Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.122
Filtrar
1.
BMC Genomics ; 25(1): 671, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970011

RESUMO

BACKGROUND: The dirigent (DIR) genes encode proteins that act as crucial regulators of plant lignin biosynthesis. In Solanaceae species, members of the DIR gene family are intricately related to plant growth and development, playing a key role in responding to various biotic and abiotic stresses. It will be of great application significance to analyze the DIR gene family and expression profile under various pathogen stresses in Solanaceae species. RESULTS: A total of 57 tobacco NtDIRs and 33 potato StDIRs were identified based on their respective genome sequences. Phylogenetic analysis of DIR genes in tobacco, potato, eggplant and Arabidopsis thaliana revealed three distinct subgroups (DIR-a, DIR-b/d and DIR-e). Gene structure and conserved motif analysis showed that a high degree of conservation in both exon/intron organization and protein motifs among tobacco and potato DIR genes, especially within members of the same subfamily. Total 8 pairs of tandem duplication genes (3 pairs in tobacco, 5 pairs in potato) and 13 pairs of segmental duplication genes (6 pairs in tobacco, 7 pairs in potato) were identified based on the analysis of gene duplication events. Cis-regulatory elements of the DIR promoters participated in hormone response, stress responses, circadian control, endosperm expression, and meristem expression. Transcriptomic data analysis under biotic stress revealed diverse response patterns among DIR gene family members to pathogens, indicating their functional divergence. After 96 h post-inoculation with Ralstonia solanacearum L. (Ras), tobacco seedlings exhibited typical symptoms of tobacco bacterial wilt. The qRT-PCR analysis of 11 selected NtDIR genes displayed differential expression pattern in response to the bacterial pathogen Ras infection. Using line 392278 of potato as material, typical symptoms of potato late blight manifested on the seedling leaves under Phytophthora infestans infection. The qRT-PCR analysis of 5 selected StDIR genes showed up-regulation in response to pathogen infection. Notably, three clustered genes (NtDIR2, NtDIR4, StDIR3) exhibited a robust response to pathogen infection, highlighting their essential roles in disease resistance. CONCLUSION: The genome-wide identification, evolutionary analysis, and expression profiling of DIR genes in response to various pathogen infection in tobacco and potato have provided valuable insights into the roles of these genes under various stress conditions. Our results could provide a basis for further functional analysis of the DIR gene family under pathogen infection conditions.


Assuntos
Evolução Molecular , Família Multigênica , Nicotiana , Filogenia , Proteínas de Plantas , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Nicotiana/genética , Nicotiana/microbiologia , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Estresse Fisiológico/genética , Regiões Promotoras Genéticas , Duplicação Gênica , Ralstonia solanacearum , Genes de Plantas
2.
Front Genet ; 15: 1327984, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957806

RESUMO

In this study, we delved into the comparative analysis of gene expression data across RNA-Seq and NanoString platforms. While RNA-Seq covered 19,671 genes and NanoString targeted 773 genes associated with immune responses to viruses, our primary focus was on the 754 genes found in both platforms. Our experiment involved 16 different infection conditions, with samples derived from 3D airway organ-tissue equivalents subjected to three virus types, influenza A virus (IAV), human metapneumovirus (MPV), and parainfluenza virus 3 (PIV3). Post-infection measurements, after UV (inactive virus) and Non-UV (active virus) treatments, were recorded at 24-h and 72-h intervals. Including untreated and Mock-infected OTEs as control groups enabled differentiating changes induced by the virus from those arising due to procedural elements. Through a series of methodological approaches (including Spearman correlation, Distance correlation, Bland-Altman analysis, Generalized Linear Models Huber regression, the Magnitude-Altitude Score (MAS) algorithm and Gene Ontology analysis) the study meticulously contrasted RNA-Seq and NanoString datasets. The Magnitude-Altitude Score algorithm, which integrates both the amplitude of gene expression changes (magnitude) and their statistical relevance (altitude), offers a comprehensive tool for prioritizing genes based on their differential expression profiles in specific viral infection conditions. We observed a strong congruence between the platforms, especially in identifying key antiviral defense genes. Both platforms consistently highlighted genes including ISG15, MX1, RSAD2, and members of the OAS family (OAS1, OAS2, OAS3). The IFIT proteins (IFIT1, IFIT2, IFIT3) were emphasized for their crucial role in counteracting viral replication by both platforms. Additionally, CXCL10 and CXCL11 were pinpointed, shedding light on the organ tissue equivalent's innate immune response to viral infections. While both platforms provided invaluable insights into the genetic landscape of organoids under viral infection, the NanoString platform often presented a more detailed picture in situations where RNA-Seq signals were more subtle. The combined data from both platforms emphasize their joint value in advancing our understanding of viral impacts on lung organoids.

3.
Biotechnol Rep (Amst) ; 43: e00845, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38962072

RESUMO

Oryza sativa L. is the world's most essential and economically important food crop. Climate change and ecological imbalances make rice plants vulnerable to abiotic and biotic stresses, threatening global food security. The Alfin-like (AL) transcription factor family plays a crucial role in plant development and stress responses. This study comprehensively analyzed this gene family and their expression profiles in rice, revealing nine AL genes, classifying them into three distinct groups based on phylogenetic analysis and identifying four segmental duplication events. RNA-seq data analysis revealed high expression levels of OsALs in different tissues, growth stages, and their responsiveness to stresses. RT-qPCR data showed significant expression of OsALs in different abiotic stresses. Identification of potential cis-regulatory elements in promoter regions has also unveiled their involvement. Tertiary structures of the proteins were predicted. These findings would lay the groundwork for future research to reveal their molecular mechanism in stress tolerance and plant development.

5.
Biochem Genet ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871957

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive form of pulmonary fibrosis of unknown etiology. Despite ongoing research, there is currently no cure for this disease. Recent studies have highlighted the significance of competitive endogenous RNA (ceRNA) regulatory networks in IPF development. Therefore, this study investigated the ceRNA network associated with IPF pathogenesis. We obtained gene expression datasets (GSE32538, GSE32537, GSE47460, and GSE24206) from the Gene Expression Omnibus (GEO) database and analyzed them using bioinformatics tools to identify differentially expressed messenger RNAs (DEmRNAs), microRNAs (DEmiRNAs), and long non-coding RNAs (DElncRNA). For DEmRNAs, we conducted an enrichment analysis, constructed protein-protein interaction networks, and identified hub genes. Additionally, we predicted the target genes of differentially expressed mRNAs and their interacting long non-coding RNAs using various databases. Subsequently, we screened RNA molecules with ceRNA regulatory relations in the lncACTdb database based on the screening results. Furthermore, we performed disease and functional enrichment analyses and pathway prediction for miRNAs in the ceRNA network. We also validated the expression levels of candidate DEmRNAs through quantitative real-time reverse transcriptase polymerase chain reaction and analyzed the correlation between the expression of these candidate DEmRNAs and the percent predicted pre-bronchodilator forced vital capacity [%predicted FVC (pre-bd)]. We found that three ceRNA regulatory axes, specifically KCNQ1OT1/XIST/NEAT1-miR-20a-5p-ITGB8, XIST-miR-146b-5p/miR-31-5p- MMP16, and NEAT1-miR-31-5p-MMP16, have the potential to significantly affect IPF progression. Further examination of the underlying regulatory mechanisms within this network enhances our understanding of IPF pathogenesis and may aid in the identification of diagnostic biomarkers and therapeutic targets.

6.
Pathol Res Pract ; 260: 155375, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38878665

RESUMO

BACKGROUND: Brain metastasis (BM) is a prevalent prognostic event in the development of lung adenocarcinoma (LUAD) with a poor prognosis. Alterations in gene or protein expression during various phases of BM remain unclear. METHODS: We performed gene expression and pathway analyses using a metastasis-related gene panel on 12 lung tissues from patients with confirmed BM, 12 lung tissues from patients without BM, and 12 matched brain tissues from patients with confirmed BM during follow-up after LUAD surgery. The results of the gene expression analysis were validated by immunohistochemistry. RESULTS: Cell interaction-related pathways (such as focal adhesion, extracellular matrix-receptor interaction, and proteoglycans in cancer) showed the greatest differences among the three groups. Expression of the cell interaction-related pathway was highest in the lung sample of BM group and lowest in the matched brain tissue. Using a machine learning model, a signature of 20 genes from cell interaction-related pathways accurately predicted BM (area under the curve score of 0.792 and an accuracy rate of 0.875). Immunohistochemical analysis showed higher expression of proteins associated with cell interaction-related genes and a mesenchymal phenotype in the lung sample of BM group than in those without BM or matched brain tissue. CONCLUSIONS: LUAD acquires the characteristics of the cell interaction-related pathway that leads to the development of BM, with a significant decrease in expression following brain colonization.

7.
Plants (Basel) ; 13(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891274

RESUMO

Plants and algae use light not only for driving photosynthesis but also to sense environmental cues and to adjust their circadian clocks via photoreceptors. Aureochromes are blue-light-dependent photoreceptors that also function as transcription factors, possessing both a LOV and a bZIP domain. Aureochromes so far have only been detected in Stramenopile algae, which include the diatoms. Four paralogues of aureochromes have been identified in the pennate model diatom Phaeodactylum tricornutum: PtAureo1a, 1b, 1c, and 2. While it was shown recently that diatoms have a diel rhythm, the molecular mechanisms and components regulating it are still largely unknown. Diel gene expression analyses of wild-type P. tricornutum, a PtAureo1a knockout strain, and the respective PtAureo1 complemented line revealed that all four aureochromes have a different diel regulation and that PtAureo1a has a strong co-regulatory influence on its own transcription, as well as on that of other genes encoding different blue-light photoreceptors (CPF1, 2 and 4), proteins involved in photoprotection (Lhcx1), and specific bHLH transcription factors (RITMO1). Some of these genes completely lost their circadian expression in the PtAureo1a KO mutant. Our results suggest a major involvement of aureochromes in the molecular clock of diatoms.

8.
Int J Mol Sci ; 25(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891958

RESUMO

The plant MADS-box transcription factor family is a major regulator of plant flower development and reproduction, and the AGAMOUS-LIKE11/SEEDSTICK (AGL11/STK) subfamily plays conserved functions in the seed development of flowering plants. Camellia japonica is a world-famous ornamental flower, and its seed kernels are rich in highly valuable fatty acids. Seed abortion has been found to be common in C. japonica, but little is known about how it is regulated during seed development. In this study, we performed a genome-wide analysis of the MADS-box gene the in C. japonica genome and identified 126 MADS-box genes. Through gene expression profiling in various tissue types, we revealed the C/D-class MADS-box genes were preferentially expressed in seed-related tissues. We identified the AGL11/STK-like gene, CjSTK, and showed that it contained a typical STK motif and exclusively expressed during seed development. We found a significant increase in the CjSTK expression level in aborted seeds compared with normally developing seeds. Furthermore, overexpression of CjSTK in Arabidopsis thaliana caused shorter pods and smaller seeds. Taken together, we concluded that the fine regulation of the CjSTK expression at different stages of seed development is critical for ovule formation and seed abortion in C. japonica. The present study provides evidence revealing the regulation of seed development in Camellia.


Assuntos
Camellia , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS , Proteínas de Plantas , Sementes , Camellia/genética , Camellia/metabolismo , Camellia/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Arabidopsis/genética , Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Família Multigênica , Genoma de Planta , Estudo de Associação Genômica Ampla
9.
Biomed Pharmacother ; 176: 116920, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876054

RESUMO

Sarcopenia is a major public health concern among older adults, leading to disabilities, falls, fractures, and mortality. This study aimed to elucidate the pathophysiological mechanisms of sarcopenia and identify potential therapeutic targets using systems biology approaches. RNA-seq data from muscle biopsies of 24 sarcopenic and 29 healthy individuals from a previous cohort were analysed. Differential expression, gene set enrichment, gene co-expression network, and topology analyses were conducted to identify target genes implicated in sarcopenia pathogenesis, resulting in the selection of 6 hub genes (PDHX, AGL, SEMA6C, CASQ1, MYORG, and CCDC69). A drug repurposing approach was then employed to identify new pharmacological treatment options for sarcopenia (clofibric-acid, troglitazone, withaferin-a, palbociclib, MG-132, bortezomib). Finally, validation experiments in muscle cell line (C2C12) revealed MG-132 and troglitazone as promising candidates for sarcopenia treatment. Our approach, based on systems biology and drug repositioning, provides insight into the molecular mechanisms of sarcopenia and offers potential new treatment options using existing drugs.


Assuntos
Reposicionamento de Medicamentos , Sarcopenia , Biologia de Sistemas , Humanos , Sarcopenia/tratamento farmacológico , Sarcopenia/metabolismo , Sarcopenia/genética , Reposicionamento de Medicamentos/métodos , Idoso , Animais , Redes Reguladoras de Genes/efeitos dos fármacos , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Feminino , Linhagem Celular , Troglitazona , Terapia de Alvo Molecular , Leupeptinas/farmacologia , Leupeptinas/uso terapêutico
10.
Poult Sci ; 103(8): 103902, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38908127

RESUMO

Wooden Breast (WB) abnormality represents one of the major challenges that the poultry industry has faced in the last 10 years. Despite the enormous progress in understanding the mechanisms underlying WB, the precise initial causes remain to be clarified. In this scenario, the present research is intended to characterize the gene expression profiles of broiler Pectoralis major muscles affected by WB, comparing them to the unaffected counterpart, to provide new insights into the biological mechanisms underlying this defect and potentially identifying novel genes likely involved in its occurrence. To this purpose, data obtained in a previous study through the RNA-sequencing technology have been used to identify differentially expressed genes (DEGs) between 6 affected and 5 unaffected broilers' breast muscles, by using the newest reference genome assembly for Gallus gallus (GRCg7b). Also, to deeply investigate molecular and biological pathways involved in the WB progression, pathways analyses have been performed. The results achieved through the differential gene expression analysis mainly evidenced the downregulation of glycogen metabolic processes, gluconeogenesis, and tricarboxylic acid cycle in WB muscles, thus corroborating the evidence of a dysregulated energy metabolism characterizing breasts affected by this abnormality. Also, genes related to hypertrophic muscle growth have been identified as differentially expressed (e.g., WFIKKN1). Together with that, a downregulation of genes involved in mitochondrial biogenesis and functionality has been detected. Among them, PPARGC1A and PPARGC1B chicken genes are particularly noteworthy. These genes not only have essential roles in regulating mitochondrial biogenesis but also play pivotal roles in maintaining glucose and energy homeostasis. In view of that, their downregulation in WB-affected muscle may be considered as potentially related to both the mitochondrial dysfunction and altered glucose metabolism in WB muscles, and their key involvement in the molecular alterations characterizing this muscular abnormality might be hypothesized.

11.
Sci Rep ; 14(1): 14023, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890348

RESUMO

The mechanism of spinal cord injury (SCI) is highly complex, and an increasing number of studies have indicated the involvement of pyroptosis in the physiological and pathological processes of secondary SCI. However, there is limited bioinformatics research on pyroptosis-related genes (PRGs) in SCI. This study aims to identify and validate differentially expressed PRGs in the GEO database, perform bioinformatics analysis, and construct regulatory networks to explore potential regulatory mechanisms and therapeutic targets for SCI. We obtained high-throughput sequencing datasets of SCI in rats and mice from the GEO database. Differential analysis was conducted using the "limma" package in R to identify differentially expressed genes (DEGs). These genes were then intersected with previously reported PRGs, resulting in a set of PRGs in SCI. GO and KEGG enrichment analyses, as well as correlation analysis, were performed on the PRGs in both rat and mouse models of SCI. Additionally, a protein-protein interaction (PPI) network was constructed using the STRING website to examine the relationships between proteins. Hub genes were identified using Cytoscape software, and the intersection of the top 5 hub genes in rats and mice were selected for subsequent experimentally validated. Furthermore, a competing endogenous RNA (ceRNA) network was constructed to explore potential regulatory mechanisms. The gene expression profiles of GSE93249, GSE133093, GSE138637, GSE174549, GSE45376, GSE171441_3d and GSE171441_35d were selected in this study. We identified 10 and 12 PRGs in rats and mice datasets respectively. Six common DEGs were identified in the intersection of rats and mice PRGs. Enrichment analysis of these DEGs indicated that GO analysis was mainly focused on inflammation-related factors, while KEGG analysis showed that the most genes were enriched on the NOD-like receptor signaling pathway. We constructed a ceRNA regulatory network that consisted of five important PRGs, as well as 24 miRNAs and 34 lncRNAs. This network revealed potential regulatory mechanisms. Additionally, the three hub genes obtained from the intersection were validated in the rat model, showing high expression of PRGs in SCI. Pyroptosis is involved in secondary SCI and may play a significant role in its pathogenesis. The regulatory mechanisms associated with pyroptosis deserve further in-depth research.


Assuntos
Biologia Computacional , Redes Reguladoras de Genes , Mapas de Interação de Proteínas , Piroptose , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Camundongos , Piroptose/genética , Ratos , Biologia Computacional/métodos , Mapas de Interação de Proteínas/genética , Perfilação da Expressão Gênica
12.
Plant Biol (Stuttg) ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924267

RESUMO

YABBY genes encode specific TFs of seed plants involved in development and formation of leaves, flowers, and fruit. In the present work, genome-wide and expression analyses of the YABBY gene family were performed in six species of the Fragaria genus: Fragaria × ananassa, F. daltoniana, F. nilgerrensis, F. pentaphylla, F. viridis, and F. vesca. The chromosomal location, synteny pattern, gene structure, and phylogenetic analyses were carried out. By combining RNA-seq data and RT-qPCR analysis we explored specific expression of YABBYs in F. × ananassa and F. vesca. We also analysed the promoter regions of FaYABBYs and performed MeJA application to F. × ananassa fruit to observe effects on gene expression. We identified and characterized 25 YABBY genes in F. × ananassa and six in each of the other five species, which belong to FIL/YAB3 (YABBY1), YAB2 (YABBY2), YAB5 (YABBY5), CRC, and INO clades previously described. Division of the YABBY1 clade into YABBY1.1 and YABBY1.2 subclades is reported. We observed differential expression according to tissue, where some FaYABBYs are expressed mainly in leaves and flowers and to a minor extent during fruit development of F. × ananassa. Specifically, the FaINO genes contain jasmonate-responsive cis-acting elements in their promoters which may be functional since FaINOs are upregulated in F. × ananassa fruit under MeJA treatment. This study suggests that YABBY TFs play an important role in the development- and environment-associated responses of the Fragaria genus.

13.
Biosensors (Basel) ; 14(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38920610

RESUMO

Current quantitative gene expression detection in genomic and transcriptomic research heavily relies on quantitative real-time PCR (qPCR). While existing multiplex gene detection techniques offer simultaneous analysis of multiple targets, we present an alternative assay capable of detecting gene expression simultaneously within a single well. This highly sensitive method utilizes πCode MicroDiscs, featuring unique identification patterns and fluorescent detection. Our study compared this multiplex πCode platform with a qPCR platform for profiling cytokine gene expression. The πCode MicroDisc assay successfully demonstrated the expression of polymerization markers for M1- and M2-like macrophages generated from THP-1-derived macrophages in a qualitative assay. Additionally, our findings suggest a pattern agreement between the πCode assay and the qPCR assay, indicating the potential of the πCode technology for comparative gene expression analysis. Regarding the inherent sensitivity and linearity, the developed πCode assay primarily provides qualitative gene expression to discriminate the polarization of macrophages. This remarkable capability presents substantial advantages for researchers, rendering the technology highly suitable for high-throughput applications in clinical diagnosis and disease monitoring.


Assuntos
Citocinas , Macrófagos , Humanos , Citocinas/metabolismo , Técnicas Biossensoriais , Fótons , Perfilação da Expressão Gênica , Expressão Gênica , Reação em Cadeia da Polimerase em Tempo Real
14.
Cureus ; 16(5): e60699, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38910609

RESUMO

The utilization of herbal formulations for the management of reproductive tract disorders has been a longstanding practice in traditional medicine. In this study, we investigated the efficacy of a herbal extract, Shalmali (Bombax ceiba), in addressing uterine bleeding, a common concern in gynecological health. Through gene expression analysis, this study examined the impact of Shalmali extract on key genes associated with uterine bleeding, namely ESR1, CD56, and SDF-1, in the human endometrial stromal cell line (T HESC). Our findings revealed a dose-dependent decrease in ESR1 and CD56 gene expression levels following treatment with Shalmali extract, suggesting its potential to modulate hormonal and cellular processes involved in uterine bleeding. Notably, an increase in SDF-1 gene expression was observed, indicating a possible role of Shalmali extract in promoting tissue repair and regeneration. Comparison with the standard drug tranexamic acid demonstrated similar effects on gene expression levels, further validating the therapeutic potential of Shalmali extract. Agarose gel electrophoresis images supported these findings, showing reduced gene expression in cells treated with Shalmali extract comparable to those treated with tranexamic acid. These results underscore the promising efficacy of Shalmali extract as a natural alternative for managing uterine bleeding, potentially offering a safe and effective treatment option for individuals seeking traditional remedies for gynecological concerns. Further research is warranted to elucidate the underlying mechanisms of action and assess the long-term safety and efficacy of Shalmali extract in clinical settings.

15.
Front Mol Biosci ; 11: 1365888, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915939

RESUMO

Introduction: Newcastle disease is a highly infectious disease caused by the Newcastle Disease Virus (NDV) and has a devastating financial impact on the global chicken industry. It was previously established that Leghorn and Fayoumi breeds of chicken exhibit variable resistance against NDV infection. The harderian gland is the less studied tissue of the chicken, known to play an essential role in the immune response. Methods: Our previous study, we reported differential gene expression and long noncoding RNAs (lncRNAs) between challenged and non-challenged chickens in the Harderian gland transcriptomic data. Now, we report the analysis of the same data studying the differential expression patterns between Leghorn and Fayoumi and between different timepoints during disease. First, the pipeline FHSpipe was used for identification of lncRNAs, followed by differential expression analysis by edgeR (GLM), functional annotation by OmicsBox, co-expression analysis using WGCNA and finally validation of selected lncRNAs and co-expressing genes using qRT-PCR. Results: Here, we observed that Leghorn showed a higher number of upregulated immune-related genes than Fayoumi in timepoint-based analysis, especially during the initial stages. Surprisingly, Fayoumi, being comparatively resistant, showed little difference between challenged and non-challenged conditions and different time points of the challenge. The breed-based analysis, which compared Leghorn with Fayoumi in both challenged and non-challenged conditions separately, identified several immune-related genes and positive co-expressing cis lncRNAs to be upregulated in Fayoumi when compared to Leghorn in both challenged and non-challenged conditions. Discussion: The current study shows that Leghorn, being comparatively more susceptible to NDV than Fayoumi, showed several immune-related genes and positive co-expressing cis lncRNAs upregulated in challenged Leghorn when compared to non-challenged Leghorn and also in different timepoints during challenge. While, breed-based analysis showed that there were more upregulated immune genes and positive cis-lncRNAs in Fayoumi than Leghorn. This result clearly shows that the differences in the expression of genes annotated with immune-related GO terms and pathways, i.e., immune-related genes and the co-expressing cis-lncRNAs between Leghorn and Fayoumi, and their role in the presence of differences in the resistance of Leghorn and Fayoumi chicken against NDV. Conclusion: These immune-genes and cis-lncRNAs could play a role in Fayoumi being comparatively more resistant to NDV than Leghorn. Our study elucidated the importance of lncRNAs during the host defense against NDV infection, paving the way for future research on the mechanisms governing the genetic improvement of chicken breeds.

16.
Genes (Basel) ; 15(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38927632

RESUMO

Zinc (Zn)- and iron (Fe)-regulating transport-like proteins (ZIPs) are a class of proteins crucial for metal uptake and transport in plants, particularly for Zn and Fe absorption and distribution. These proteins ensure the balance of trace elements essential for plant growth, development, and metabolic activities. However, the role of the rice (Oryza sativa) OsZIP gene family in manganese (Mn) and selenium (Se) transport remains underexplored. This research conducted an all-sided analysis of the rice OsZIPs and identified 16 OsZIP sequences. Phylogenetic analysis categorized the OsZIPs predominantly within the three subfamilies. The expression levels of OsZIPs in rice root and leaf subjected to Mn and Se toxicity stress were examined through quantitative real-time PCR (qRT-PCR). The findings revealed significant differential expression of many OsZIPs under these conditions, indicating a potential regulating effect in the response of rice to Mn and Se toxicity. This work lays a foundation for further functional studies of OsZIPs, enhancing our understanding of the response mechanisms of rice to Mn and Se toxicity and their roles in growth, development, and environmental adaptation.


Assuntos
Regulação da Expressão Gênica de Plantas , Manganês , Oryza , Filogenia , Proteínas de Plantas , Selênio , Estresse Fisiológico , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Selênio/metabolismo , Selênio/toxicidade , Manganês/toxicidade , Manganês/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Genoma de Planta , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos
17.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38928070

RESUMO

The GRAS gene family, responsible for encoding transcription factors, serves pivotal functions in plant development, growth, and responses to stress. The exploration of the GRAS gene family within the Orchidaceae has been comparatively limited, despite its identification and functional description in various plant species. This study aimed to conduct a thorough examination of the GRAS gene family in Cymbidum goeringii, focusing on its physicochemical attributes, phylogenetic associations, gene structure, cis-acting elements, and expression profiles under heat stress. The results show that a total of 54 CgGRASs were pinpointed from the genome repository and categorized into ten subfamilies via phylogenetic associations. Assessment of gene sequence and structure disclosed the prevalent existence of the VHIID domain in most CgGRASs, with around 57.41% (31/54) CgGRASs lacking introns. The Ka/Ks ratios of all CgGRASs were below one, indicating purifying selection across all CgGRASs. Examination of cis-acting elements unveiled the presence of numerous elements linked to light response, plant hormone signaling, and stress responsiveness. Furthermore, CgGRAS5 contained the highest quantity of cis-acting elements linked to stress response. Experimental results from RT-qPCR demonstrated notable variations in the expression levels of eight CgGRASs after heat stress conditions, particularly within the LAS, HAM, and SCL4/7 subfamilies. In conclusion, this study revealed the expression pattern of CgGRASs under heat stress, providing reference for further exploration into the roles of CgGRAS transcription factors in stress adaptation.


Assuntos
Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Família Multigênica , Orchidaceae , Filogenia , Proteínas de Plantas , Resposta ao Choque Térmico/genética , Orchidaceae/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genoma de Planta , Perfilação da Expressão Gênica/métodos
18.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928374

RESUMO

Cytochrome P450 monooxygenases (CYP450s) play a variety of physiological roles, including pesticide resistance, plant allelochemical detoxification, and hormone metabolism catalysis. However, limited information is available on the classification and expression profiles of the CYP450 gene family in aphid species. This is the first study to identify the cytochrome P450 gene family in 19 aphid species at the whole genome level. A total of 1100 CYP450 genes were identified in 19 aphid species. Three hundred CYP450 genes belonged to six cereal crop aphid species, which were further classified into four subfamilies according to the phylogenetic relationship. The conserved motifs, exon-intron structures, and genomic organization of the same subfamilies were similar. Predictions of subcellular localization revealed that the endoplasmic reticulum harbored the majority of CYP450 proteins. In Sitobion avenae and Rhopalosiphum maidis, the increase in the CYP450 gene was primarily caused by segmental duplication events. However, only tandem duplication occurred in the CYP450 gene family of Diuraphis noxia, Rhopalosiphum padi, Schizaphis graminum, and Sitobion miscanthi. Synteny analysis found three continuous colinear CYP450 gene pairs among six cereal crop aphid species. Furthermore, we obtained the expression profiles of four cereal crop aphids, including R. padi, D. noxia, S. graminum, and S. avenae. Differential expression analysis provided growth stage specificity genes, tissue specificity genes, organ specificity genes and some detoxification metabolic genes among these four cereal crop aphids. Meanwhile, their expression patterns were showed. The related functions and pathways of CYP450s were revealed by GO and KEGG enrichment analysis. Above all, we picked the differentially expressed CYP450 genes from all of the differentially expressed genes (DEGs). These differentially expressed CYP450 genes provided some new potential candidates for aphid control and management. This work establishes the foundation for further investigations into the regulatory functions of the CYP450 gene family in aphid species and beyond.


Assuntos
Afídeos , Sistema Enzimático do Citocromo P-450 , Família Multigênica , Filogenia , Afídeos/genética , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Grão Comestível/genética , Grão Comestível/parasitologia , Genoma de Inseto , Perfilação da Expressão Gênica , Sintenia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
19.
Diabetes Metab J ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853519

RESUMO

Background: Metabolic dysregulation is a hallmark of type 2 diabetes mellitus (T2DM), in which the abnormalities in brown adipose tissue (BAT) play important roles. However, the cellular composition and function of BAT as well as its pathological significance in diabetes remain incompletely understood. Our objective is to delineate the single-cell landscape of BAT-derived stromal vascular fraction (SVF) and their characteristic alterations in T2DM rats. Methods: T2DM was induced in rats by intraperitoneal injection of low-dose streptozotocin and high-fat diet feeding. Single-cell mRNA sequencing was then performed on BAT samples and compared to normal rats to characterize changes in T2DM rats. Subsequently, the importance of key cell subsets in T2DM was elucidated using various functional studies. Results: Almost all cell types in the BAT-derived SVF of T2DM rats exhibited enhanced inflammatory responses, increased angiogenesis, and disordered glucose and lipid metabolism. The multidirectional differentiation potential of adipose tissue-derived stem cells was also reduced. Moreover, macrophages played a pivotal role in intercellular crosstalk of BAT-derived SVF. A novel Rarres2+macrophage subset promoted the differentiation and metabolic function of brown adipocytes via adipose-immune crosstalk. Conclusion: BAT SVF exhibited strong heterogeneity in cellular composition and function and contributed to T2DM as a significant inflammation source, in which a novel macrophage subset was identified that can promote brown adipocyte function.

20.
Front Immunol ; 15: 1383498, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827743

RESUMO

This study investigates immune priming effects associated with granulocytes in crickets through a comprehensive analysis. Kaplan-Meier survival analysis reveals a significant contrast in survival rates, with the heat-killed Bacillus thuringiensis (Bt)-primed group exhibiting an impressive ~80% survival rate compared to the PBS buffer-primed group with only ~10% survival 60 hours post live Bt infection. Hemocyte analysis underscores elevated hemocyte counts, particularly in granulocytes of the killed Bt-primed group, suggesting a correlation between the heat-killed Bt priming and heightened immune activation. Microscopy techniques further explore granulocyte morphology, unveiling distinctive immune responses in the killed Bt-primed group characterized by prolonged immune activation, heightened granulocyte activity, phagocytosis, and extracellular trap formation, contributing to enhanced survival rates. In particular, after 24 hours of injecting live Bt, most granulocytes in the PBS buffer-primed group exhibited extracellular DNA trap cell death (ETosis), while in the killed Bt-primed group, the majority of granulocytes were observed to maintain highly activated extracellular traps, sustaining the immune response. Gene expression analysis supports these findings, revealing differential regulation of immune-related genes such as antibacterial humoral response, detection of bacterial lipopeptides, and cellular response to bacteria lipopeptides. Additionally, the heat-killed Bt-primed group, the heat-killed E. coli-primed group, and the PBS-primed group were re-injected with live Bt 2 and 9 days post priming. Two days later, only the PBS-primed group displayed low survival rates. After injecting live Bt 9 days later, the heat-killed E. coli-primed group surprisingly showed a similarly low survival rate, while the heat-killed Bt-primed group exhibited a high survival rate of ~60% after 60 hours, with actively moving and healthy crickets. In conclusion, this research provides valuable insights into both short-term and long-term immune priming effects in crickets, contributing to our understanding of invertebrate immunity with potential applications in public health.


Assuntos
Bacillus thuringiensis , Granulócitos , Gryllidae , Animais , Granulócitos/imunologia , Gryllidae/imunologia , Bacillus thuringiensis/imunologia , Fagocitose/imunologia , Hemócitos/imunologia , Armadilhas Extracelulares/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...