Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Total Environ ; 944: 173956, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38879029

RESUMO

The characteristics of radon exhalation in the hygroscopic properties of powder solid wastes are immensely significant for environmental safety and their transportation, storage, and landfill. This study detected the radon concentration of superfine cement and five kinds of powder solid waste: fly ash, silica fume, coal gangue, S95 mineral powder, and molybdenum tailing powder, at different hygroscopic times for 1-5 d under 95 % relative humidity. Additionally, the influence of particle size and porosity of solid waste on radon exhalation characteristics was analyzed using a laser particle size analyzer and nitrogen adsorption technology. The results show that the radon exhalation rate of the solid waste was at a low level in dry conditions. Although the presence of water due to the increased moisture absorption rate inhibited the radon exhalation to a certain extent, it was higher than that in dry conditions. The reciprocal of the moisture absorption rate had a strong linear relationship with the ratio between the radon exhalation rate after hygroscopy and radon exhalation rate from dry materials. The pore structure has a significant effect on the exhalation rate of radon, and the macropores inhibits the exhalation rate of radon. The results of this study have guiding significance for the reuse of solid waste and the prevention of radiation risk of radon exhalation during transportation.

2.
Sci Total Environ ; 946: 174192, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38914332

RESUMO

The radon exhalation characteristics of rocks will change significantly during water saturation treatment, and radon, as an important tracer, is of great significance in predicting rock activities. In this paper, the radon exhalation characteristics of rocks after saturated with different water contents were studied by centrifugal test, radon measurement test and other indoor tests. The results show that the radon exhalation rate of rocks shows a rising and then decreasing trend with the increase of rock water saturation. The radon precipitation rate peaked at 0.7 Sw âˆ¼ 0.8 Sw, and the high water saturation had an obvious inhibiting effect on the radon exhalation rate of rocks. The research results are of great significance in predicting the rock-water-based geological processes.

3.
J Environ Radioact ; 276: 107440, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38669858

RESUMO

The radiation dose of workers in underground uranium mines mainly comes from radon and radon progeny. To ensure a healthy and safe work environment, it is necessary and urgent to optimize the design of ventilation systems. As such, based on the simplified radon diffusion-advection migration model of the rocks, this paper proposes 1) two methods for determining the radon exhalation rate modified by pressure drop, 2) three methods for calculating radon activity concentration of single-branch, and 3) the novel adjustment algorithm and solving procedures for calculating and adjusting the radon activity concentration in ventilation networks by modifying the radon exhalation rate, demonstrated on a specific ventilation network in a simulated underground uranium mine with calculation and analysis via MATLAB. The results show that 1) the radon exhalation rate of different branches can be modified by their pressure drop, and 2) the proposed method can be used to reveal the influences of different ventilation methods and fan pressures on the radon activity concentration in the ventilation network and the radon release rate to the atmosphere.


Assuntos
Poluentes Radioativos do Ar , Mineração , Modelos Teóricos , Monitoramento de Radiação , Radônio , Urânio , Ventilação , Radônio/análise , Urânio/análise , Poluentes Radioativos do Ar/análise , Monitoramento de Radiação/métodos , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Exposição Ocupacional/análise
4.
Appl Radiat Isot ; 207: 111180, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452662

RESUMO

The impacts of mathematical models and associated parameters on radon (222Rn) and thoron (220Rn) exhalation rates based on in-situ testing at building interior solid walls were demonstrated to improve data analysis techniques. The results showed that the heterogeneity of their activity concentrations within the measurement system was more significant for thoron than radon. The diurnal variation in indoor radon should be considered for better data quality. In conclusion, a model should be appropriately made and selected under the purposes and accuracy requirements of the exhalation test.

5.
J Hazard Mater ; 468: 133865, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38412801

RESUMO

Measurements of radon exhalation rate using traditional methods can be affected by back-diffusion or differential pressure in the accumulation chamber, resulting in deviations between the measured and the true values. To obtain an accurate radon exhalation rate for evaluation of radon-risk regions, two novel approaches of measurements based on traditional methods were proposed. Repeated experiments were implemented on a self-designed stainless cylindrical vessel filled with uranium tailings sand. The measured radon exhalation rates on average were 0.51 ± 0.02 and 0.52 ± 0.02 Bq m-2 s-1 for the two proposed methods, with 0.02% and 0.04%, respectively, deviations from the theoretical value. In addition, numerical techniques were employed to interpret the defects of traditional methods and mechanisms of proposed approaches to measure accurate values. Two novel approaches have significantly reduced the impact of back diffusion and differential pressure inside the chamber and consumed less time.

6.
J Environ Radioact ; 273: 107388, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266320

RESUMO

The radon exhalation rate of surrounding rocks in underground roadways is an important parameter in determining radon exhalation capacity and ventilation flowrate for radon removal. By approximating the roadways as thick-walled, porous cylinders, this study investigates radon exhalation from their surrounding rocks via simulations using computational fluid dynamics (CFD). Radon exhalation rates of single and double underground roadways were computed and analysed under different pressure differences, radon diffusion coefficients, permeabilities of rocks, single roadway locations and additional parallel roadway orientation. The radon regulating zone was presented and the effect of pressure difference on it was analysed. By fitting the data from simulation results, an estimation model was obtained for the radon exhalation rate of a single roadway. For two adjacent parallel roadways with a distance greater than or equal to 50m, the model is also suitable for estimating the radon exhalation rate when the rock permeability is less than 1 × 10-14 m2 and the ratio of permeability to diffusion coefficient is less than 5 × 10-9.


Assuntos
Monitoramento de Radiação , Radônio , Radônio/análise , Expiração , Monitoramento de Radiação/métodos
7.
Appl Radiat Isot ; 201: 111020, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37729724

RESUMO

The term "commercial ornamental stones" comprises different natural stones with different mineralogical components and the distribution and amount of natural radionuclides depended on the mineralogy. Few studies on natural radioactivity in ornamental stones carried out in Rio de Janeiro (Brazil) and the present work were carried out in order to analyze the distribution of activity concentration in these materials. The activity concentration of 238U, 235U, 226Ra, 232Th and 40K in Ornamental Stones measured using γ-ray spectrometry to estimate the radiation hazard as well as establishing a database for radioactivity levels. Samples were collected in stores in Rio de Janeiro, carefully transported, weighed, packed with PVC film and left to rest for at least 45 days to reach secular equilibrium. Samples analyzed by gamma spectrometry using a hyper pure germanium detector (HPGE). Detection efficiency for each sample was obtained using LabSOCS software. The activity concentrations for samples were within the ranges (0.83 ± 0.15 to 39.96 ± 1.19, 8.04 ± 2.54 to 111.36 ± 13.33, 0.43 ± 0.03 to 264.58 ± 0.98, BDL to 8.17± 0.65 and 1.30 ± 0.57 to 1567.01 ± 65.08) Bq⋅kg-1 for 238U, 226Ra, 232Th, 235U and 40K, respectively. The world average for building materials is 50 Bq⋅kg-1 for 238U, 50 Bq.kg-1 for 232Th and 500 Bq⋅kg-1 for 40K. In the present work, the average for granite was 19.43 ± 0.39 Bq⋅kg-1 for 238U, 56.70 ± 1.13 Bq⋅kg-1 for 232Th and 1113.28 ± 20.27 Bq⋅kg-1 for 40K, thus the values for 232Th and 238U are above the world average. Analyzing for the granite that showed the highest concentrations of activity the average values of Transport Rate was 3.12 ± 0.04 Bq⋅m-2⋅s-1, Emanation Rate was 0.16 ± 0.00 Bq⋅kg-1⋅s-1, Exhalation Flow was 530.26 ± 6.05 Bq⋅m-3, Effective Equivalent Dose Due to Radon Exposure was 0.78 ± 0.01 WLM⋅year-1 and Annual Effective Dose Due to Radon and Thoron was 7.02 ± 0.10 mSv⋅year-1. Annual Effective Dose Due to Radon and Thoron it is above the annual limit for public individuals which is 1 mSv⋅year-1 and below the occupationally exposed individual, which is 20 mSv⋅year-1 in an average of 5 years, it does not exceed the maximum level recommended by ICRP-60.

8.
Environ Geochem Health ; 45(11): 8771-8786, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37752290

RESUMO

The present study focuses on measuring radon concentrations in soil gas at various depths, radon exhalation rate (surface and mass) from soil samples, and gamma dose rate along and across the Main Central Thrust of Garhwal Himalaya, India. Radon concentration in soil gas, surface, and mass exhalation rates was measured using a portable SMART radon monitor (RnDuo). Furthermore, the gamma dose rate was measured using a pocket radiation monitor. The soil gas radon concentration varied from 15 ± 4 to 579 ± 82 Bq m-3 at a depth of 25 cm, 10 ± 2 to 533 ± 75 Bq m-3 at a depth of 30 cm, and 9 ± 1 to 680 ± 95 Bq m-3 at a depth of 35 cm. The surface and mass exhalation rates were found 3 ± 0.7 to 98 ± 3 Bq m-2 h-1 (with AM ± SD = 36 ± 28 Bq m-2 h-1) and 1 ± 0.2 to 95 ± 2 mBq kg-1 h-1 (with AM ± SD = 30 ± 22 mBq kg-1 h-1), respectively. The gamma dose rate for the present study area varies from 0.11 ± 0.05 to 0.28 ± 0.05 µSv h-1 with a mean value of 0.17 ± 0.05 µSv h-1. The correlation analysis between the exhalation rates (mass and surface) and radon concentration of soil gas at various depths was carried out in the current study.


Assuntos
Monitoramento de Radiação , Radônio , Poluentes Radioativos do Solo , Radônio/análise , Solo , Expiração , Poluentes Radioativos do Solo/análise , Índia
9.
Environ Monit Assess ; 195(4): 523, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36988758

RESUMO

This study reports the exhalation rates of radon and thoron from surface soil collected from 60 rural sites of district Hisar, Haryana, India. The exhalation rates of Rn222 (radon) and Rn220 (thoron) were measured by portable SMART RnDuo (AQTEK SYSTEMS) using a mass accumulation chamber which was equipped with a scintillation material-coated cell. Dose rates due to natural gamma radiations ranged from 0.526 to 1.139 mSv y-1. The Rn222 mass exhalation rate in soil samples varied from 0.14 to 94.65 mBq kg-1 h-1. Thoron surface exhalation rates ranged from 46.42 to 619.88 Bq m-2 h-1. This study gives an idea about the differences in Rn222 and Rn220 exhalation at different locations which may be due to variations in geological features of the locations and characteristics of the topsoil. The findings show that usage of study area soil as building material is safe.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Radônio/análise , Solo , Expiração , Poluentes Radioativos do Ar/análise , Índia , Poluição do Ar em Ambientes Fechados/análise , Habitação
10.
Environ Sci Pollut Res Int ; 30(17): 50610-50619, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36797391

RESUMO

Cement-based materials manufactured from rocks and soils will release radon which is a carcinogen and affects indoor air quality. The alkaline cement-based material neutralizes with the acidic gas carbon dioxide in the air, reducing its pH value, known as carbonation. Carbonation of cement-based materials is an important environmental factor that can change the pore structure and effect radon release. In this study, test blocks of concrete, fly ash concrete, cement mortar, and cement paste were subjected to carbonation at 20 vol% CO2, 70% relative humidity, and a temperature of 20 ± 2 ℃ for 28 days to explore the effect of material characteristics and carbonation age on the radon exhalation rate. Carbonation had a significant influence on the radon exhalation rate, but this effect showed positive (promoting/increasing) and negative (inhibiting/decreasing) fluctuations with carbonation age. Among the material characteristics, aggregate content had the most significant influence, followed by fly ash and cement variety. The radon exhalation rate was ordered as cement mortar > concrete > cement paste before carbonation, but was concrete > cement mortar > cement paste after carbonation. The radon exhalation rate of cement paste blocks without aggregate was ~ 1 mBq/(m2·s) lower than that of cement mortar. The inhibition of radon emission by concrete was mainly observed in the early carbonation period (< 7 days), while that by fly ash concrete was observed after 7 days. The content of fly ash did not have a significant influence on the radon exhalation rate of materials. Radon inhibition by composite Portland cement concrete was mainly observed in the middle stage of carbonation (~ 14 days), while inhibition by ordinary Portland cement concrete was mainly observed in the early (3-7 days) and late (i.e., ~ 28 days) stages. The water/binder ratio did not significantly affect the radon exhalation; concrete with a low water/binder ratio showed weak radon inhibition only when the carbonation age was long. These results will help to evaluate radon pollution in indoor or underground environments under long-term use.


Assuntos
Radônio , Radônio/análise , Cinza de Carvão/análise , Expiração , Materiais de Construção , Água
11.
Sci Total Environ ; 865: 161352, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36596422

RESUMO

Cracks and pores are considered as major sources of radon. Cement is widely used as a grouting material in mines, tunnels, and other projects for reinforcement, seepage prevention, and water plugging. This paper mainly experimentally studied the correlation between the radon exhalation rate of the porous medium after grouting and the sand grain diameter, grouting pressure, and slurry water-cement ratio. The pore characteristics of the samples before and after grouting were also studied based on the low field nuclear magnetic resonance (LF-NMR). The findings of the study show that the porosity of samples increases after the superfine cement solidification with an increase in the water-cement ratio, and the radon exhalation rate is proportional to porosity, the radon exhalation rate increases by 0.0005 Bq·m-2/s at W/C = 1.5, and by 0.0017 Bq·m-2/s at W/C = 2 increases, in comparison to the W/C = 1.The radon exhalation rate of porous media gradually increased after grouting in response to an increase in grouting pressure and the water-cement ratio. The radon exhalation rate of the porous media with larger pores was relatively higher and exhibited a positive correlation with the volume of micropores in porous media,the correlations of coarse, medium and fine media are 0.815, 0.826, and 0.859. The change in pore structure has an influence on radon exhalation. Although grouting changes the pore structure and reduces the connectivity between internal pores, the micropores generated after cement slurry solidification improves the radon exhalation rate by providing new channels, When the water-cement ratio is 1.5 and the grouting pressure is 1.5 MPa, the radon exhalation rate of porous media is 0.00273 Bq·m-2/s. The research results serve as a reference basis for the evaluation of the impact of rock masses on grouting reinforcement and pore sealing.

12.
Int J Environ Health Res ; 33(12): 1181-1194, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35594037

RESUMO

The concentration of natural and anthropogenic radionuclides, emanation fraction (EF), and mass (χM) and area (χA) exhalation rate of 222Rn in urban soil samples collected from dwelling areas in Nevsehir city located in a region known as the central Anatolian volcanic province of Turkey were determined using gamma-ray spectroscopy. The average activity concentrations of 226Ra, 228Ra, 40K and 137Cs were measured as 60.2 ± 3.8, 50.1 ± 2.8, 631.0 ± 29.7 and 5.5 ± 0.4 Bq/kg, respectively. The average concentration of 222Rn in soil and air was estimated as 27 kBq/m3 and 84 Bq/m3, respectively. The average values of EF, χM and χA were found as 20%, 25.4 µBq/kg⋅s and 20.2 mBq/m2⋅s, respectively. The average values of outdoor absorbed gamma dose rate, external and internal annual effective dose and lifetime cancer risk estimated for radiological assessment were found as 85 nGy/h, 104 µSv/y, 797 µSv/y and 4.1 × 10-4, respectively.


Assuntos
Monitoramento de Radiação , Monitoramento de Radiação/métodos , Turquia , Solo
13.
Front Physiol ; 14: 1293752, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38321986

RESUMO

Objective: present transcutaneous carbon dioxide (CO2)-tcpCO2-monitors suffer from limitations which hamper their widespread use, and call for a new tcpCO2 measurement technique. However, the progress in this area is hindered by the lack of knowledge in transcutaneous CO2 diffusion. To address this knowledge gap, this study focuses on investigating the influence of skin temperature on two key skin properties: CO2 permeability and skin blood flow. Methods: a monocentric prospective exploratory study including 40 healthy adults was undertaken. Each subject experienced a 90 min visit split into five 18 min sessions at different skin temperatures-Non-Heated (NH), 35, 38, 41, and 44°C. At each temperature, custom sensors measured transcutaneous CO2 conductivity and exhalation rate at the arm and wrist, while Laser Doppler Flowmetry (LDF) assessed skin blood flow at the arm. Results: the three studied metrics sharply increased with rising skin temperature. Mean values increased from the NH situation up to 44°C from 4.03 up to 8.88 and from 2.94 up to 8.11 m·s-1 for skin conductivity, and from 80.4 up to 177.5 and from 58.7 up to 162.3 cm3·m-2·h-1 for exhalation rate at the arm and wrist, respectively. Likewise, skin blood flow increased elevenfold for the same temperature increase. Of note, all metrics already augmented significantly in the 35-38°C skin temperature range, which may be reached without active heating-i.e. only using a warm clothing. Conclusion: these results are extremely encouraging for the development of next-generation tcpCO2 sensors. Indeed, the moderate increase (× 2) in skin conductivity from NH to 44°C tends to indicate that heating the skin is not critical from a response time point of view, i.e. little to no skin heating would only result in a doubled sensor response time in the worst case, compared to a maximal heating at 44°C. Crucially, a skin temperature within the 35-38°C range already sharply increases the skin blood flow, suggesting that tcpCO2 correlates well with the arterial paCO2 even at such low skin temperatures. These two conclusions further strengthen the viability of non-heated tcpCO2 sensors, thereby paving the way for the development of wearable transcutaneous capnometers.

14.
Sci Total Environ ; 844: 157148, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35798108

RESUMO

Identifying the release characteristics of radon (Rn-222) in coal mines is critical preventing cancer risks for coal miners and coal fires. The present investigates the pore structure characteristics of coal samples from eleven coal mines in northern China, using low-temperature nitrogen adsorption (LTNA) test, combined with the radon exhalation rate in coal. The findings of the study reveal that the N2 adsorption isotherms of all the coal samples fall under the inverse S type, with micropores dominating in low-rank coals and mesopores dominating in the medium and high-rank coals, due to the separation of organic matter and quartz by shrinkage of micro-components and the orderly arrangement of aromatic rings as a result of ring condensation and thermal cleavage. The pore diameters of coal samples show similar distribution characteristics for sizes >2 nm, represented by a single peak near the pore diameter of 3 nm. Ash yield controls the mesopore and micropore volumes of medium and high-rank coal samples. The radon emission rate displays positive linear correlation (r2 = 0.87) with micropore volumes of analyzed coal samples due to the infillings of free radon in micropores. The radon element is derived by uranium decay, which causes a greater radon exhalation rate of coal mines in areas near the uranium mines. The results of the present study could be helpful to understand the influence mechanism of radon emission processes in coal, which provides an important basis for reducing cancer risks for coal miners and predicting coal fires.


Assuntos
Radônio , Urânio , Carvão Mineral/análise , Mineração , Radônio/análise , Urânio/química
15.
Environ Sci Pollut Res Int ; 29(52): 79434-79442, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35715670

RESUMO

Uranium tailings sand will continuously release radon-222. When the external condition changes, the exhalation of radon will also change. Thus, radon is being recommended as a tracer for dam damage assessment. When an earthquake is simulated on the uranium tailings dam with a shaking table test and the change in radon concentration is measured, it is observed that the earthquake causes micro-fissures in the uranium tailings dam, which aggregate to form fractures. During the process, the radon concentration will climb dramatically, as will the radon exhalation rate. To verify that the radon monitoring date is accurate, the acceleration response, surface displacement, and interior displacement are all monitored. The results show that radon can be utilized as a tracer to evaluate uranium tailings dam damage.


Assuntos
Terremotos , Monitoramento de Radiação , Radônio , Urânio , Urânio/análise , Expiração , Areia , Radônio/análise , Monitoramento de Radiação/métodos
16.
Environ Sci Pollut Res Int ; 29(14): 20603-20616, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34741268

RESUMO

Uranium tailing ponds are a potential major source of radioactive pollution. Solidification treatment can control the diffusion and migration of radioactive elements in uranium tailings to safeguard the surrounding ecological environment. A literature review and field investigation were conducted in this study prior to fabricating 11 solidified uranium tailing samples with different proportions of PVA fiber, basalt fiber, metakaolin, and fly ash, and the weight percentage of uranium tailings in the solidified body is 61.11%. The pore structure, volume resistivity, compressive strength, radon exhalation rate variations, and U(VI) leaching performance of the samples were analyzed. The pore size of the solidified samples is mainly between 1 and 50 nm, the pore volume is between 2.461 and 5.852 × 10-2 cm3/g, the volume resistivity is between 1020.00 and 1937.33 Ω·m, and the compressive strength is between 20.61 and 36.91 MPa. The radon exhalation rate is between 0.0397 and 0.0853 Bq·m-2·s-1. The cumulative leaching fraction of U(VI) is between 2.095 and 2.869 × 10-2 cm, and the uranium immobilization rate is between 83.46 and 85.97%. Based on a comprehensive analysis of the physical and mechanical properties, radon exhalation rates, and U(VI) leaching performance of the solidified samples, the basalt fiber is found to outperform PVA fiber overall. The solidification effect is optimal when 0.6% basalt fiber is added.


Assuntos
Indústrias Extrativas e de Processamento , Resíduos Radioativos , Poluentes Radioativos do Solo , Urânio , Gerenciamento de Resíduos , Cinza de Carvão/análise , Difusão , Locais de Resíduos Perigosos , Proteção Radiológica/métodos , Resíduos Radioativos/análise , Radônio/análise , Silicatos/análise , Poluentes Radioativos do Solo/análise , Poluentes Radioativos do Solo/química , Urânio/análise , Gerenciamento de Resíduos/métodos
17.
Sci Total Environ ; 807(Pt 2): 150800, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34627907

RESUMO

When there is poor ventilation or an irregular radon exhalation rate in an underground environment, it is necessary to judge whether the radon concentration is abnormal. To protect personal safety and health from radon gas, it is necessary to track the location of an abnormal radon source and measure its release rate to formulate emergency control and eradication measures. However, in an underground environment, it is impossible to fully monitor the radon concentration at every location, and as a result, blind spots are present, making it difficult to obtain timely early warnings in the event of an abnormal radon exhalation rate. Based on the distribution of radon concentration in an underground environment, this research establishes a theoretical mathematical model of an underground ventilation network containing radon. We combined particle swarm optimization with the long short-term memory (PSO-LSTM) method, which uses part of a time series signal of monitored radon concentrations to track the location of an abnormal radon source and determine an abnormal radon exhalation rate. Performing experiments of theoretical examples and actual underground ventilation environment examples, we prove the necessity of optimizing the monitoring position of the angle-connected ventilation network. The results show that the PSO-LSTM model based on radon concentration monitoring can process time series signals. Its accuracy and decision coefficient greater that is than 0.9 indicate the reliability of the model and method.


Assuntos
Expiração , Radônio , Reprodutibilidade dos Testes
18.
Artigo em Inglês | MEDLINE | ID: mdl-33557427

RESUMO

A long-term measurement technique of radon exhalation rate was previously developed using a passive type radon and thoron discriminative monitor and a ventilated type accumulation chamber. In the present study, this technique was applied to evaluate the thoron exhalation rate as well, and long-term measurements of radon and thoron exhalation rates were conducted for four years in Gifu Prefecture. The ventilated type accumulation chamber (0.8 × 0.8 × 1.0 m3) with an open bottom was embedded 15 cm into the ground. The vertical distributions of radon and thoron activity concentrations from the ground were obtained using passive type radon-thoron discriminative monitors (RADUETs). The RADUETs were placed at 1, 3, 10, 30, and 80 cm above the ground inside the accumulation chamber. The measurements were conducted from autumn 2014 to autumn 2018. These long-term results were found to be in good agreement with the values obtained by another methodology. The radon exhalation rates from the ground showed a clearly seasonal variation. Similar to findings of previous studies, radon exhalation rates from summer to autumn were relatively higher than those from winter to spring. In contrast, thoron exhalation rates were not found to show seasonal variation.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Poluentes Radioativos do Solo , Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Expiração , Habitação , Radônio/análise , Poluentes Radioativos do Solo/análise
19.
J Environ Radioact ; 228: 106510, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33341753

RESUMO

Thoron (220Rn) exhalation from building materials has become increasingly recognized as a potential source for radiation exposure in dwellings. However, contrary to radon (222Rn), limited information on thoron exposure is available. As a result no harmonized test procedures for determining thoron exhalation from building materials are available at present. This study is a first interlaboratory comparison of different test methods to determine the thoron exhalation and a pre-step to a harmonized standard. The purpose of this study is to compare the experimental findings from a set of three building materials that are tested, and to identify future challenges in the development of a harmonized standard.


Assuntos
Poluentes Radioativos do Ar , Materiais de Construção , Monitoramento de Radiação , Radônio , Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Expiração , Habitação , Radônio/análise
20.
Chemosphere ; 267: 128908, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33213880

RESUMO

The research into 220Rn (thoron) has generated an increasing interest in recent times due to the realisation of its radiological importance in many indoor environments. Though it is assumed that the contribution of 220Rn, per se, to the inhalation dose is negligible in comparison with that of its decay products, this may not be always true. Correct estimation of inhalation dose due to thoron requires a reliable method to measure the concentration of both 220Rn and its decay products in indoor air. However, due to its very short half-life (55.6 s) 220Rn shows large variation in its indoor activity concentration. This makes it difficult to have a robust value of 220Rn concentration which can be considered representative of a house, thus making the dose estimation unreliable. This issue has been addressed in the present study by developing a novel method that utilises the 220Rn exhalation rate from indoor surfaces as the basis for estimation of average 220Rn concentration in indoor air. The 220Rn concentration estimated in this manner can be converted to decay products concentration using a suitable equilibrium factor and finally the inhalation dose using appropriate dose conversion factors. A wall mounting accumulator setup has been developed for easy in-situ measurement of 220Rn exhalation from room surfaces. The method has been validated through comprehensive measurements in 25 dwellings in two different regions of India. The developed method is very good for large scale field surveys because of fast and easy applicability.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Expiração , Habitação , Índia , Radônio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...