and male reproductive systems, continued efforts to elucidate the roles of Igs in renal physiological and pathological processes are necessary.


Assuntos
Imunoglobulinas , Humanos , Masculino , Imunoglobulinas/metabolismo , Imunoglobulinas/genética , Imunoglobulinas/imunologia , Sistema Urinário/imunologia , Sistema Urinário/metabolismo , Sistema Urinário/patologia , Genitália Masculina/imunologia , Genitália Masculina/metabolismo , Genitália Masculina/patologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Imunoglobulina G/imunologia , Relevância Clínica
8.
Adv Exp Med Biol ; 1445: 169-177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38967759

RESUMO

Over the past 20 years, increasing evidence has demonstrated that immunoglobulins (Igs) can be widely generated from non B cells, including normal and malignant mammary epithelial cells. In normal breast tissue, the expression of IgG and IgA has been identified in epithelial cells of mammary glands during pregnancy and lactation, which can be secreted into milk, and might participate in neonatal immunity. On the other hand, non B-IgG is highly expressed in breast cancer cells, correlating with the poor prognosis of patients with breast cancer. Importantly, a specific group of IgG, bearing a unique N-linked glycan on the Asn162 site and aberrant sialylation modification at the end of the novel glycan (referred to as sialylated IgG (SIA-IgG)), has been found in breast cancer stem/progenitor-like cells. SIA-IgG can significantly promote the capacity of migration, invasiveness, and metastasis, as well as enhance self-renewal and tumorigenicity in vitro and in vivo. These findings suggest that breast epithelial cells can produce Igs with different biological activities under physiological and pathological conditions. During lactation, these Igs could be the main source of milk Igs to protect newborns from pathogenic infections, while under pathological conditions, they display oncogenic activity and promote the occurrence and progression of breast cancer.


Assuntos
Neoplasias da Mama , Células Epiteliais , Glândulas Mamárias Humanas , Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/imunologia , Células Epiteliais/metabolismo , Animais , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Lactação/metabolismo , Gravidez , Imunoglobulina G/metabolismo , Imunoglobulina G/imunologia , Imunoglobulinas/metabolismo
9.
Mol Pharm ; 21(7): 3603-3612, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38864426

RESUMO

Understanding the internalization of nanosized particles by mucosal epithelial cells is essential in a number of areas including viral entry at mucosal surfaces, nanoplastic pollution, as well as design and development of nanotechnology-type medicines. Here, we report our comparative study on pathways of cellular internalization in epithelial Caco-2 cells cultured in vitro as either a polarized, differentiated cell layer or as nonpolarized, nondifferentiated cells. The study reveals a number of differences in the extent that endocytic processes are used by cells, depending on their differentiation status and the nature of applied nanoparticles. In polarized cells, actin-driven and dynamin-independent macropinocytosis plays a prominent role in the internalization of both positively and negatively charged nanoparticles, contrary to its modest contribution in nonpolarized cells. Clathrin-mediated cellular entry plays a prominent role in the endocytosis of positive nanoparticles and cholesterol inhibition in negative nanoparticles. However, in nonpolarized cells, dynamin-dependent endocytosis is a major pathway in the internalization of both positive and negative nanoparticles. Cholesterol depletion affects both nonpolarized and polarized cells' internalization of positive and negative nanoparticles, which, in addition to the effect of cholesterol-binding inhibitors on the internalization of negative nanoparticles, indicates the importance of membrane cholesterol in endocytosis. The data collectively provide a new contribution to understanding endocytic pathways in epithelial cells, particularly pointing to the importance of the cell differentiation stage and the nature of the cargo.


Assuntos
Diferenciação Celular , Endocitose , Células Epiteliais , Nanopartículas , Humanos , Endocitose/fisiologia , Células CACO-2 , Nanopartículas/química , Diferenciação Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Dinaminas/metabolismo , Colesterol/metabolismo , Colesterol/química , Clatrina/metabolismo
10.
Antioxidants (Basel) ; 13(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38929114

RESUMO

Idiopathic pulmonary fibrosis is a fatal interstitial lung disease for which effective drug therapies are lacking. Senegenin, an effective active compound from the traditional Chinese herb Polygala tenuifolia Willd, has been shown to have a wide range of pharmacological effects. In this study, we investigated the therapeutic effects of senegenin on pulmonary fibrosis and their associated mechanisms of action. We found that senegenin inhibited the senescence of epithelial cells and thus exerted anti-pulmonary-fibrosis effects by inhibiting oxidative stress. In addition, we found that senegenin promoted the expression of Sirt1 and Pgc-1α and that the antioxidative and antisenescent effects of senegenin were suppressed by specific silencing of the Sirt1 and Pgc-1α genes, respectively. Moreover, the senegenin-induced effects of antioxidation, antisenescence of epithelial cells, and antifibrosis were inhibited by treatment with Sirt1 inhibitors in vivo. Thus, the Sirt1/Pgc-1α pathway exerts its antifibrotic effect on lung fibrosis by mediating the antioxidative and antisenescent effects of senegenin.

11.
Medicina (Kaunas) ; 60(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38929532

RESUMO

Background and Objectives: Hepatocellular carcinoma (HCC) is a prevalent form of malignancy that is characterized by high mortality rates and prognosis that remain suboptimal, largely due to treatment resistance mechanisms. Recent studies have implicated cancer stem cells (CSCs), particularly those expressing epithelial cell adhesion molecule (EpCAM), in HCC progression and resistance. In the present study, we sought to assess EpCAM expression in HCC patients and its correlation with various clinicopathological parameters. Materials and Methods: Tissue samples from 42 HCC patients were subjected to immunohistochemical staining to evaluate EpCAM expression. Clinicopathological data were obtained including the size, grade and stage of tumors, vascular invasion status, alpha-fetoprotein levels, and cirrhosis status. The Chi square and Fisher's exact tests were employed to assess the association between categorical groups. Independent Student-t test or Mann-Whitney U test was used to investigate the association between continuous patient characteristics and survival. Results: Immunohistochemical analysis revealed EpCAM expression in 52.5% of HCC cases. EpCAM-positive tumors exhibited characteristics indicative of aggressive disease, including larger tumor sizes (p = 0.006), greater tumor multiplicity (p = 0.004), higher grades (p = 0.002), more advanced stages (p = 0.003), vascular invasion (p = 0.023), elevated alpha-fetoprotein levels (p = 0.013), and cirrhosis (p = 0.052). Survival analysis demonstrated that EpCAM expression was significantly associated with lower overall rates of survival and higher rates of recurrence in HCC patients. Conclusions: Our findings suggest that EpCAM expression may serve as a prognostic biomarker for HCC with a potential role in patient management. Targeting EpCAM-positive CSCs may represent a promising approach to overcome treatment resistance and improve clinical outcomes in HCC. However, further investigation into the molecular mechanisms underlying EpCAM's role in HCC progression is warranted to facilitate the development of personalized therapeutic interventions.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Molécula de Adesão da Célula Epitelial , Neoplasias Hepáticas , Células-Tronco Neoplásicas , Humanos , Carcinoma Hepatocelular/patologia , Molécula de Adesão da Célula Epitelial/análise , Neoplasias Hepáticas/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Biomarcadores Tumorais/análise , Idoso , Adulto , Imuno-Histoquímica , Prognóstico , alfa-Fetoproteínas/análise , alfa-Fetoproteínas/metabolismo
12.
Microorganisms ; 12(6)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38930591

RESUMO

Lacticaseibacillus rhamnosus CRL1505 possesses immunomodulatory activities in the gastrointestinal and respiratory tracts when administered orally. Its adhesion to the intestinal mucosa does not condition its beneficial effects. The intranasal administration of L. rhamnosus CRL1505 is more effective than the oral route at modulating immunity in the respiratory tract. Nonetheless, it has not yet been established whether the adherence of the CRL1505 strain to the respiratory mucosa is needed to provide the immune benefits to the host. In this study, we evaluated the role of adhesion to the respiratory mucosa of the mucus-binding factor (mbf) knock-out L. rhamnosus CRL1505 mutant (Δmbf CRL1505) in the context of a Toll-like receptor 3 (TLR3)-triggered innate immunity response. In vitro adhesion studies in porcine bronchial epitheliocytes (PBE cells) indicated that L. rhamnosus Δmbf CRL1505 adhered weakly compared to the wild-type strain. However, in vivo studies in mice demonstrated that the Δmbf CRL1505 also reduced lung damage and modulated cytokine production in the respiratory tract after the activation of TLR3 to a similar extent as the wild-type strain. In addition, the mutant and the wild-type strains modulated the production of cytokines and antiviral factors by alveolar macrophages in the same way. These results suggest that the Mbf protein is partially involved in the ability of L. rhamnosus CRL1505 to adhere to the respiratory epithelium, but the protein is not necessary for the CRL1505 strain to exert its immunomodulatory beneficial effects. These findings are a step forward in the understanding of molecular interactions that mediate the beneficial effects of nasally administered probiotics.

13.
Heliyon ; 10(11): e32579, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38912441

RESUMO

Aims: Alveolar epithelial barrier integrity is essential for lung homeostasis. Na, K-ATPase ß1 subunit (ATP1B1) involves alveolar edema fluid clearance and alveolar epithelial barrier stability. However, the underlying molecular mechanism of ATP1B1 in alveolar epithelial cells still needs to be understood. Main methods: We utilized Co-Immunoprecipitation mass spectrometry proteomic analysis, protein-protein interaction (PPI) analysis, enrichment analysis, and parallel reaction monitoring (PRM) analysis to investigate proteins interacting with ATP1B1 in A549 cells. Key findings: A total of 159 proteins were identified as significant proteins interacting with ATP1B1 in A549 cells. Ribosomal and heat shock proteins were major constituents of the two main functional modules based on the PPI network. Enrichment analysis showed that significant proteins were involved in protein translation, posttranslational processing, and function regulation. Moreover, 10 proteins of interest were verified by PRM, and fold changes in 6 proteins were consistent with proteomics results. Finally, HSP90AB1, EIF4A1, TUBB4B, HSPA8, STAT1, and PLEC were considered candidates for binding to ATP1B1 to function in alveolar epithelial cells. Significance: Our study provides new insights into the role of ATP1B1 in alveolar epithelial cells and indicates that six proteins, in particular HSP90AB1, may be key proteins interacting with and regulating ATP1B1, which might be potential targets for the treatment of acute respiratory distress syndrome.

14.
Microbiol Spectr ; : e0031124, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916312

RESUMO

Helicobacter pylori is a microaerophilic Gram-negative bacterium that resides in the human stomach and is classified as a class I carcinogen for gastric cancer. Numerous studies have demonstrated that H. pylori infection plays a role in regulating the function of host cells, thereby contributing to the malignant transformation of these cells. However, H. pylori infection is a chronic process, and short-term cellular experiments may not provide a comprehensive understanding of the in vivo situation, especially when considering the lower oxygen levels in the human stomach. In this study, we aimed to investigate the mechanisms underlying gastric cell dysfunction after prolonged exposure to H. pylori under hypoxic conditions. We conducted a co-culture experiment using the gastric cell line GES-1 and H. pylori for 30 generations under intermittent hypoxic conditions. By closely monitoring cell proliferation, migration, invasion, autophagy, and apoptosis, we revealed that sustained H. pylori stimulation under hypoxic conditions significantly influences the function of GES-1 cells. This stimulation induces epithelial-mesenchymal transition and contributes to the propensity for malignant transformation of gastric cells. To confirm the in vitro results, we conducted an experiment involving Mongolian gerbils infected with H. pylori for 85 weeks. All the results strongly suggest that the Nod1 receptor signaling pathway plays a crucial role in H. pylori-related apoptosis and autophagy. In summary, continuous stimulation by H. pylori affects the functioning of gastric cells through the Nod1 receptor signaling pathway, increasing the likelihood of cell carcinogenesis. The presence of hypoxic conditions further exacerbates this process.IMPORTANCEDeciphering the collaborative effects of Helicobacter pylori infection on gastric epithelial cell function is key to unraveling the development mechanisms of gastric cancer. Prior research has solely examined the outcomes of short-term H. pylori stimulation on gastric epithelial cells under aerobic conditions, neglecting the bacterium's nature as a microaerophilic organism that leads to cancer following prolonged stomach colonization. This study mimics a more genuine in vivo infection scenario by repeatedly exposing gastric epithelial cells to H. pylori under hypoxic conditions for up to 30 generations. The results show that chronic exposure to H. pylori in hypoxia substantially increases cell migration, invasion, and epithelial-mesenchymal transition, while suppressing autophagy and apoptosis. This highlights the significance of hypoxic conditions in intensifying the carcinogenic impact of H. pylori infection. By accurately replicating the in vivo gastric environment, this study enhances our comprehension of H. pylori's pathogenic mechanisms in gastric cancer.

15.
J Reprod Dev ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910127

RESUMO

Understanding how stress hormones induce apoptosis in oviductal epithelial cells (OECs) and mural granulosa cells (MGCs) can reveal the mechanisms by which female stress impairs embryonic development and oocyte competence. A recent study showed that tissue plasminogen activator (tPA) ameliorates corticosterone-induced apoptosis in MGCs and OECs by acting on its receptors low-density lipoprotein receptor-related protein 1 (LRP1) and Annexin A2 (ANXA2), respectively. However, whether tPA is involved in corticotropin-releasing hormone (CRH)-induced apoptosis and whether it uses the same or different receptors to inhibit apoptosis induced by different hormones in the same cell type remains unknown. This study showed that CRH triggered apoptosis in both OECs and MGCs and significantly downregulated tPA expression. Moreover, tPA inhibits CRH-induced apoptosis by acting on ANXA2 in both OECs and MGCs. While ANXA2 inhibits apoptosis via phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling, LRP1 reduces apoptosis via mitogen-activated protein kinase (MAPK) signaling. Thus, tPA used the same receptor to inhibit CRH-induced apoptosis in both OECs and MGCs, however used different receptors to inhibit corticosterone-induced apoptosis in MGCs and OECs. These data helps understand the mechanism by which female stress impairs embryo/oocyte competence and proapoptotic factors trigger apoptosis in different cell types.

16.
Front Pharmacol ; 15: 1372094, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38910888

RESUMO

Cisplatin-induced acute kidney injury (AKI) increases the patient mortality dramatically and results in an unfavorable prognosis. A strong correlation between AKI and ferroptosis, which is a notable type of programmed cell death, was found in recent studies. Myricitrin is a natural flavonoid compound with diverse pharmacological properties. To investigate the protective effect of myricitrin against cisplatin induced human tubular epithelium (HK-2) cell injury and the underlying anti-ferroptic mechanism by this study. Firstly, a pharmacology network analysis was proposed to explore the myricitrin's effect. HK-2 cells were employed for in vitro experiments. Ferroptosis was detected by cell viability, quantification of iron, malondialdehyde, glutathione, lipid peroxidation fluorescence, and glutathione peroxidase (GPX4) expression. Ferritinophagy was detected by related protein expression (NCOA4, FTH, LC3II/I, and SQSTM1). In our study, GO enrichment presented that myricitrin might be effective in eliminating ferroptosis. The phenomenon of ferroptosis regulated by ferritinophagy was observed in cisplatin-activated HK-2 cells. Meanwhile, pretreatment with myricitrin significantly rescued HK-2 cells from cell death, reduced iron overload and lipid peroxidation biomarkers, and improved GPX4 expression. In addition, myricitrin downregulated the expression of LC3II/LC3I and NCOA4 and elevated the expression of FTH and SQTM. Furthermore, myricitrin inhibited ROS production and preserved mitochondrial function with a lower percentage of green JC-1 monomers. However, the protection could be reserved by the inducer of ferritinophagy rapamycin. Mechanically, the Hub genes analysis reveals that AKT and NF-κB are indispensable mediators in the anti-ferroptic process. In conclusion, myricitrin ameliorates cisplatin induced HK-2 cells damage by attenuating ferritinophagy mediated ferroptosis.

17.
Vet Res ; 55(1): 76, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867337

RESUMO

Bovine mastitis remains a major disease in cattle world-wide. In the mammary gland, mammary epithelial cells (MEC) are sentinels equipped with receptors allowing them to detect and respond to the invasion by bacterial pathogens, in particular Escherichia coli. Lipopolysaccharide (LPS) is the major E. coli motif recognized by MEC through its interaction with the TLR4 receptor and the CD14 co-receptor. Previous studies have highlighted the role of soluble CD14 (sCD14) in the efficient recognition of LPS molecules possessing a full-length O-antigen (LPSS). We demonstrate here that MEC are able to secrete CD14 and are likely to contribute to the presence of sCD14 in milk. We then investigated how sCD14 modulates and is required for the response of MEC to LPSS. This study highlights the key role of sCD14 for the full activation of the Myd88-independent pathway by LPSS. We also identified several lncRNA that are activated in MEC in response to LPS, including one lncRNA showing homologies with the mir-99a-let-7c gene (MIR99AHG). Altogether, our results show that a full response to LPS by mammary epithelial cells requires sCD14 and provide detailed information on how milk sCD14 can contribute to an efficient recognition of LPS from coliform pathogens.


Assuntos
Células Epiteliais , Receptores de Lipopolissacarídeos , Lipopolissacarídeos , Glândulas Mamárias Animais , Animais , Receptores de Lipopolissacarídeos/metabolismo , Receptores de Lipopolissacarídeos/genética , Bovinos , Células Epiteliais/metabolismo , Lipopolissacarídeos/farmacologia , Feminino , Glândulas Mamárias Animais/metabolismo , Mastite Bovina/microbiologia , Mastite Bovina/imunologia , Mastite Bovina/metabolismo , Leite
18.
Sci Rep ; 14(1): 14558, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914666

RESUMO

Plants offer a cost-effective and scalable pharmaceutical platform devoid of host-derived contamination risks. However, their medical application is complicated by the potential for acute allergic reactions to external proteins. Developing plant-based protein therapeutics for localized diseases with non-invasive treatment modalities may capitalize on the benefits of plant proteins while avoiding their inherent risks. Dupilumab, which is effective against a variety of allergic and autoimmune diseases but has systemic responses and injection-related side effects, may be more beneficial if delivered locally using a small biological form. In this study, we engineered a single-chain variable fragment (scFv) of dupilumab, termed Dup-scFv produced by Nicotiana benthamiana, and evaluated its tissue permeability and anti-inflammatory efficacy in air-liquid interface cultured human nasal epithelial cells (HNECs). Despite showing 3.67- and 17-fold lower binding affinity for IL-4Ra in surface plasmon resonance assays and cell binding assays, respectively, Dup-scFv retained most of the affinity of dupilumab, which was originally high, with a dissociation constant (KD) of 4.76 pM. In HNECs cultured at the air-liquid interface, Dup-scFv administered on the air side inhibited the inflammatory marker CCL26 in hard-to-reach basal cells more effectively than dupilumab. In addition, Dup-scFv had an overall permeability of 0.8% across cell layers compared to undetectable levels of dupilumab. These findings suggest that plant-produced Dup-scFv can be delivered non-invasively to cultured HNESc to alleviate inflammatory signaling, providing a practical approach to utilize plant-based proteins for topical therapeutic applications.


Assuntos
Anticorpos Monoclonais Humanizados , Células Epiteliais , Nicotiana , Anticorpos de Cadeia Única , Humanos , Nicotiana/metabolismo , Anticorpos Monoclonais Humanizados/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Anticorpos de Cadeia Única/farmacologia , Anticorpos de Cadeia Única/genética , Quimiocinas CC/metabolismo , Subunidade alfa de Receptor de Interleucina-4/metabolismo , Células Cultivadas , Mucosa Nasal/metabolismo , Mucosa Nasal/citologia , Mucosa Nasal/imunologia
19.
Redox Biol ; 74: 103224, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38865904

RESUMO

BACKGROUND: Silicosis, characterized by interstitial lung inflammation and fibrosis, poses a significant health threat. ATII cells play a crucial role in alveolar epithelial repair and structural integrity maintenance. Inhibiting ATII cell senescence has shown promise in silicosis treatment. However, the mechanism behind silica-induced senescence remains elusive. METHODS: The study employed male C57BL/6 N mice and A549 human alveolar epithelial cells to investigate silicosis and its potential treatment. Silicosis was induced in mice via intratracheal instillation of crystalline silica particles, with honokiol administered intraperitoneally for 14 days. Silica-induced senescence in A549 cells was confirmed, and SIRT3 knockout and overexpression cell lines were generated. Various analyses were conducted, including immunoblotting, qRT-PCR, histology, and transmission electron microscopy. Statistical significance was determined using one-way ANOVA with Tukey's post-hoc test. RESULTS: This study elucidates how silica induces ATII cell senescence, emphasizing mtDNA damage. Notably, honokiol (HKL) emerges as a promising anti-senescence and anti-fibrosis agent, acting through sirt3. honokiol effectively attenuated senescence in ATII cells, dependent on sirt3 expression, while mitigating mtDNA damage. Sirt3, a class III histone deacetylase, regulates senescence and mitochondrial stress. HKL activates sirt3, protecting against pulmonary fibrosis and mitochondrial damage. Additionally, HKL downregulated cGAS expression in senescent ATII cells induced by silica, suggesting sirt3's role as an upstream regulator of the cGAS/STING signaling pathway. Moreover, honokiol treatment inhibited the activation of the NF-κB signaling pathway, associated with reduced oxidative stress and mtDNA damage. Notably, HKL enhanced the activity of SOD2, crucial for mitochondrial function, through sirt3-mediated deacetylation. Additionally, HKL promoted the deacetylation activity of sirt3, further safeguarding mtDNA integrity. CONCLUSIONS: This study uncovers a natural compound, HKL, with significant anti-fibrotic properties through activating sirt3, shedding light on silicosis pathogenesis and treatment avenues.


Assuntos
Células Epiteliais Alveolares , Compostos de Bifenilo , Senescência Celular , Lignanas , Transdução de Sinais , Silicose , Sirtuína 3 , Animais , Silicose/metabolismo , Silicose/tratamento farmacológico , Silicose/patologia , Silicose/etiologia , Sirtuína 3/metabolismo , Sirtuína 3/genética , Senescência Celular/efeitos dos fármacos , Camundongos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Humanos , Lignanas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Masculino , Células A549 , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Modelos Animais de Doenças , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Dano ao DNA/efeitos dos fármacos , Compostos Alílicos , Fenóis
20.
Endocrinology ; 165(7)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38916490

RESUMO

The epithelial cell lining of the oviduct plays an important role in oocyte pickup, sperm migration, preimplantation embryo development, and embryo transport. The oviduct epithelial cell layer comprises ciliated and nonciliated secretory cells. The ciliary function has been shown to support gamete and embryo movement in the oviduct, yet secretory cell function has not been well characterized. Therefore, our goal was to generate a secretory cell-specific Cre recombinase mouse model to study the role of the oviductal secretory cells. A knock-in mouse model, Ovgp1Cre:eGFP, was created by expressing Cre from the endogenous Ovgp1 (oviductal glycoprotein 1) locus, with enhanced green fluorescent protein (eGFP) as a reporter. EGFP signals were strongly detected in the secretory epithelial cells of the oviducts at estrus in adult Ovgp1Cre:eGFP mice. Signals were also detected in the ovarian stroma, uterine stroma, vaginal epithelial cells, epididymal epithelial cells, and elongated spermatids. To validate recombinase activity, progesterone receptor (PGR) expression was ablated using the Ovgp1Cre:eGFP; Pgrf/f mouse model. Surprisingly, the deletion was restricted to the epithelial cells of the uterotubal junction (UTJ) region of Ovgp1Cre:eGFP; Pgrf/f oviducts. Deletion of Pgr in the epithelial cells of the UTJ region had no effect on female fecundity. In summary, we found that eGFP signals were likely specific to secretory epithelial cells in all regions of the oviduct. However, due to a potential target-specific Cre activity, validation of appropriate recombination and expression of the gene(s) of interest is absolutely required to confirm efficient deletion when generating conditional knockout mice using the Ovgp1Cre:eGFP line.


Assuntos
Células Epiteliais , Glicoproteínas , Integrases , Animais , Feminino , Camundongos , Células Epiteliais/metabolismo , Integrases/metabolismo , Integrases/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Masculino , Oviductos/metabolismo , Oviductos/citologia , Camundongos Transgênicos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Tubas Uterinas/metabolismo , Tubas Uterinas/citologia , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...