Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.942
Filtrar
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 568-576, jul. 2024. ilus
Artigo em Espanhol | LILACS | ID: biblio-1538065

RESUMO

This study aimed to determine the repellent and insecticidal activity of four essential oils (EOs) from plants collected in the Chocó rain forest, Colombia, against T. castaneum . Conventional hydrodistillation was used to obtain the EOs. The repellent and insecticidal activities were evaluated by the preference area and gas dispersion methods, espectively. Statistical differences (p<0.05) were determined by applying a student's t-test. EOs of Siparuna guianensis, S. conica, Piper marginatum, and Nectandra acutifolia showed excellent repellent properties as the main findings, highlighting S. conicaEO with 84% repellency (1-hµL/cm2), while P. marginatum showed to be bioactive to the dose of 500 µL/mL (72 h), inducing mortality of 100% of the exposed population. In conclusion, the results evidenced the repellent properties of the EOs evaluated against T. castaneum , which allows us to conclude that these plant species are potential natural sources producing bio-repellents that contribute to the integrated control of T. castaneum.


Se evaluaron cuatro aceites esenciales (AEs) de plantas recolectadas en la selva pluvial del Chocó, Colombia, para determinar su actividad repelente e insecticida contra T. castaneum. Los AEs fueron obtenidos por hidrodestilación convencional. Las actividades repelentes e insecticidas se evaluaron por los métodos de área de preferencia y dispersión de gas, respectivamente. Las diferencias significativas (p<0,05) fueron determinadas aplicando una prueba t de student. Los AEs de Siparuna guianensis, S. conica, Piper marginatum y Nectandra acutifolia mostraron excelentes propiedades repelentes, destacando el AE de S. conicacon un 84% de repelencia (1µL/cm2), mientras que el AE de P. marginatummostró ser bioactivo a la dosis de 500 µL/mL (72 h) al inducir la mortalidad del 100% de la población expuesta. Se concluye que estas especies de plantas son fuentes naturales potencialmente viables para la producción de biorepelentes que contribuyan en el control integrado de T. castaneum.


Assuntos
Tribolium/efeitos dos fármacos , Óleos Voláteis/farmacologia , Inseticidas/farmacologia , Colômbia , Repelentes de Insetos/farmacologia
2.
Life (Basel) ; 14(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38929677

RESUMO

In recent years, a significant number of infections have been attributed to non-albicidal Candida species (NAC), mainly due to the increasing resistance of NAC to antifungal agents. As only a few antifungal agents are available (azoles, echinocandins, polyenes, allylamines and nucleoside analogues), it is very important to look for possible alternatives to inhibit resistant fungi. One possibility could be essential oils (EOs), which have been shown to have significant antifungal and antibacterial activity. Therefore, in this study, the efficacy of 12 EOs and their combinations was evaluated against four yeasts of the genus Candida (C. albicas, C. glabrata, C. tropicalis and C. parapsilosis). GC-MS and GC-MS FID techniques were used for the chemical analysis of all EOs. VITEK-2XL was used to determine the antifungal susceptibility of the tested Candida spp. strains. The agar disc diffusion method was used for primary screening of the efficacy of the tested EOs. The broth dilution method was used to determine the minimum inhibitory concentrations (MICs) of the most potent EOs. After MIC cultivation, the minimum fungicidal concentration (MFC) was determined on Petri dishes (60 mm). The synergistic effect of combined EOs was evaluated using the checkerboard method and expressed as a fractional inhibitory concentration index (FICI). The results showed that ginger > ho-sho > absinth > dill > fennel > star anise > and cardamom were the most effective EOs. For all Candida species tested, the synergy was mainly observed in these combinations: ginger/fennel for C. albicans FICI 0.25 and C. glabrata, C. tropicalis and C. parapsilosis FICI 0.5 and absinth/fennel for C. albicans FICI 0.3125, C. tropicalis FICI 0.3125 and C. parapsilosis FICI 0.375. Our results suggest that the resistance of fungal pathogens to available antifungals could be reduced by combining appropriate EOs.

3.
Microorganisms ; 12(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38930437

RESUMO

Resistance of microorganisms to antibiotics represents a formidable global challenge, manifesting in intricate public health ramifications including escalated mortality rates and augmented healthcare costs. The current efforts to manage antimicrobial resistance (AMR) are limited mainly to the standard therapeutic approaches. The aim of this study is to present and analyze the role of artificial intelligence (AI) in the search for new phyto-compounds and novel interactions with antimicrobial effects. The ambition of the current research study is to support researchers by providing summarized information and ideas for future research in the battle with AMR. Inevitably, the AI role in healthcare is growing exponentially. The reviewed AI models reveal new data on essential oils (EOs) as potential therapeutic agents. In terms of antibacterial activity, EOs show activity against MDR bacteria, reduce resistance by sensitizing bacteria to the action of antibiotics, and improve therapeutic efficiency when combined with antibiotics. AI models can also serve for the detailed study of other therapeutic applications of EOs such as respiratory diseases, immune diseases, neurodegenerative diseases, and oncological diseases. The last 5 years have seen an increasing application of AI in the search for potential plant sources to control AMR. For the time being, the application of machine-learning (ML) models is greater in the studies of EOs. Future attention of research teams may also be directed toward a more efficient search for plant antimicrobial peptides (PAMPs). Of course, investments in this direction are a necessary preface, but the excitement of new possibilities should not override the role of human intelligence in directing research processes. In this report, tradition meets innovation to address the "silent pandemic" of AMR.

4.
Molecules ; 29(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38930872

RESUMO

This study is the first to investigate the chemical composition and antioxidant, anti-inflammatory, and cytotoxic activities of Peperomia leptostachya leaf oil. A yellow oil was obtained through hydro-distillation, with a yield of 0.1% (w/w). The GC-MS analysis revealed 66 compounds, constituting 99.6% of the oil. Sesquiterpene hydrocarbons predominated (70.4%), followed by monoterpene hydrocarbons (13.2%), oxygenated sesquiterpenes (12.4%), non-terpenic compounds (2.0%), and oxygenated monoterpenes (1.6%). Major constituents included germacrene D (25.1%), (E)-caryophyllene (17.4%), bicyclogermacrene (6.6%), α-pinene (6.2%), and ß-pinene (4.7%). The assessment of antioxidant capacity via 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay yielded a weak effect, with an IC50 value > 100 µg/mL. The inhibition of lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells was quantified using the MTT assay, showing an IC50 value of 15.15 ± 0.68 µg/mL. Furthermore, cytotoxic effects on SK-LU-1 cell line growth were evaluated using the sulforhodamine B assay, resulting in an IC50 value of 37.45 ± 2.43 µg/mL. The anti-inflammatory activity was notable among the analyzed bioactivities of this oil. By employing a computational model, the predominant secondary metabolites in the essential oil were selected as candidates for interaction analysis with cyclooxygenase-2, an enzyme implicated in the inflammatory response. Our findings suggest that P. leptostachya leaf oil could serve as a potential source of natural compounds with prospective therapeutic effects in treating inflammatory conditions.


Assuntos
Anti-Inflamatórios , Antioxidantes , Óleos Voláteis , Peperomia , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Antioxidantes/farmacologia , Antioxidantes/química , Camundongos , Animais , Células RAW 264.7 , Peperomia/química , Óxido Nítrico/metabolismo , Folhas de Planta/química , Cromatografia Gasosa-Espectrometria de Massas , Simulação por Computador , População do Sudeste Asiático
5.
Plants (Basel) ; 13(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38931050

RESUMO

Harlequin bug (Murgantia histrionica) poses a significant threat to cruciferous vegetable crops, leading to economic losses and challenges in sustainable agriculture. This 2-year field study evaluated the efficacy of exclusion netting and selected biopesticides in controlling harlequin bug populations in a field-grown broccoli crop. Treatments included an untreated control, industry standards Azera and Entrust, and ProtekNet mesh netting. Additionally, three commercial essential oil treatments including Essentria IC-3, Nature-Cide, and Zero Tolerance were tested along with two bokashi fermented composting products BrewKashi and Oriental Herbal Nutrient (OHN). During both the first and second year of the study, none of the commercially produced essential oil products or bokashi products were effective in controlling harlequin bug or preventing leaf scars. Conversely, ProtekNet consistently provided the highest level of protection against harlequin bugs of all stages as well as leaf damage scars; it also provided the largest broccoli head width and highest yield. Entrust showed similar results compared to ProtekNet, both with the control of harlequin bug life stages and with leaf scars. These findings indicate that both ProtekNet and Entrust are effective organic alternatives for managing harlequin bug on broccoli, while the selected essential oil and bokashi products do not appear to be effective.

6.
Plants (Basel) ; 13(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38931115

RESUMO

According to modern concepts, the genus Hyssopus L. includes seven plant species (Hyssopus ambiguus (Trautv.) Iljin ex Prochorov. & Lebel; Hyssopus cuspidatus Boriss; Hyssopus latilabiatus C.Y.Wu & H.W. Li; Hyssopus macranthus Boriss.; Hyssopus officinalis L.; Hyssopus seravschanicus (Dubj.) Pazij; Hyssopus subulifolius (Rech.f.) Rech.f.). The plants are rich in various groups of biologically active substances with a wide spectrum of pharmacological action. This review presents a modern comprehensive overview of the botanical research, extraction methods, chemical composition and pharmacological activity of plants of the genus Hyssopus L. As a result of the review, it was established that the chemical composition of plant extracts of the genus Hyssopus L. depends on various factors (place of growth, weather conditions, chemotypes, extraction methods, etc.). For the further use of the plants, the extraction methods and low-molecular metabolites isolated from them (mono- and sesquiterpenoids, flavonoids, alkaloids, etc.) are discussed. The data from the review provide an assessment of the relevance.

7.
Polymers (Basel) ; 16(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38932017

RESUMO

With respect to other fields, bone tissue engineering has significantly expanded in recent years, leading not only to relevant advances in biomedical applications but also to innovative perspectives. Polycaprolactone (PCL), produced in the beginning of the 1930s, is a biocompatible and biodegradable polymer. Due to its mechanical and physicochemical features, as well as being easily shapeable, PCL-based constructs can be produced with different shapes and degradation kinetics. Moreover, due to various development processes, PCL can be made as 3D scaffolds or fibres for bone tissue regeneration applications. This outstanding biopolymer is versatile because it can be modified by adding agents with antimicrobial properties, not only antibiotics/antifungals, but also metal ions or natural compounds. In addition, to ameliorate its osteoproliferative features, it can be blended with calcium phosphates. This review is an overview of the current state of our recent investigation into PCL modifications designed to impair microbial adhesive capability and, in parallel, to allow eukaryotic cell viability and integration, in comparison with previous reviews and excellent research papers. Our recent results demonstrated that the developed 3D constructs had a high interconnected porosity, and the addition of biphasic calcium phosphate improved human cell attachment and proliferation. The incorporation of alternative antimicrobials-for instance, silver and essential oils-at tuneable concentrations counteracted microbial growth and biofilm formation, without affecting eukaryotic cells' viability. Notably, this challenging research area needs the multidisciplinary work of material scientists, biologists, and orthopaedic surgeons to determine the most suitable modifications on biomaterials to design favourable 3D scaffolds based on PCL for the targeted healing of damaged bone tissue.

8.
Foods ; 13(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928796

RESUMO

Over the years, consumer awareness of proper, healthy eating has increased significantly, but the consumption of fruits and vegetables remains too low. Smoothie drinks offer a convenient way to supplement daily diets with servings of fruits and vegetables. These ready-to-eat beverages retain the nutritional benefits of the raw ingredients from which they are made. Furthermore, they cater to the growing demand for quick and nutritious meal options. To meet consumer expectations, current trends in the food market are shifting towards natural, high-quality products with minimal processing and extended shelf life. Food manufacturers are increasingly aiming to reduce or eliminate synthetic preservatives, replacing them with plant-based alternatives. Plant-based preservatives are particularly appealing to consumers, who often view them as natural and organic substitutes for conventional preservatives. Essential oils, known for their antibacterial and antifungal properties, are effective against the microorganisms and fungi present in fruit and vegetable smoothies. However, the strong taste and aroma of essential oils can be a significant drawback, as the concentrations needed for microbiological stability are often unpalatable to consumers. Encapsulation of essential oils in nanoemulsions offers a promising and effective solution to these challenges, allowing for their use in food production without compromising sensory qualities.

9.
Foods ; 13(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928866

RESUMO

Filamentous fungi exhibit remarkable adaptability to diverse substrates and can synthesize a plethora of secondary metabolites. These metabolites, produced in response to environmental stimuli, not only confer selective advantages but also encompass potentially deleterious mycotoxins. Mycotoxins, exemplified by those originating from Alternaria, Aspergillus, Penicillium, and Fusarium species, represent challenging hazards to both human and animal health, thus warranting stringent regulatory control. Despite regulatory frameworks, mycotoxin contamination remains a pressing global challenge, particularly within cereal-based matrices and their derived by-products, integral components of animal diets. Strategies aimed at mitigating mycotoxin contamination encompass multifaceted approaches, including biological control modalities, detoxification procedures, and innovative interventions like essential oils. However, hurdles persist, underscoring the imperative for innovative interventions. This review elucidated the prevalence, health ramifications, regulatory paradigms, and evolving preventive strategies about two prominent mycotoxins, aflatoxins and ochratoxin A. Furthermore, it explored the emergence of new fungal species, and biocontrol methods using lactic acid bacteria and essential mustard oil, emphasizing their efficacy in mitigating fungal spoilage and mycotoxin production. Through an integrative examination of these facets, this review endeavored to furnish a comprehensive understanding of the multifaceted challenges posed by mycotoxin contamination and the emergent strategies poised to ameliorate its impact on food and feed safety.

10.
Nat Prod Res ; : 1-12, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832668

RESUMO

Mangifera indica L. (Mango), native of tropical Asia, has enormous genetic diversity. Comparative phytochemical analysis of leaves of five varieties of Mangifera indica viz. Dashahri, Chausa, Langra, Lucknow Safeda and Gola grown in North India was carried out. Mangiferin content (using HPLC) was found to vary from 0.96 g to 3.00 g per 100 g of dry leaves. Essential oil composition (through GC-MS) showed the major components of all the five varieties to be caryophyllene (4.14-46.26%), humulene (3.19-30.45%), caryophyllene oxide (2.98-17.23%) and humulene epoxide 2 (1.56-4.73%). Results indicated that there was a direct relationship between total phenolic and flavonoid contents and DPPH radical scavenging activities. Our studies indicate that M. indica leaves, which are a form of biomass waste, could be used as an economical and renewable source of antidiabetic compound mangiferin as well as other biologically active phytoconstituents having nutraceutical as well as pharmaceutical applications.

11.
J Inflamm Res ; 17: 3527-3549, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38836243

RESUMO

Ulcerative colitis (UC) is a chronic non-sp ecific inflammatory disease of the colorectal mucosa. Researchers have associated UC onset with familial genetics, lifestyle behavior, inflammatory immune factors, intestinal microbiota, and the integrity of the intestinal mucosal barrier. The primary therapeutic interventions for UC consist of pharmacological management to control inflammation and promote mucosal healing and surgical interventions. The available drugs effectively control and decelerate the progression of UC in most patients; nonetheless, their long-term administration can exert adverse effects and influence the therapeutic effect. Plant essential oils (EOs) refer to a group of hydrophobic aromatic volatile substances. EOs have garnered considerable attention in both domestic and international research because of their anti-inflammatory, antibacterial, and antioxidant properties. They include peppermint, peppercorns, rosemary, and lavender, among others. Researchers have investigated the role of EOs in medicine and have elucidated their potential to mitigate the detrimental effects of UC through their anti-inflammatory, antioxidant, antidepressant, and anti-insomnia properties as well as their ability to regulate the intestinal flora. Furthermore, EOs exert minimal toxic adverse effects, further enhancing their appeal for therapeutic applications. However, these speculations are based on theoretical experiments, thereby warranting more clinical studies to confirm their effectiveness and safety. In this article, we aim to provide an overview of the advancements in utilizing natural medicine EOs for UC prevention and treatment. We will explore the potential pathogenesis of UC and examine the role of EOs therapy in basic research, quality stability, and management specification of inadequate EOs for UC treatment. We intend to offer novel insights into the use of EOs in UC prevention and management.

12.
Front Plant Sci ; 15: 1375495, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841281

RESUMO

Introduction: Pear decline (PD) is one of the most devastating diseases of Pyrus communis in Europe and North America. It is caused by the pathogen 'Candidatus Phytoplasma pyri' and transmitted by pear psyllids (Cacopsylla pyri, C. pyricola, and C. pyrisuga). Identifying attractant and repellent volatile organic compounds (VOCs) could improve the development of alternative plant protection measurements like push-pull or attract-and-kill strategies against pear psyllids. Our objective was to investigate which chemical cues of the host plant could influence the host-seeking behavior of pear psyllids, and if cedarwood (CWO) and cinnamon bark (CBO) essential oils could serve as repellents. Results and discussion: Based on the literature, the five most abundant VOCs from pear plants elicited EAG responses in both C. pyri and C. pyrisuga psyllid species. In Y-olfactometer trials, single compounds were not attractive to C. pyri. However, the main compound mixture was attractive to C. pyri and C. pyrisuga females. CWO and CBO were repellent against C. pyri, and when formulated into nanofibers (NF), both were repellent in olfactometer trials. However, CBO nanoformulation was ineffective in masking the odors of pear plants. In a field trial, attractive, repellent CWO and blank formulated NF were inserted in attractive green sticky traps. C. pyri captures in traps with CWO NF were statistically lower than in traps with the attractive mixture. Nevertheless, no statistical differences in the numbers of caught specimens were observed between CWO NF and those captured in green traps baited with blank NF. Transparent traps captured fewer psyllids than green ones. In a second field study with a completed different design (push-and-count design), dispensers filled with CBO were distributed within the plantation, and attractive green sticky traps were placed around the plantation. The numbers of trapped pear psyllids increased significantly in the border of the treated plantation, showing that psyllids were repelled by the EOs in the plantation. Although further field evaluation is needed to assess and improve their effectiveness, our results show that these aromatic compounds, repellent or attractive both in nanoformulations and marking pen dispensers, offer great potential as an environmentally sustainable alternative to currently applied methods for managing pear decline vectors.

13.
BMC Plant Biol ; 24(1): 512, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849727

RESUMO

BACKGROUND: This study investigates a novel idea about the foliar application of nanoparticles as nanofertilizer combined with a natural stimulant, blue-green algae Spirulina platensis L. extract, as a bio-fertilizer to achieve safety from using nanoparticles for enhancement of the growth and production of the plant. Thus, this experiment aimed to chemically synthesize copper nanoparticles via copper sulfate in addition to evaluate the impact of CuNPs at 500, 1000, and 1500 mg/L and the combination of CuNPs with or without microalgae extract at 0.5, 1, and 1.5 g/L on the morphological parameters, photosynthetic pigments accumulation, essential oil production, and antioxidant activity of French basil. RESULTS: The results revealed that foliar application of CuNPs and its interaction with spirulina extract significantly increased growth and yield compared with control, the treatments of 1000 and 1500 mg/L had less impact than 500 mg/L CuNPs. Plants treated with 500 mg/L CuNPs and 1.5 g/L spirulina extract showed the best growth and oil production, as well as the highest accumulation of chlorophylls and carotenoids. The application of CuNPs nanofertilizer caused a significant increase in the antioxidant activity of the French basil plant, but the combination of CuNPs with spirulina extract caused a decrease in antioxidant activity. CONCULOSION: Therefore, foliar application of natural bio-fertilizer with CuNPsis necessary for obtaining the best growth and highest oil production from the French basil plant with the least damage to the plant and the environment.


Assuntos
Cobre , Nanopartículas Metálicas , Ocimum basilicum , Spirulina , Spirulina/metabolismo , Spirulina/efeitos dos fármacos , Spirulina/crescimento & desenvolvimento , Ocimum basilicum/efeitos dos fármacos , Ocimum basilicum/crescimento & desenvolvimento , Ocimum basilicum/metabolismo , Antioxidantes/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Fertilizantes , Clorofila/metabolismo , Fotossíntese/efeitos dos fármacos , Óleos Voláteis/farmacologia
14.
Front Pharmacol ; 15: 1400105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38831882

RESUMO

Candida albicans: (C. albicans) is a prevalent opportunistic pathogen that can cause severe mucosal and systemic fungal infections, leading to high morbidity and mortality rates. Traditional chemical drug treatments for C. albicans infection have limitations, including the potential for the development of drug resistance. Essential oils, which are secondary metabolites extracted from plants, have gained significant attention due to their antibacterial activity and intestinal regulatory effects. It makes them an ideal focus for eco-friendly antifungal research. This review was aimed to comprehensively evaluate the research progress, mechanisms, and clinical application prospects of essential oils in treating C. albicans infections through their antibacterial and intestinal regulatory effects. We delve into how essential oils exert antibacterial effects against C. albicans infections through these effects and provide a comprehensive analysis of related experimental studies and clinical trials. Additionally, we offer insights into the future application prospects of essential oils in antifungal therapy, aiming to provide new ideas and methods for the development of safer and more effective antifungal drugs. Through a systematic literature review and data analysis, we hope to provide insights supporting the application of essential oils in antifungal therapy while also contributing to the research and development of natural medicines. In the face of increasingly severe fungal infections, essential oils might emerge as a potent method in our arsenal, aiding in the effective protection of human and animal health.

15.
Parasites Hosts Dis ; 62(2): 217-225, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38835262

RESUMO

This study evaluated the potential repellent and acaricidal effects of 4 essential oils (clove, eucalyptus, lavender, and mint) against the Asian longhorned tick Haemaphysalis longicornis, a vector of various tick-borne diseases in medical and veterinary contexts. Selected for their potential repellent and acaricidal properties, the 4 essential oils were tested on adult and nymph H. longicornis ticks at different concentrations. The experiment assessed mortality rates and repellency, particularly during tick attachment to host skin. There was a significant increase (p<0.05) in tick mortality and repellency scores across all groups. At a 1% concentration, adult tick mortality ranged from 36% to 86%, while nymph mortality ranged from 6% to 97%. Clove oil exhibited notable efficacy, demonstrating high mortality rates of nymphs and adults. Clove oil also displayed strong repellency properties, with a repellency index of 0.05, surpassing those of mint, eucalyptus, and lavender oils. Clove oil showed the highest effectiveness in deterring nonattached adult ticks (90%) and nymphs (95%) when applied to skin. Clove oil was the most effective against adult and nymph ticks, achieving mortality rates of 86% and 97%, respectively, and led to the highest nonattachment rates when applied to skin. In conclusion, essential oils such as clove, eucalyptus, lavender, and mint oils present promising results for tick population control.


Assuntos
Acaricidas , Ixodidae , Óleos Voláteis , Animais , Óleos Voláteis/farmacologia , Ixodidae/efeitos dos fármacos , Acaricidas/farmacologia , Ninfa/efeitos dos fármacos , Repelentes de Insetos/farmacologia , Óleos de Plantas/farmacologia , Feminino , Eucalyptus/química , Óleo de Cravo/farmacologia , Lavandula , Haemaphysalis longicornis
16.
BMC Microbiol ; 24(1): 209, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877423

RESUMO

Fungi can spoil the majority of baked products. Spoilage of cake during storage is commonly associated with fungi. Therefore, this study aimed to assess the quality of different types of cakes sold in the market. The most predominant fungal genera in the tested cake samples (14 samples) were Aspergillus spp., and Penicillium spp. On Potato Dextrose Agar (PDA), the medium fungal total count was 43.3 colonies /g. Aspergillus was the most dominant genus and was isolated from six samples of cake. Aspergillus was represented by 3 species namely, A. flavus, A. niger, and A. nidulans, represented by 13.32, 19.99, and 3.33 colonies /g respectively. On Malt Extract Agar (MEA) Medium, the fungal total count was 123.24 colonies / g. Aspergillus was the most dominant isolated genus from 11 samples of cake and was represented by 5 species, namely, A. flavus, A. niger, A. ochraceous, A. terreus, and A. versicolor (26. 65, 63.29, 3.33, 6.66, and 3.33 colonies / g , respectively). Twenty-four isolates (88.88 %) of the total tested twenty-seven filamentous fungi showed positive results for amylase production. Ten isolates (37.03%) of the total tested filamentous fungi showed positive results for lipase production, and finally eleven isolates (40.74 %) of the total fungal isolates showed positive results for protease production. Aflatoxins B1, B2, G1, G2, and ochratoxin A were not detected in fourteen collected samples of cake. In this study, clove oil was the best choice overpeppermint oil and olive oil for preventing mold development when natural agents were compared. It might be due to the presence of a varietyof bioactive chemical compounds in clove oil, whose major bioactive component is eugenol, which acts as an antifungal reagent. Therefore, freshly baked cake should be consumed within afew days to avoid individuals experiencing foodborne illnesses.


Assuntos
Microbiologia de Alimentos , Fungos , Micotoxinas , Fungos/isolamento & purificação , Fungos/classificação , Fungos/enzimologia , Fungos/genética , Micotoxinas/análise , Aspergillus/isolamento & purificação , Aspergillus/enzimologia , Penicillium/isolamento & purificação , Penicillium/enzimologia , Contaminação de Alimentos/análise , Aflatoxinas/análise , Lipase/metabolismo , Amilases/metabolismo , Amilases/análise
17.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892045

RESUMO

This study aimed to evaluate the effects of essential oils (EOs) extracted from Cannabis sativa L. and Cannabis indica Lam. on in vitro ruminal fermentation characteristics, selected rumen microbial populations, and methane production. GC-MS analyses allowed us to identify 89 compounds in both EOs. It was found that E-ß-caryophyllene predominated in C. sativa (18.4%) and C. indica (24.1%). An in vitro (Ankom) test was performed to analyse the control and monensin groups, as well as the 50 µL or 100 µL EOs. The samples for volatile fatty acids (VFAs), lactate, and microbiological analysis were taken before incubation and after 6 and 24 h. The application of EOs of C. indica resulted in an increase in the total VFAs of acetate and propionate after 6 h of incubation. The applied EOs had a greater impact on the reduction in methane production after 6 h, but no apparent effect was noted after 24 h. Lower concentrations of C. sativa and C. indica had a more pronounced effect on Lactobacillus spp. and Buryrivibrio spp. than monensin. The presented findings suggest that C. sativa and C. indica supplementation can modify ruminal fermentation, the concentrations of specific volatile fatty acids, and methane production.


Assuntos
Cannabis , Ácidos Graxos Voláteis , Fermentação , Metano , Óleos Voláteis , Rúmen , Rúmen/microbiologia , Rúmen/metabolismo , Óleos Voláteis/farmacologia , Metano/metabolismo , Metano/biossíntese , Animais , Cannabis/química , Cannabis/metabolismo , Ácidos Graxos Voláteis/metabolismo , Bactérias/metabolismo , Bactérias/efeitos dos fármacos
18.
Food Chem ; 457: 140167, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909451

RESUMO

Essential oils, well-known for their antifungal properties, are widely utilized to combat fruit decay. However, their application faces big challenges due to their high volatility and hydrophobic traits, which leads to strong odor, short effective time and poor dispersivity. This study aimed to address these challenges by formulating microemulsions consisting of essential oils and rhamnolipids. The optimized microemulsion, featuring a small particle size of 6.8 nm, exhibited higher stability and lower volatility than conventional emulsion. Notably, the prepared microemulsions demonstrated remarkable antimicrobial efficacy against E. coli, S. aureus, C. albicans, S. cerevisiae, and A. niger. The application of these microemulsions proved to be highly effective in preventing blueberry decay while preserving fruit's quality, particularly by minimizing the loss of essential nutrients such as anthocyanins. Consequently, essential oil microemulsions emerge as a highly effective postharvest preservative for fruits, offering a promising solution to extend their shelf life and enhance overall quality.

19.
Int J Biol Macromol ; 273(Pt 1): 133031, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866283

RESUMO

This research focuses on the challenges of efficiently constructing drug carriers and evaluating their dynamic release in vitro simulation. By using pickering emulsion and layer-by-layer self-assembly methods. The microcapsules had tea tree oil as the core material, SiO2 nanoparticles as stabilizers, and chitosan and hyaluronic acid as shell materials. The microencapsulation mechanism, as well as the effects of core-shell mass ratio and stirring, were discussed. Specifically, a dynamic circulation simulation microchannel system was designed and manufactured based on 3D printing technology. In this simulation system, the release rate of microcapsules is accelerated and the trend changes, with its behavior aligning with the Boltzmann model. The study demonstrates the advantages of self-assembled inorganic-organic drug-loaded microcapsules in terms of controllable fabrication and ease of functional modification, and shows the potential of 3D printed cyclic microchannel systems in terms of operability and simulation fidelity in drug and physiological analysis.

20.
Nat Prod Res ; : 1-10, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824663

RESUMO

Plants have gained great importance. Secondary metabolites contribute to the drug discovery and development by their bioactive properties. Rubia tinctorum L. essential oil (EO) was obtained and analysed. Antioxidant and antibacterial activities were evaluated. The plant's EOs were obtained through steam distillation, and the compounds were identified using gas chromatography-mass spectrometry (GC-MS) analysis. DPPH free radical scavenging and ferric-reducing antioxidant power (FRAP) were employed to assess antioxidant activity. Total antioxidant capacity (TAC) was also presented. The disc diffusion method was employed for testing antibacterial activity. Cyclohexanone was identified as the predominant component in the EO, constituting 88.74% of the total composition. The EO did not show significant antioxidant capacity, while it demonstrated antimicrobial effect against Bacillus cereus ATCC 6633 (>13 mm of inhibition; 500 mg/mL) and Shigella ATCC 12022 (≥12 mm of inhibition; 500 mg/mL). R. tinctorum L. is new source of cyclohexanone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...