Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Phytochem Anal ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965051

RESUMO

INTRODUCTION: Euterpe oleracea Mart. (açaí) is a botanical of interest to many who seek functional foods that provide antioxidant and anti-inflammatory properties. Cancer patients are increasingly taking botanical dietary supplements containing açaí to complement their conventional therapeutics, which may lead to serious adverse events. Before testing our açaí extracts in vitro for botanical-drug interactions, the goal is to chemically characterize our extracts for compounds whose biological activity in açaí is unknown. OBJECTIVE: The objective of this work was to develop a chemical fingerprinting method for untargeted characterization of açaí samples from a variety of sources, including food products and botanical dietary supplement capsules, made with multiple extraction solvents. METHODS: An optimized LC-MS method was generated for in-depth untargeted fingerprinting of chemical constituents in açaí extracts. Statistical analysis models were used to describe relationships between the açaí extracts based on molecular features found in both positive and negative mode ESI. RESULTS: In an attempt to elucidate the differences in metabolites among açaí extracts from different cultivars, we identified or tentatively identified 173 metabolites from the 16 extracts made from 6 different sources. Of these compounds, there are 138 reported in açaí for the first time. Statistical models showed similar yet distinct differences between the extracts tested based on the polarity of compounds present and the origin of the source material. CONCLUSION: A high-resolution mass spectrometry method was generated that allowed us to greatly characterize 16 complex extracts made from different sources of açaí with different extraction solvent polarities.

2.
Curr Issues Mol Biol ; 46(5): 3763-3793, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38785503

RESUMO

This study explores a nanoemulsion formulated with açaí seed oil, known for its rich fatty acid composition and diverse biological activities. This study aimed to characterise a nanoemulsion formulated with açaí seed oil and explore its cytotoxic effects on HeLa and SiHa cervical cancer cell lines, alongside assessing its antioxidant and toxicity properties both in vitro and in vivo. Extracted from fruits sourced in Brazil, the oil underwent thorough chemical characterization using gas chromatography-mass spectrometry. The resulting nanoemulsion was prepared and evaluated for stability, particle size, and antioxidant properties. The nanoemulsion exhibited translucency, fluidity, and stability post centrifugation and temperature tests, with a droplet size of 238.37, PDI -9.59, pH 7, and turbidity 0.267. In vitro assessments on cervical cancer cell lines revealed antitumour effects, including inhibition of cell proliferation, migration, and colony formation. Toxicity tests conducted in cell cultures and female Swiss mice demonstrated no adverse effects of both açaí seed oil and nanoemulsion. Overall, açaí seed oil, particularly when formulated into a nanoemulsion, presents potential for cancer treatment due to its bioactive properties and safety profile.

3.
Nat Prod Res ; : 1-8, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613238

RESUMO

The techniques LC-UV-BPSU and LC-UV-SPE/NMR were applied for the first time in the analysis of açai berry (Euterpe oleracea Mart.) pulp extracts. Those techniques allowed the identification of twenty-three metabolites: Valine (1), citric acid (2), tachioside (3), isotachioside (4), α-guaiacylglycerol (5), syringylglycerol (6), uridine (7), adenosine (8), dimethoxy-1,4-benzoquinone (9), koaburaside (10), protocatechuic acid (11), eurycorymboside B (12), 7',8'-dihydroxy-dihydrodehydroconiferyl alcohol-9-O-ß-D-glucopyranoside (13), orientin (14), homoorientin (15), dihydrokaempferol-3-glucoside (16), isolariciresinol-9'-O-ß-D-glucopyranoside (17), 5'-methoxyisolariciresinol-9'-O-ß-D-glucopyranoside (18), cyanidin-3-O-glucoside (19), cyandin-3-O-rutenoside (20), 9,12-octadecadienoic acid (Z,Z)-2-hydroxy-1-(hydroxymethyl) ethyl ester (21), linolenic acid (22), and 1,2-di-O-α-linolenoyl-3-O-ß-D-galactopyranosyl-sn-glycerol (23). In this plant, compounds 3, 4, 5, 6, 8, 10, 12, 17, 18, 21, and 23 are reported for the first time. All the structures were determined through extensive analyses of 1D and 2D NMR data, mass spectrometry, and comparison with published data. This methodology has proven to be an efficient alternative to the analysis of complex extracts containing a large variety of compounds.

4.
Metabolites ; 13(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37512496

RESUMO

Açaí, Euterpe oleracea Mart., is a native plant from the Amazonian and is rich in several phytochemicals with anti-tumor activities. The aim was to analyze the effects of açaí seed oil on colorectal adenocarcinoma (ADC) cells. In vitro analyses were performed on CACO-2, HCT-116, and HT-29 cell lines. The strains were treated with açaí seed oil for 24, 48, and 72 h, and cell viability, death, and morphology were analyzed. Molecular docking was performed to evaluate the interaction between the major compounds in açaí seed oil and Annexin A2. The viability assay showed the cytotoxic effect of the oil in colorectal adenocarcinoma cells. Acai seed oil induced increased apoptosis in CACO-2 and HCT-116 cells and interfered with the cell cycle. Western blotting showed an increased expression of LC3-B, suggestive of autophagy, and Annexin A2, an apoptosis regulatory protein. Molecular docking confirmed the interaction of major fatty acids with Annexin A2, suggesting a role of açaí seed oil in modulating Annexin A2 expression in these cancer cell lines. Our results suggest the anti-tumor potential of açaí seed oil in colorectal adenocarcinoma cells and contribute to the development of an active drug from a known natural product.

5.
J Pharm Pharmacol ; 75(7): 969-984, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37163766

RESUMO

OBJECTIVES: Alterations in cardiovascular and skeletal muscle function are hallmarks of ageing that lead to exercise intolerance. We aimed to examine whether the treatment with Euterpe oleracea Mart. seed extract (ASE) associated with exercise training improves aerobic exercise performance by promoting healthy ageing in the elderly. METHODS: Male Wistar rats were divided into five groups: Young (3 months), Old (18 months), Old+ASE (ASE 200 mg/kg/day), Old+Training (exercise training 30 min/day; 5 days/week) and Old+Training+ASE, for 4 weeks. KEY FINDINGS: ASE treatment increased the exercise time and the running distance concerning the initial maximal treadmill stress test (MTST) in the Old+Training+ASE group. Exercise training or ASE treatment restored the aorta oxidative damage and antioxidant defence. It reduced the acetylcholine (ACh)-induced vasodilation in the aorta of old animals to the same values as the young and improved hypertension. Only the association of both strategies restored the ACh-induced vasodilation in mesentery arteries. Remarkably, exercise training associated with ASE increased the antioxidant defence, nitrite levels and expression of the mitochondrial SIRT-1, PGC1α in soleus muscle homogenates. CONCLUSIONS: ASE treatment associated with exercise training contributes to better exercise performance and tolerance in ageing by improving vascular function, oxidative stress and activating the muscle SIRT-1/PGC-1α pathway.


Assuntos
Euterpe , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ratos Wistar , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Estresse Oxidativo , Músculo Esquelético , Desempenho Físico Funcional
6.
J Food Compost Anal ; 1182023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36844472

RESUMO

Euterpe oleracea Mart., commonly known as açaí, is a fruit that grows on a palm tree native to the Amazon region. Quantitation of bioactive constituents is a crucial preliminary step before utilizing extracts for biological assays so they may be normalized and administered according to a specific constituent concentration. Açaí has four main anthocyanin analytes: cyanidin 3-glucoside, cyanidin 3-sambubioside, cyanidin 3-rutinoside, and peonidin 3-rutinoside. This is the first comparison of açaí anthocyanin profiles between fresh fruits, processed powders, and botanical dietary supplement capsules. The materials examined shared a similar anthocyanin profile, with cyanidin 3-rutinoside being the most abundant (0.380 ± 0.006 - 15.1 ± 0.01 mg/g), followed by cyanidin 3-glucoside (0.0988 ± 0.0031 - 8.95 ± 0.01 mg/g). Among the botanical dietary supplement capsules, the two formulations varied greatly in anthocyanin concentration despite both being aqueous extracts (0.650 ± 0.011 - 0.924 ± 0.010 mg/g versus 1.23 ± 0.01 - 1.27 ± 0.02 mg/g). Previous LC-MS methods range from 35-120 min per injection, while we report a 10 min quantitative method for analysis of anthocyanins in various açaí materials that is fast, reproducible, and accurate. The method produced is useful to assure the quality, efficacy and safety of food and dietary supplement materials containing açaí.

7.
Food Chem ; 382: 132279, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35149472

RESUMO

Pre-harvest treatments like wound-based orchard management practices and early harvest were applied to açai plants (Euterpe oleracea Mart., Euterpe precatoria Mart.) to yield higher levels of antioxidants. Orchard practices like 50% shoot suppression and 50% cluster thinning when applied 87 d before harvest (187 days DAA) were similar to control fruits at harvest and during storage (20 °C). However, lesions in the stipe applied 187 DAA altered the acid, carbohydrate, phenolic content and the ethylene biosynthesis compared to control fruits, showing enhanced fruit antioxidant activity. Early harvest of fruit including 120 and 150 DAA, showed higher acid, lower sugars, higher phenolic content and higher ethylene biosynthesis and respiration rate compared to control fruits, showing the highest levels of fruit antioxidant activity. The selected strategies studied may achieve higher yields of phenolic antioxdants from açai fruit and target high value health markets including functional foods and dietary supplements.


Assuntos
Antioxidantes , Euterpe , Frutas/química , Fenóis/análise , Extratos Vegetais
8.
Environ Sci Pollut Res Int ; 29(6): 8549-8558, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34494187

RESUMO

Agro-industries, leveraged by the high demand of acai products, promote environmental impact through the generation of wastes in several locals in Amazon. The use with bioenergetic purposes has capacity to mitigate these scenario. Thus, the aim of the study was to characterize the biomass of acai seeds and establish the technical parameters of temperature and pressure of work to the production of briquettes of physical, mechanical and thermal quality. Temperatures of 120, 140 and 160 °C; and pressures of 15, 20 and 25 MPa were studied. We analyzed the briquettes mechanical compressive strength, rate of water absorption, rate of volumetric expansion and energy and apparent density. To the characterization of in natura seeds, the proximate analysis, chemical composition (extractives, holocellulose and lignin contents), higher, lower and useful heating value were determined. The proximate analysis indicated biomass thermal resistance, potential to direct burning and conversion by thermochemical processes. The lignin content may increase briquettes compressive strength produced in high temperatures. It was observed that the temperature had more influence in the evaluated briquettes characteristics than the pressure. The compressive strength was greater in 160 °C and 15 MPa briquettes, indicating that the lignin works as binder in this temperature, however, with pressure improvement the resistance is not favored due to the limit of resistance to compaction. The rate of water absorption decreased with the pressure increase and the temperature statistically affected in 140 °C briquettes. We observed volumetric expansion values in consonance to other found in dense biofuels of the literature. Further, the apparent density and energy density were favored by pressure improvement and the temperature helped in the increase of the apparent density. Moreover, the produced briquettes presented gain in the apparent density regarding the in natura biomass and had energy density comparable to coal and adequate to co-firing in boilers.


Assuntos
Biocombustíveis , Lignina , Biomassa , Calefação , Temperatura
9.
Molecules ; 26(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200718

RESUMO

Euterpe oleracea Mart. (açai) is a native palm from the Amazon region. There are various chemical constituents of açai with bioactive properties. This study aimed to evaluate the chemical composition and cytotoxic effects of açai seed extract on breast cancer cell line (MCF-7). Global Natural Products Social Molecular Networking (GNPS) was applied to identify chemical compounds present in açai seed extract. LC-MS/MS and molecular networking were employed to detect the phenolic compounds of açai. The antioxidant activity of açai seed extract was measured by DPPH assay. MCF-7 breast cancer cell line viability was evaluated by MTT assay. Cell death was evaluated by flow cytometry and time-lapse microscopy. Autophagy was evaluated by orange acridin immunofluorescence assay. Reactive oxygen species (ROS) production was evaluated by DAF assay. From the molecular networking, fifteen compounds were identified, mainly phenolic compounds. The açai seed extract showed cytotoxic effects against MCF-7, induced morphologic changes in the cell line by autophagy and increased the ROS production pathway. The present study suggests that açai seed extract has a high cytotoxic capacity and may induce autophagy by increasing ROS production in breast cancer. Apart from its antioxidant activity, flavonoids with high radical scavenging activity present in açai also generated NO (nitric oxide), contributing to its cytotoxic effect and autophagy induction.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Morte Celular/efeitos dos fármacos , Euterpe/química , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sementes/química , Antioxidantes/química , Antioxidantes/farmacologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Feminino , Flavonoides/química , Flavonoides/farmacologia , Frutas/química , Humanos , Células MCF-7 , Fenóis/química , Fenóis/farmacologia , Extratos Vegetais/química , Polifenóis/química , Polifenóis/farmacologia , Espectrometria de Massas em Tandem/métodos
10.
J Ethnopharmacol ; 271: 113885, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33539952

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Scientific evidence supports the antioxidant, anti-inflammatory and anti-lipidemic properties of Euterpe oleracea Mart. (açaí), which all converge to reduce cardiovascular risks. Macerating the pulp of açaí fruit produces a viscous aqueous extract (AE) rich in flavonoids that is commonly used in food production. In addition to nutritional aspects, cardiovascular benefits are attributed to AE by traditional medicine. AIM OF THE STUDY: Evaluation of AE impact on blood flow in vivo in rats and investigation of the mechanism underlying this response in vitro in rat endothelial cells (RECs). MATERIALS AND METHODS: For the measurement of acute blood flow, a perivascular ultrasound probe was used in Wistar rats. The in vitro assays employed REC to evaluate: concentration (1-1000 µg/mL) and time response (2-180 min) of AE in MTT cell viability assays; nitric oxide (NO) levels measurement and intracellular calcium handling using DAF-2DA and Fluo-4-AM, respectively; cellular biopterin content by HPLC; activation of Akt pathway using western blot analysis. For the chemical analyses of AE, stock solutions of the standards (+)catechin and quercetin were used for obtaining linear calibration curves. Identification and quantification of flavonoids in AE were based on comparisons with the retention times, increase in peak area determine by co-injection of AE with standards, UV-Vis scan and standard curves of known spectra. Results were expressed as mean ± standard deviation and data were analyzed using ANOVA followed by Tukey's post-test (p < 0.05). RESULTS: Although in vivo data have revealed the participation of NO in increasing of acute blood flow on abdominal aorta, in vitro analysis demonstrated that vasodilatation AE-induced is not related to its direct action on endothelial cells inducing eNOS activation. Besides, we demonstrated in isolated endothelial cells that highest concentrations of AE caused a reduction in NO levels, effect that could be partly justified by inhibition of Akt phosphorylation which, in turn, could decrease NOS activation. The involvement of cell transduction pathways involving variations in intracellular calcium and biopterins concentration were discarded. The participation of catechin and quercetin, identified in AE, was postulated to induce the responses of AE in REC. CONCLUSIONS: Despite the responses in vitro, vasodilation prevailed in vivo, probably by activating intermediate pathways, validating a potential beneficial effect of AE in reducing cardiovascular risks.


Assuntos
Circulação Sanguínea/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Euterpe/química , Extratos Vegetais/farmacologia , Animais , Biopterinas/metabolismo , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Frutas/química , Masculino , Óxido Nítrico/metabolismo , Extratos Vegetais/uso terapêutico , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Vasodilatação/efeitos dos fármacos , Água/química
11.
Environ Sci Pollut Res Int ; 28(17): 21285-21302, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33411290

RESUMO

Residues of açaí seeds (Euterpe oleracea Mart.) were a novel source for the synthesis of the acid heterogeneous catalyst applied in the conversion of low free fatty acid waste cooking oil (WCO) to biodiesel. Yield of activated carbon (AC) and catalyst (CAT), as well as density of SO3H groups and total acidity, was analyzed in an entirely random designed experiment using multiple linear regression, one-way ANOVA, and Tukey's post hoc test. Time, temperature, dosage of KOH, and ratio of H2SO4/AC were the predictor variables with 3 levels each, at a significance level of α = .05. A significant yield variation portion of AC was explained by the experimental factors (R2 = .891, F (3, 23) = 62.9, p < .0001), as did the yield of CAT (R2 = .960, F (3, 23) = 185.7, p < .0001), density of SO3H (R2 = .969, F (3, 23) = 242.2, p < .0001), and total acidity (R2 = .973, F (3, 23) = 280.6, p < .0001). Levels of time (p = .001) and KOH dosage (p = .006) were significant to the yield of AC, and temperature levels were not influent on density of SO3H (p = .731) or total acidity (p = .762). CAT showed a SBET of 249 m2 g-1, Vpore of 0.104 cm3 g-1, low crystallinity, high thermal stability, and a mesoporous amorphous structure. Optimized catalytic tests resulted in 89% conversion of WCO and 11 cycles of reuse, better than pure H2SO4 or pure KOH (p < .0001) and also better than many biomass-derived catalysts reported in the literature.


Assuntos
Euterpe , Biocombustíveis/análise , Brasil , Ácido Carbônico , Catálise , Culinária , Esterificação , Ácidos Graxos não Esterificados , Óleos de Plantas
12.
Heliyon ; 6(10): e05214, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33088966

RESUMO

Açaí seeds (Euterpe oleracea Mart.) are the major residue generated during industrial extraction of açaí fruit pulp - a popular and typical Amazon fruit rich in bioactive compounds and nutrients. In this study, we investigated the bioaccessibility of an açaí seed extract using an in vitro simulated gastrointestinal digestion model. Catechin, epicatechin and procyanidins B1 and B2 were identified and quantified in the açaí seed extract and monitored by HPLC-DAD through the digestion phases. Bioaccessibility of these flavan-3-ols and deactivation of reactive oxygen species decreased after the intestinal phase, except for peroxyl radical (ROO●). RAW 264.7 macrophages treated either with the digested or undigested açaí seed extract showed reduced NF-κB activation and TNF-α levels, even following gastrointestinal digestion. Thus, the ROO● scavenging capacity and anti-inflammatory activity of the extract were found to be still remarkable after digestion, suggesting that açaí seeds could be explored as a source of bioactive compounds for functional foods, cosmetic or pharmaceutical purposes.

13.
Food Res Int ; 136: 109549, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846601

RESUMO

The purpose of this study was to examine whether the supplementation with an açai (Euterpe oleracea Mart.) seed extract (ASE) would affect the aerobic exercise performance in rats and correlate with the vascular function, muscle oxidative stress and mitochondrial biogenesis. Male Wistar rats were divided into five groups: Sedentary, Sedentary with chronic supplementation of ASE, Training, Training with chronic (200 mg/Kg/day intragastric gavage for 5 weeks) or acute (30 min before the maximal treadmill stress test (MST) supplementation with ASE. The exercise training was performed on a treadmill (30 min/day; 5 days/week) for 4 weeks. The chronic supplementation with ASE increased the exercise time (58%) and the running distance (129%) in relation to the MST, while the Training group increased 40% and 78% and the Training with acute ASE group increased 30% and 63%, respectively. The training-induced increase of ACh vasodilation was not changed by ASE, but the norepinephrine-induced vasoconstriction was reduced by chronic and acute supplementation with ASE. The increased levels of malondialdehyde in soleus muscle homogenates from the Training group was reduced only by chronic supplementation with ASE. The muscle antioxidant defense, NO2 levels, and expression of the mitochondrial biogenesis-related proteins (PGC1α, SIRT-1, p-AMPK/AMPK, Nrf-2) were not different between Training and Sedentary groups, but all these parameters were increased in the Training with Chronic ASE compared with the Sedentary groups. In conclusion, chronic supplementation with ASE improves aerobic physical performance by increasing the vascular function, reducing the oxidative stress, and up-regulating the mitochondrial biogenesis key proteins.


Assuntos
Euterpe , Animais , Antioxidantes , Masculino , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar , Sementes
14.
Nutr Res ; 79: 35-49, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32610256

RESUMO

The role of the renin-angiotensin system (RAS), oxidative stress, and inflammation on the development of obesity and its comorbidities has been extensively addressed. Euterpe oleracea Mart. (açaí) seed extract (ASE), with antioxidant and anti-inflammatory properties and capable to modulate plasma renin levels, has been evidenced as a potential regulator of body mass. We hypothesized that the supplementation with ASE might exert beneficial effects on obesity-related white adipose tissue changes and metabolic disorders by interfering with the local adipose tissue overexpression of RAS, inflammation, and oxidative stress in C57BL/6 mice fed a high-fat (HF) diet. The animals were fed a standard diet (10% fat, control), 60% fat (HF), HF + ASE (300 mg/kg per day) and HF + ENA (enalapril, 30 mg/kg per day) for 12 weeks. ASE and ENA prevented weight gain and adiposity, adipocyte hypertrophy, dyslipidemia, and insulin resistance. In adipose tissue, ASE increased the insulin receptor expression and reduced renin and AT1 receptor expression, which was associated with decreased plasma levels of renin and angiotensin II. Differently, ENA increased the expression of angiotensin-conversing enzyme 2, AT2, B2, and Mas receptors in adipose tissue. Also, ASE but not ENA decreased malondialdehyde and 8-isoprostane levels in adipose tissue. Finally, ASE and ENA reduced the adipose tissue inflammatory markers tumor necrosis factor alpha and interleukin 6. These results demonstrate that ASE prevented the adipocyte hypertrophy, obesity, hyperlipidemia, hyperglycemia, and insulin resistance in HF diet-fed mice. The downregulation of RAS in adipose tissue, reducing oxidative stress and inflammation, may contribute to the prevention of obesity-related disorders.


Assuntos
Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica , Euterpe , Estresse Oxidativo , Extratos Vegetais/farmacologia , Sistema Renina-Angiotensina/fisiologia , Adipócitos/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Glicemia/análise , Pressão Sanguínea/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Enalapril/farmacologia , Ingestão de Energia/efeitos dos fármacos , Inflamação , Insulina/sangue , Lipídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Sistema Renina-Angiotensina/efeitos dos fármacos , Sementes
15.
Biomolecules ; 10(6)2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466439

RESUMO

Euterpe oleracea Mart. (EO), popularly known as açaí, belongs to the Arecaceae family and grows abundantly in Brazil. The fruit of this palm tree is widely used because of its anti-inflammatory and antioxidant properties. In this review, a search for literature and patent technological prospecting has been performed on the use of EO to treat and prevent diseases as well as to prepare pharmaceutical formulations. EO leaves, fruits, and oil stand out for their large number of pharmacological activities such as anti-inflammatory, antioxidant, antimicrobial, antinociceptive, anticancer, anti-atherogenic, and healing activities, protection against metabolic syndromes such as diabetes, hypertension, and hyperlipidemia, and protection of organs such as lung, kidney, liver, heart, and nervous system. While the phytochemical composition is intrinsically linked to identified biological activities, discoveries of the past decade concerning the use of this species have shown pharmacological alternatives mainly in the treatment and prevention of breast cancer and metabolic syndromes. Although studies and inventions on the use of EO though are believed to have been important in light of the pharmacological activities found, few clinical and toxicity tests have been performed. Nevertheless, with the increase of interest in EO, this species is believed to be only at the beginning of the breakthroughs in the development of promising products for the pharmaceutical industry.


Assuntos
Analgésicos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Euterpe/química , Analgésicos/química , Animais , Anti-Infecciosos/química , Anti-Inflamatórios não Esteroides/química , Antineoplásicos Fitogênicos/química , Antioxidantes/química , Humanos
16.
Hypertens Pregnancy ; 39(2): 211-219, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32306786

RESUMO

Objective: To investigate whether Euterpe oleracea Mart. (açaí) seed extract (ASE) prevents maternal cardiovascular changes and intrauterine growth restriction (IUGR) in experimental preeclampsia (PE).Methods: ASE administration (200 mg/kg/day) during mid to late pregnancy in a rat model of L-NAME-induced PE.Results: ASE impaired the maternal hypertension and microalbuminuria as well as the lower fetal and placental weight in experimental PE. ASE also prevented the maternal vascular dysfunction and lipoperoxidation in this model.Conclusion: ASE protected against maternal cardiovascular changes and IUGR in the L-NAME-induced PE. The protective effect of ASE may be partly explained by its antioxidant property.


Assuntos
Antioxidantes/uso terapêutico , Euterpe , Retardo do Crescimento Fetal/prevenção & controle , Hipertensão Induzida pela Gravidez/prevenção & controle , Extratos Vegetais/uso terapêutico , Pré-Eclâmpsia/fisiopatologia , Animais , Antioxidantes/farmacologia , Feminino , Retardo do Crescimento Fetal/fisiopatologia , Hipertensão Induzida pela Gravidez/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Gravidez , Ratos , Ratos Wistar
17.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023867

RESUMO

The development of inclusion complexes is used to encapsulate nonpolar compounds and improve their physicochemical characteristics. This study aims to develop complexes made up of Euterpe oleracea Mart oil (EOO) and ß-cyclodextrin (ß-CD) or hydroxypropyl-ß-cyclodextrin (HP-ß-CD) by either kneading (KND) or slurry (SL). Complexes were analyzed by molecular modeling, Fourier-transform infrared spectroscopy, scanning electron microscopy, powder X-ray diffraction, thermogravimetry analysis and differential scanning calorimetry. The antibacterial activity was expressed as Minimum Inhibitory Concentration (MIC), and the antibiotic resistance modulatory activity as subinhibitory concentration (MIC/8) against Escherichia coli, Streptomyces aureus, Pseudomonas aeruginosa and Enterococcus faecalis. Inclusion complexes with ß-CD and HP-ß-CD were confirmed, and efficiency was proven by an interaction energy between oleic acid and ß-CD of -41.28 ± 0.57 kJ/mol. MIC values revealed higher antibacterial activity of complexes compared to the isolated oil. The modulatory response of EOO and EOO-ß-CD prepared by KND as well as of EOO-ß-CD and EOO-HP-ß-CD prepared by SL showed a synergistic effect with ampicillin against E. coli, whereas it was not significant with the other drugs tested, maintaining the biological response of antibiotics. The antimicrobial response exhibited by the complexes is of great significance because it subsidizes studies for the development of new pharmaceutical forms.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Antibacterianos/farmacologia , Euterpe/química , Óleos de Plantas/química , beta-Ciclodextrinas/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina/química , Ampicilina/farmacologia , Antibacterianos/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Sinergismo Farmacológico , Enterococcus faecalis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Streptomyces/efeitos dos fármacos , beta-Ciclodextrinas/química
19.
Arq. bras. cardiol ; 114(1): 78-86, Jan. 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1055096

RESUMO

Abstract Background: Euterpe oleracea Mart. (açaí) is a fruit with high antioxidant capacity and could be an adjuvant strategy to attenuate ischemia-reperfusion injury. Objective: To evaluate the influence of açaí in global ischemia-reperfusion model in rats. Methods: Wistar rats were assigned to 2 groups: Control (C: receiving standard chow; n = 9) and Açaí (A: receiving standard chow supplemented with 5% açaí; n = 10). After six weeks, the animals were subjected to the global ischemia-reperfusion protocol and an isolated heart study to evaluate left ventricular function. Level of significance adopted: 5%. Results: There was no difference between the groups in initial body weight, final body weight and daily feed intake. Group A presented lower lipid hydroperoxide myocardial concentration and higher catalase activity, superoxide dismutase and glutathione peroxidase than group C. We also observed increased myocardial activity of b-hydroxyacyl coenzyme-A dehydrogenase, pyruvate dehydrogenase, citrate synthase, complex I, complex II and ATP synthase in the A group as well as lower activity of the lactate dehydrogenase and phosphofructokinase enzymes. The systolic function was similar between the groups, and the A group presented poorer diastolic function than the C group. We did not observe any difference between the groups in relation to myocardial infarction area, total and phosphorylated NF-kB, total and acetylated FOXO1, SIRT1 and Nrf-2 protein expression. Conclusion: despite improving energy metabolism and attenuating oxidative stress, açai supplementation did not decrease the infarcted area or improve left ventricular function in the global ischemia-reperfusion model.


Resumo Fundamento: Euterpe oleracea Mart. (açaí) é uma fruta com alta capacidade antioxidante e pode ser uma estratégia adjuvante para atenuar a lesão de isquemia-reperfusão. Objetivo: Avaliar a influência do açaí no modelo global de isquemia-reperfusão em ratos. Metodologia: Ratos Wistar foram divididos em 2 grupos: Controle (C: recebendo ração padrão; n = 9) e Açaí (A: recebendo ração padrão suplementada com 5% de açaí; n = 10). Após seis semanas, os animais foram submetidos ao protocolo global de isquemia-reperfusão e a estudo do coração isolado para avaliar a função ventricular esquerda. Nível de significância adotado: 5%. Resultados: Não houve diferença entre os grupos quanto ao peso corporal inicial e final, e a ingestão diária de ração. O grupo A apresentou menor concentração miocárdica de hidroperóxido lipídico e maior atividade de catalase, superóxido dismutase e glutationa peroxidase do que o grupo C. Também observamos aumento da atividade miocárdica da b-hidroxiacil coenzima-A desidrogenase, piruvato desidrogenase, citrato sintase, complexo I, complexo II e ATP sintase no grupo A, bem como menor atividade das enzimas lactato desidrogenase e fosfofructoquinase. A função sistólica foi semelhante entre os grupos, e o grupo A apresentou função diastólica pior que C. Não foram observadas diferenças entre os grupos em relação à área de infarto do miocárdio, e expressão proteica de NF-kB total e fosforilado, e das proteínas FOXO1, SIRT1 e Nrf-2. Conclusão: apesar de melhorar o metabolismo energético e atenuar o estresse oxidativo, a suplementação de açaí não diminuiu a área infartada nem melhorou a função ventricular esquerda no modelo global de isquemia-reperfusão.


Assuntos
Animais , Masculino , Ratos , Extratos Vegetais/farmacologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Euterpe/química , Estresse Oxidativo/fisiologia , Modelos Animais de Doenças , Metabolismo Energético/fisiologia
20.
Antioxidants (Basel) ; 8(10)2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31600875

RESUMO

The açaí fruit (Euterpe oleracea Mart.) is well known for its high content of antioxidant compounds, especially anthocyanins, which provide beneficial health properties. The incorporation of this fruit is limited to food products whose processing does not involve the use of high temperatures due to the low thermal stability of these functional components. The objective of this work was the encapsulation of açaí fruit antioxidants into electrosprayed zein, a heat-resistant protein, to improve their bioavailability and thermal resistance. First, the hydroalcoholic açaí extract was selected due to its high polyphenolic content and antioxidant capacities, and, subsequently, it was successfully encapsulated in electrosprayed zein particles. Scanning electron microscopy studies revealed that the resulting particles presented cavities with an average size of 924 nm. Structural characterization by Fourier transform infrared spectroscopy revealed certain chemical interaction between the active compounds and zein. Encapsulation efficiency was approximately 70%. Results demonstrated the effectiveness of the encapsulated extract on protecting polyphenolic content after high-temperature treatments, such as sterilization (121 °C) and baking (180 °C). Bioaccesibility studies also indicated an increase of polyphenols presence after in vitro digestion stages of encapsulated açaí fruit extract in contrast with the unprotected extract.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...