Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124548, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38861825

RESUMO

As it is commonly known, CO2 reacts simultaneously with basic O2- and basic OH sites on oxides forming carbonates and bicarbonates, which can be followed by infrared spectroscopy (IR). However, here, we succeeded to elaborate experimental conditions under which CO2 reacted solely with O2- forming CO32- for ZrO2 and CeO2, and calculated the extinction coefficients of diagnostic bands of carbonate and bicarbonate species. For the first time, the developed IR method enabled the concentrations of O2- and basic OH for ZrO2, CeO2, Al2O3 and CuO to be measured separately. Moreover, in the case of all IR studied oxides, the sum of concentrations of O-2 and basic OH basic sites was comparable with the concentration determined by pulse adsorption of CO2. Thus, the presented extinction coefficients can be applied for IR basicity studies of various basic catalysts. We also followed the effect of thermal treatment on basicity of oxides.

2.
Anal Biochem ; 690: 115508, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38494101

RESUMO

Biologicals developers often face challenges in accurately determining the extinction coefficient (EC) measurement. We have successfully improved the precision and robustness of the widely recognized amino acid analysis method for EC determination, through a stepwise optimization process. Extensive analyses based on 114 observations, covering eight proteins over three years were performed, with a maximum relative standard deviation of 1.5% among multiple analysts, and a maximum deviation of 2.8% from the theoretical EC across the eight given proteins examined.

3.
Int J Biol Macromol ; 264(Pt 1): 130479, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431003

RESUMO

This work reports an improved enzyme-linked immunosorbent assay (ELISA) via the interaction between prussian blue nanoparticles (PBNPs) and amines for aflatoxin B1 (AFB1) detection. The effect of different amines on the structure and properties of PBNPs was systematically investigated. Amines with pKb < 7, like ethylenediamine (EDA), can decompose structure of PBNPs, leading to the reduction of extinction coefficient and photothermal effect. Whereas, amines with large pKb > 7, such as o-phenylenediamine (OPD), could undergo catalytic oxidation by PBNPs, resulting in the production of fluorescent and colored oxidation products. Accordingly, EDA and OPD were used to construct improved ELISA. Specifically, silica nanoparticles, on which AFB1 aptamer and amino binding agent (ethylenediaminetetraacetic acid disodium salt, EDTA•2Na) were previously assembled via carboxyl-amino linkage, are anchored to microplates by AFB1 and antibody. EDA concentration can be regulated by EDTA•2Na to affect extinction coefficient and photothermal effect of PBNPs, thereby achieving visual colorimetric and portable photothermal signal readout (Model 1). OPD concentration can also be controlled by EDTA•2Na, thus generating colorimetric and ultrasensitive fluorescent signals through PBNPs catalysis (Model 2). The proposed strategy not only opens new avenue for signal readout mode of biosensing, but also provides universal technique for hazards.


Assuntos
Técnicas Biossensoriais , Ferrocianetos , Nanopartículas , Aflatoxina B1/análise , Aminas , Nanopartículas/química , Ensaio de Imunoadsorção Enzimática , Técnicas Biossensoriais/métodos , Limite de Detecção
4.
Sci Total Environ ; 926: 171989, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547971

RESUMO

To understand the characteristics of atmospheric pollution above the urban canopy in warm seasons, the characteristics of sub-micron aerosol (PM1) was studied based on high-altitude observations at the Beijing 325 m meteorological tower. The PM1 at 260 m was 34, 29 and 21 µg m-3 in May 2015, June 2015, and June 2017, respectively, indicating a reduction in PM1 pollution above the urban canopy. Meanwhile, an overall decrease was also observed in the concentrations of all PM1 chemical species (excluding Chl and BC) and organic aerosol (OA) factors. Previous instances of heavy haze in Beijing often coincided with high humidity and stagnant weather conditions. However, the heightened pollution episodes in June 2017 were accompanied by high wind speeds and low relative humidity. Compared to May 2015, the contribution of secondary components to PM1 in June 2017 was more prominent, with the total proportion of SNA (sulfate, nitrate, and ammonium) and more-oxidized oxygenated OA (MO-OOA) to PM1 increased by approximately 10 %. Secondary species of NH4NO3, (NH4)2SO4, and MO-OOA, as well as black carbon, collectively contributed the vast majority of aerosol extinction coefficient (bext), with the four species contributing a total of ≥96 % to bext at 260 m. Hydrocarbon-like OA, cooking OA, and less-oxidized oxygenated OA have undergone significant reductions, so continued emphasis on controlling local sources to reduce these three aerosol species and addressing regional sources to further mitigate overall aerosol species is imperative. In lower pollution situation, the diurnal variation of PM was smoother, and its pollution sources were more regionally uniform, which might be attributed to the reduced diversity and complexity in the physical and chemical processes in air pollution.

5.
Small ; 20(3): e2305546, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37702148

RESUMO

Halide ion exchange seen in metal halide perovskites provide a substantial opportunity to control their halide composition and corresponding optoelectronic properties. Halide ion mixing across colloidal 3D perovskite nanocrystals have been extensively studied while the mixing within colloidal 2D counterparts remain underexplored. In this study, the halide ion exchange kinetics across colloidally stable 2D Ruddlesden-Popper layered bromide (Br) and iodide (I) perovskites using two different spacer ligands such as aromatic phenethylammonium (PEA) versus linear butyammonium (BA) is demonstrated. The halide exchange kinetic rate constant (k), as determined by tracking time-dependent absorbance changes, indicates that Br/I halide mixing in 2D PEA-based perovskites (2.7 × 10-3 min-1 ) occurs at an order of magnitude slower than in 2D BA-based perovskites (3.3 × 10-2 min-1 ). Concentration (≈1 mM to 100 mM) and temperature-dependent (50 to 80 °C) kinetic studies further allow for the determination of activation barrier for halide ion mixing across the 2D layered perovskites with 75.2 ± 4.4 kJ mol-1 (2D PEA) and 57.8 ± 7.8 kJ mol-1 (2D BA), respectively. The activation energy reveals that the type of spacer cations plays a crucial role in controlling the halide ion mobility and halide stability due mainly to the internal ligand chemical interaction within 2D structures.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123797, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38134658

RESUMO

Catechin is considered a powerful antioxidant, and its rapid quantification could help urgently prevent inflammatory and coronary heart diseases. Consequently, the UV-Vis absorption spectrophotometry assay technique could serve this need for rapid detection. For this reason, we have carefully studied the possibility of dosing this antioxidant found in strawberry extract with precision, despite its chemical complexity. In the dosage technique used; sometimes the dilution of the solutions could be the way to resolve a specific quantification problem such as catechin in strawberry extract. This is quite particular, when the optical extinction coefficient of the target substance is very low compared to the extinction coefficients of the other chemical compounds in the complex mixture, because at a certain dilution the absorption spectrum of the molecule could appear, specifically, with its total spectral form or at least at one of these wavelengths. In this article, we will study the possibility of rapidly measuring catechin from strawberry extract by spectrophotometry in UV-VIS, while reformulating the Beer-Lambert law in a new form where the extinction coefficient did not depend not only of the chemical nature of the solute and the solvent but also of the excitation wavelength (ε(λ), Eq. (9)). A catechin-methanol solution is taken as a reference to study the spectral variation due to the various dilutions of the solution and the determination of a limiting concentration where the excitation wavelength becomes constant (203 nm), thus the extinction coefficient of the catechin, denoted ε0, but the measurement sensitivity is suddenly reduced. A semi-empirical relationship is determined by linearization of the absorbance function which depended on the concentration (C) and the excitation wavelength (ε(λ)). A separation process will be exposed to recover the strawberry extract, as well as its spectral analysis. Finally, a procedure for analyzing any strawberry extract will be presented at the end of this scientific article.


Assuntos
Catequina , Fragaria , Antioxidantes , Espectrofotometria , Solventes
7.
Huan Jing Ke Xue ; 44(10): 5356-5369, 2023 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-37827754

RESUMO

Recently, the contribution of inorganic salts (nitrates in particular) to the mass concentration of particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) has been increasing across China. However, it is urgent to understand how the increased inorganic salts affect the crucial properties of PM2.5. Here, we conducted continuous field observations at Zhenjiang Ecology and Environment Protection Bureau from January 1 to December 31, 2021. The mass concentrations of ammonium sulfate[(NH4)2SO4] and ammonium nitrate (NH4NO3) were calculated using different methods. The contributions of (NH4)2SO4 and NH4NO3 to the extinction coefficient, hygroscopic growth, and acidity of PM2.5 were discussed in detail. Our results demonstrated that the mean mass concentrations of (NH4)2SO4 and NH4NO3 during the study period were (6.5±4.5) and (15.0±13.3) µg·m-3, which contributed (20.5±18.2)% and (34.5±18.4)% to the mass concentration of PM2.5, respectively. The total extinction coefficient of PM2.5 was (224.5±194.2) Mm-1, in which NH4NO3 was the largest contributor[(40.1±20.9)%] followed by (NH4)2SO4[(19.1±10.8)%]. (NH4)2SO4 and NH4NO3 were also the dominant contributors to the hygroscopic growth of PM2.5. In particular, NH4NO3contributed from (53.8±13.4)% to (61.6±14.6)% to the aerosol water content of PM2.5 under pollution conditions. Thus, NH4NO3 was a key air pollutant to be targeted for further improving the visibility and air quality in Zhenjiang in the future. However, the reduction in the precursors of NH4NO3 would lead to an increase in aerosol acidity, particularly in the spring and winter seasons. Our results help us understand the evolution of air quality and the related impacts and also provide important information on air quality improvement in Zhenjiang in the future.

8.
Heliyon ; 9(8): e19281, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37664727

RESUMO

Scattering visiometers are widely used to measure atmospheric visibility; however, visibility is difficult to measure accurately because the extinction coefficient decays exponentially with visual range according to the Koschmid's law. Moreover, models for predicting visibility are lacking due to the lack of accurate visibility observations to verify. This study formulated an artificial intelligence method for measuring atmospheric visibility in five topographical regions: hills, basins, plains, alluvial plains, and rift valleys. Four air pollution factors and five meteorological factors were selected as independent variables for predicting visibility by using three artificial intelligence models, namely a support vector machine (SVM) model, a multilayer perceptron (MLP) model, and an extreme gradient boosting (XGBoost) model. The GridSearchCV function was used to automatically tune model hyperparameters to determine the optimal parameter values of the three models for the five target areas. The predictions of the aforementioned three models underwent considerable considerably scale shrinking relative to observed values. The inappropriately low predicted visibility values might have been caused by the use of inaccurate observations for training. To solve this problem, formulas of scale ratio and downshift were used to adjust the predicted values. Statistical measurements of model performance measures by five quantitative methods (e.g., correlation coefficient, mean absolute error) showed that adjusted predictions were in strong agreement with the observation data for the five target areas. Therefore, the adjusted prediction has high reliability. Because of obvious differences in the topography, weather, and air quality of the five target areas, different models provided optimal predictions for different areas. In densely populated western Taiwan, the MLP model is most suitable for predicting visibility on hills whereas the XGBoost model is most suitable for predicting visibility on basins and plains. In eastern Taiwan, the SVM model is most suitable for predicting visibility on alluvial plains and rift valleys. Thus, the optimal prediction model should be identified according to the conditions in each area. These results can inform decision-making processes or improve visibility predicting in specific areas.

9.
Sci Total Environ ; 901: 166461, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37607630

RESUMO

Aerosol-bound water, a ubiquitous and abundant component of atmospheric aerosols, has an impact on regional climate, visibility, human health, the hydrological cycle, and atmospheric chemistry. Yet, the intricate relationship between aerosol liquid water (ALWC) and chemical composition and relative humidity (RH) was not well understood. The present study explores ALWC derived from the ISORROPIA II model using real-time, high-resolution data of non-refractory submicron chemical species and meteorological parameters (temperature and RH) collected over the Indian Ocean as part of the ICARB (Integrated Campaign for Aerosols, Gases, and Radiation Budget)-2018 experiment. Results show that ALWC values over the South Eastern Arabian Sea (SEAS) were found to be higher by 4-6 times than those observed over the Equatorial Indian Ocean (EIO) due to a large decrease in aerosol loading from SEAS to EIO. ALWC peaked in the early morning hours (4:00-7:00), with greater values during the nighttime and lower values during the daytime across SEAS, which is comparable with RH variation. While the ratio of organics-to-SO42- mass fraction linearly decreased with increasing mass-based growth factors (MGFs) over EIO, such a scenario was not observed over SEAS. The latitudinal gradient of mass fraction of ALWC had shown a decrease towards EIO, consistent with organic fraction. The extinction coefficient of the dry mass of submicron particles is noticeably increased by 40 % by ALWC over SEAS and EIO. Moreover, ALWC could enhance the aerosol negative forcing by an average of 66 % (64 %) over SEAS (EIO) at the top of the atmosphere during the cruise period. These inferences imply that ALWC is the key factor in assessing the role of aerosols on atmospheric radiative forcing. Overall, the present study highlights the serious need to consider the ALWC in climate forcing simulations, particularly in moist tropical environments where their effect can be significant.

10.
Polymers (Basel) ; 15(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37571192

RESUMO

In this work, the complex refractive indexes of seven PEDOT:PSS samples, three with isotropic behavior and four with optical anisotropy, were determined. For the anisotropic samples, the ordinary and extraordinary components of the refractive index were described. The effect of the film thickness, measurement technique and preparation method on the extinction coefficient (k) and refractive index (n) of each sample was also discussed. Important differences (up to 20% in the average n) were found among the samples investigated. In most anisotropic films, the mean value of the extraordinary component was between 7 and 10% higher than that of the ordinary. In the three isotropic films, the average k rose when the film thickness increased. Moreover, the different sets of refractive index data were fitted to three different models: the original Forouhi-Bloomer model, the Liu (2007) model and the revised version of the Forouhi-Bloomer model (2019). In general, Liu's model gave better results, with small errors in n and k (<7.81 and 4.68%, respectively, in all the cases). However, this model had seven fitting parameters, which led to significantly longer computation time than the other two models. The influence of the differences in the measurement of the complex refractive index on the simulation of the optical properties of PEDOT:PSS multilayers was discussed. The results showed that n must be known precisely to accurately calculate the light absorption in a multilayer, without ignoring the isotropic or anisotropic behavior of the material or the influence of the layer thickness on its optical properties. This study aids in the development of simulation and optimization tools that allow understanding the optical properties of PEDOT:PSS films for their potential applications in organic optoelectronic devices, such as organic solar cells.

11.
Food Chem ; 427: 136721, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390742

RESUMO

Lateral flow immunoassay strips (LFIAs) are a reliable and point-of-care detection method for rapid monitoring of bacteria, but their sensitivity was limited by the low extinction coefficient of colloidal gold nanoparticles (Au NPs) and low capture efficiency of test-line. In this study, polydopamine nanoparticles (PDA NPs) were employed to replace Au NPs, due to their high extinction coefficient. And the amount of test-line was increased to 5 for further improving the efficiency of bacteria capture. Thus, under visual observation, the detection limits of PDA-based LFIAs (102 CFU/mL) were about 2 orders of magnitude lower than Au-based LFIAs (104 CFU/mL). Furthermore, the invisible signal could be collected by Image J and the detection limit can reach 10 CFU/mL. The proposed test strips were successfully applied for the quantitative, accurate, and rapid screening of E. coli in food samples. This study provided a universal approach to enhance the sensitivity of bacteria LFIAs.


Assuntos
Escherichia coli , Nanopartículas Metálicas , Limite de Detecção , Ouro , Imunoensaio
12.
PeerJ ; 11: e15233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37131994

RESUMO

Maize germplasm has greater latent potential to address the global food and feed crisis because of its high radiation, water and nutrient efficiencies. Photosynthetic and canopy architectural traits in maize are important in determining yield. The present study aimed to screen a subset of local maize accessions in Sri Lanka to evaluate their photosynthetic, biomass and yield related traits and to identify resource efficient germplasm. Experiments were carried out in the Ampara district of Sri Lanka. Eight maize accessions viz; SEU2, SEU6, SEU9, SEU10, SEU14, SEU15, SEU17 and SEU17 and two elite F1 cultivars (cv. Pacific-999 and cv. Bhadra) were analyzed under field conditions. Our results showed that maize genotypes produced a lower leaf area index (LAI) at the third and tenth week after field planting (WAP). However, the LAI was significantly increased in six WAP by Pacific-999, SEU2, SEU9, and SEU15. A similar trend was observed for percentage of light interception at three WAP (47%), six WAP (>64%), and decreased at 10 WAP. In addition, LAI maximum values were between 3.0 and 3.5, allowing 80% of the incident light to be intercepted by maize canopies. The estimated light extinction coefficient (k) remained lower (<0.5), suggesting that maize leaves are eractophilic canopies. Although fractional interception (f) varies, SEU2 and SEU9 had the highest values (0.57), and quantum yields of PSII (>0.73) in dark-adapted leaves. In addition, Pacific-999, SEU2, SEU9, and SEU17 had significantly higher rates of photosynthesis with minimal stomatal conductance and transpiration rates. As a result, they outperformed the control plants in terms of biomass, cob weight and grain yield. This suggests that native maize germplasm could be introduced as novel, less resource-intensive cultivars to sustain global food security.


Assuntos
Fotossíntese , Zea mays , Zea mays/genética , Biomassa , Fotossíntese/genética , Grão Comestível , Folhas de Planta/genética
13.
Environ Pollut ; 323: 121309, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822310

RESUMO

In recent years, the annual mean concentration of PM2.5 has decreased in Chengdu, China; however, atmospheric visibility has not improved accordingly. Low-visibility events occurred even when the PM2.5 mass concentrations were below the national ambient air quality secondary standard (daily mean concentration, 75 µg/m3). In this study, the non-linear relationship between PM2.5 and visibility was analyzed under different NO3- mass fractions in PM2.5 based on 2-year field observation data. The results indicated that NO3- formation contributed to particulate pollution events and reduced atmospheric visibility. Multiple linear regression was used to propose a localized reconstruction equation for the light-scattering coefficient. According to the maximum likelihood estimation method and log-transformed residuals, the mass scattering coefficients (MSEs) of organic matter (OM), NH4NO3, and (NH4)2SO4 in Chengdu were 7.42, 3.83, and 3.80, respectively. OM and NH4NO3 contributed to more than 50% of the light-extinction coefficient (bext). NH4NO3 was the main pollutant causing the substantial increase in bext. Chengdu has a high relative humidity (annual mean 70%), and under such conditions, the contribution of NH4NO3 to bext was considerably enhanced through hygroscopic growth and heterogeneous reactions. This study estimated the localized MSEs of OM, NH4NO3, and (NH4)2SO4 in Chengdu and emphasized that effective control measures to reduce nitrate and its precursors could simultaneously ameliorate air quality and visibility in humid regions with poor atmospheric visibility.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Nitratos/análise , Modelos Lineares , Monitoramento Ambiental , Estações do Ano , Poluição do Ar/análise , China , Aerossóis/análise
14.
Sensors (Basel) ; 23(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679697

RESUMO

High-quality measurements of air quality are the highest priority for understanding widespread air pollution. Visibility has been widely suggested to be a good alternative to PM2.5 concentration as a measure. In this study, the similarities and differences between visibility and PM2.5 measurements in China are checked and the results reveal the potential application of visibility observation to the study of air quality. Based on the quality-controlled PM2.5 and visibility data from 2016 to 2018, the nonparametric Spearman correlation coefficient (ρ) values between stations for PM2.5 and visibility-derived surface extinction coefficient (bext) decrease as the station distance (R) increases. Some relatively low ρ values (<0.4) occur in regions characterized by the lowest (background) levels of PM2.5 and bext values, for example, the Tibetan and Yungui Plateau. The relatively lower ρ for bext compared to PM2.5 is probably caused by the predefined maximum threshold of visibility measurements (generally 30 km). A significant correlation between PM2.5 and bext is derived in most stations and relatively larger ρ values are evident in eastern China (Northeast China excluded) and in winter (the national median ρ is 0.67). The abrupt changes in specific mass extinction efficiency (αext) imply a potentially large influence of alternation of visibility sensors or recalibrations on visibility measurements. The bext data are thereafter corrected by comparison to the reference measurements at the adjacent stations, which leads to a three-year quality assured of visibility and bext datasets.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado/análise , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Estações do Ano , China , Poluentes Atmosféricos/análise
15.
Huan Jing Ke Xue ; 44(1): 11-19, 2023 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-36635790

RESUMO

In recent years, the Beijing-Tianjin-Hebei region and its surrounding areas have experienced multiple haze pollution processes. Owing to the limitation of observational instruments, there has not been a comparative study of haze pollution between urban and rural areas in northern Henan province. A series of high-time-resolution instruments were used during a regional heavy pollution process (January 12-25, 2018) at two urban sites and three rural sites. The results showed that SO42-, NO-3, and NH+4 (SNA) were the components with the highest proportion in PM2.5 at the five sites during the haze event with a range of 53%-63%, of which nitrate was the most important, accounting for 24%-32%, followed by sulfate, ranging from 13%-17%. Compared with urban sites, rural sites were more affected by organic matter, especially at night. With the aggravation of pollution, the proportion of SNA increased, reaching 67% during periods of heavy pollution. When the area was affected by the air mass transported from the south, the proportion of NO-3 in PM2.5 increased, and when the area was affected by the air transport in the north, the proportions of SO42- and organic matter increased. Ammonium nitrate was the most important component that led to the decrease in atmospheric visibility during the haze process. Moreover, the contributions of ammonium nitrate and ammonium sulfate at the urban sites were higher than those at the rural sites. To summarize, there were significant differences in PM2.5 components between the urban and rural sites. Urban areas need to continue to strengthen the reduction in gaseous precursors, and rural areas need to pay attention to the sources of carbonaceous aerosol.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Material Particulado/análise , Estações do Ano , Monitoramento Ambiental/métodos , Aerossóis/análise , China
16.
Colloids Surf B Biointerfaces ; 222: 113137, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36640540

RESUMO

Laser Transmission Spectroscopy (LTS) is an experimental technique able to determine the particle number concentration and the size of colloidal suspensions by a single measurement of the transmittance of a laser beam through the suspension of particles as a function of the wavelength. In this protocol, we show that LTS represents a unique and powerful tool to investigate suspensions of liposomes, where the precise quantification of the number concentration is particularly relevant for the complete definition of the colloidal properties of the suspension. We study a model formulation of Soy-PC:Chol liposomes and we validate LTS results by comparison with High-Performance Liquid Chromatography determination of lipid mass. Then LTS protocols is applied to state-of-art liposomal nanocarrier suspensions. We explain details of data analysis to obtain the particle number concentration by using the Lambert-Beer law and by calculating the extinction cross section, within the framework of Mie theory for spherical vesicles. We also determine the liposome radius and compare it with the hydrodynamic radius measured by Dynamic Light Scattering. As future perspective, we aim to extend LTS analysis to other nanostructures with different geometries and to contribute to the development of new quantitative strategies for the accurate characterization of nanocarriers and other nanoparticles.


Assuntos
Lasers , Lipossomos , Suspensões , Análise Espectral , Difusão Dinâmica da Luz , Tamanho da Partícula
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122157, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36473297

RESUMO

The direct usage of the Kramers-Kronig (KK) relations is complicated by two factors: limited frequency range of the available spectra and experimental errors. Here, we reconsider the application of the KK relations to experimental data for the construction of a self-consistent set of optical constants over a wide spectral range: the real part of the complex optical constant, F1, is reconstructed using the imaginary part F2, obtained from an experiment. The focus is on multiply (Q-)subtractive KK relations, which in contrast to the standard KK transformation, exploit information about F1 at a certain number Q of anchor frequencies. We develop a general mathematical framework of the Q-subtractive KK relations and analyze all sources of errors contributing to the inaccuracy of the reconstructed F1. We show that for the reconstruction of F1 only a single evaluation of the standard KK relation is needed together with a correction term given by an approximate evaluation of the error in the standard KK. It is demonstrated that in the classical form of the Q-subtractive KK relations, this correction term coincides with the Lagrange interpolation polynomial of the error with nodes at the anchor frequencies. Another correction term can also be constructed as a lower degree polynomial through a least squares fit, a particular realization of which is taking the average of Q singly subtractive KK relations. As a result, recommendations for the application of Q-subtractive KK relations are given. The accuracy of the considered approaches is illustrated on synthetic examples and experimental data of fused SiO2.

18.
Environ Sci Pollut Res Int ; 30(9): 22458-22470, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36289128

RESUMO

Biodiesel combustion particulate matter (PM) is different from diesel combustion PM in terms of microscopic morphology, which directly affects the optical properties of PM. To investigate the effect of the microstructure of biodiesel PM on the extinction characteristics, an experiment was performed on a high-pressure common rail diesel engine to collect PM from three kinds of biodiesel (the main raw materials were soybean oil methyl eater (SME), palm oil methyl eater (PME), and waste cooking oil methyl eater (WME), respectively). The particle size distribution, micro morphology, and extinction characteristics of biodiesel PM were analyzed. Results show that combustion biodiesel reduces PM emissions by up to 84.2%. Compared to PM from diesel, biodiesel PM has a smaller particle size and a higher aggregation degree, which results in weaker light absorption capacity. With the iodine number of biodiesel decreasing, the number concentration of biodiesel PM decreases and the fractal dimension increases, which leads to producing a more complex agglomerate and a consequent reduction in extinction coefficient. The average particle sizes of PM from SME, PME, and WME are 5.1%, 6.7%, and 13.9% lower than that of diesel PM. Compared with diesel combustion PM, the peak absorption coefficients of SME, WME, and PME combustion PM decrease by 8.4%, 11.4%, and 13.3%, respectively. The extinction properties of particles decrease with increasing fractal dimension within the wavelength range of visible light.


Assuntos
Biocombustíveis , Material Particulado , Material Particulado/análise , Biocombustíveis/análise , Gasolina/análise , Emissões de Veículos/análise , Tamanho da Partícula , Óleo de Soja , Óleo de Palmeira
19.
Dent Mater ; 38(10): 1661-1668, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36085084

RESUMO

OBJECTIVES: The determination of the extinction coefficient of human dental enamel to deliver further optical properties of enamel to improve the understanding of light propagation in teeth and to improve restoration materials. METHODS: The extinction coefficient was measured within a spectral range of 300-980 nm using a collimated transmission setup. 35 specimens from 16 donors were examined. The donors were categorized by age and the researched specimen were categorized by tooth type, tooth quality and lateral expansion of the enamel to clarify the influence of these parameters. RESULTS: The obtained spectrally resolved extinction coefficient was accurately described by a power law, which agrees with theoretical scattering models. The results were evaluated with regard to the influence of parameters such as subject age, tooth type, enamel sample quality and enamel width. For this purpose, both the average values of multiple measurements of a single sample in a defined spectral range as well as the curve slope of the averaged results versus wavelength were compared. SIGNIFICANCE: The results provide detailed information about the optical properties of human enamel. The wide spectrum investigated provides important information for the evaluation of the main scatterers and the optical impression under any light condition. However, the deviation of the extinction coefficient varies less between the mean values for the specimens grouped by several parameters than between the specimens themselves within a group. This indicates a unique optical behaviour for every specimen and this requires consideration in the development of artificial materials.


Assuntos
Esmalte Dentário , Dente , Esmalte Dentário/química , Humanos , Análise Espectral
20.
Heliyon ; 8(8): e10359, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36061021

RESUMO

The objective of this study was to determine the effects of water clarity changes on thermal processes in Lake Poyang, the largest freshwater lake in China, using a physically based lake model embedded in the Community Land Model. A water extinction coefficient (K d ) describing water clarity and controlling radiation penetration in the lake model was used to conduct controlled simulations. Three sets of simulations were conducted for Lake Poyang over the period from 2000 to 2015: DEFAULT with the K d = 0.45 m-1; CTL with the K d = 1.68 m-1 based on a water clarity of 0.85 m; and DARK with the K d = 1.68 m-1 from 2000 to 2005 and K d = 3.44 m-1 based on a water clarity of 0.41 m observed from 2005 to 2015. The simulation results showed that compared with the DEFAULT simulation, the temperature simulations were closer to the observations using the more accurate K d values for the CTL and DARK simulations. Due to decreased water clarity, radiation absorbed in the top 1 m of the water body was larger for the DARK simulation and lower at greater depths than that observed for the CTL simulation. Such changes in radiation penetration in the DARK simulation generated a higher lake water surface temperature (LWST) and thus stronger lake-air interactions from February to July and lower LWST and turbulent fluxes from August to the following January than in the CTL simulation. The temperature inside the lake water body declined markedly, with a significant reduction from June to August that exceeded 5 °C. The results of this study provide an additional reference regarding lake water clarity effects on inland freshwater systems and theoretical support for lake water system management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...