Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Sci China Life Sci ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39115728

RESUMO

Ischemic stroke is a leading cause of death and disability worldwide. Inflammatory response after stroke determines the outcome of ischemic injury. A recent study has reported an efficient method, epidural arterial implantation (EAI), for accelerating interstitial fluid (ISF) drainage, which provides a promising strategy to clear pro-inflammatory cytokines in the brain extracellular space (ECS). In this study, the method of EAI was modified (m-EAI) to control its function of accelerating the ISF drainage at different time points following ischemic attack. The neuroprotective effect of m-EAI on ischemic stroke was evaluated with the transient middle cerebral artery occlusion (tMCAO) rat model. The results demonstrated the accumulation of IL-1ß, IL-6, and TNF-α was significantly decreased by activating m-EAI at 7 d before and immediately after ischemic attack in tMCAO rats, accompanied with decreased infarct volume and improved neurological function. This study consolidates the hypothesis of exacerbated ischemic damage by inflammatory response and provides a new perspective to treat encephalopathy via brain ECS. Further research is essential to investigate whether m-EAI combined with neuroprotective drugs could enhance the therapeutic effect on ischemic stroke.

2.
ACS Nano ; 18(33): 22245-22256, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39116272

RESUMO

The spatial organization characteristics and redox status of the extracellular space (ECS) are crucial in the development of brain diseases. However, it remains a challenge to simultaneously capture dynamic changes in microstructural features and redox states at the submicron level within the ECS. Here, we developed a reversible glutathione (GSH)-responsive nanoprobe (RGN) for mapping the spatial organization features and redox status of the ECS in brain tissues with nanoscale resolution. The RGN is composed of polymer nanoparticles modified with GSH-responsive molecules and amino-functionalized methoxypoly(ethylene glycol), which exhibit exceptional single-particle brightness and excellent free diffusion capability in the ECS of brain tissues. Tracking single RGNs in acute brain slices allowed us to dynamically map spatial organizational features and redox levels within the ECS of brain tissues in disease models. This provides a powerful super-resolution imaging method that offers a potential opportunity to study the dynamic changes in the ECS microenvironment and to understand the physiological and pathological roles of the ECS in vivo.


Assuntos
Encéfalo , Espaço Extracelular , Glutationa , Nanopartículas , Oxirredução , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Animais , Espaço Extracelular/metabolismo , Espaço Extracelular/química , Glutationa/química , Glutationa/metabolismo , Nanopartículas/química , Camundongos , Polietilenoglicóis/química
3.
bioRxiv ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39026773

RESUMO

Multicellularity was accompanied by the emergence of new classes of cell surface and secreted proteins. The nematode C. elegans is a favorable model to study cell surface interactomes, given its well-defined and stereotyped cell types and intercellular contacts. Here we report our C. elegans extracellular interactome dataset, the largest yet for an invertebrate. Most of these interactions were unknown, despite recent datasets for flies and humans, as our collection contains a larger selection of protein families. We uncover new interactions for all four major axon guidance pathways, including ectodomain interactions between three of the pathways. We demonstrate that a protein family known to maintain axon locations are secreted receptors for insulins. We reveal novel interactions of cystine-knot proteins with putative signaling receptors, which may extend the study of neurotrophins and growth-factor-mediated functions to nematodes. Finally, our dataset provides insights into human disease mechanisms and how extracellular interactions may help establish connectomes.

4.
Front Cell Neurosci ; 18: 1401698, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988660

RESUMO

Multiple subfields of neuroscience research are beginning to incorporate astrocytes into current frameworks of understanding overall brain physiology, neuronal circuitry, and disease etiology that underlie sleep and sleep-related disorders. Astrocytes have emerged as a dynamic regulator of neuronal activity through control of extracellular space (ECS) volume and composition, both of which can vary dramatically during different levels of sleep and arousal. Astrocytes are also an attractive target of sleep research due to their prominent role in the glymphatic system, a method by which toxic metabolites generated during wakefulness are cleared away. In this review we assess the literature surrounding glial influences on fluctuations in ECS volume and composition across the sleep-wake cycle. We also examine mechanisms of astrocyte volume regulation in glymphatic solute clearance and their role in sleep and wake states. Overall, findings highlight the importance of astrocytes in sleep and sleep research.

5.
Eur Radiol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981889

RESUMO

OBJECTIVES: This study examines the effectiveness of dual-energy CT (DECT) delayed-phase extracellular volume (ECV) fraction in predicting tumor regression grade (TRG) in far-advanced gastric cancer (FAGC) patients receiving preoperative immuno-chemotherapy. MATERIALS AND METHODS: A retrospective analysis was performed on far-advanced gastric adenocarcinoma patients treated with preoperative immuno-chemotherapy at our institution from August 2019 to March 2023. Patients were categorized based on their TRG into pathological complete response (pCR) and non-pCR groups. ECV was determined using the delayed-phase iodine maps. In addition, tumor iodine densities and standardized iodine ratios were meticulously analyzed using the triple-phase enhanced iodine maps. Univariate analysis with five-fold cross-validation and Spearman correlation determined DECT parameters and clinical indicators association with pCR. The predictive accuracy of these parameters for pCR was evaluated using a weighted logistic regression model with five-fold cross-validation. RESULTS: Of the 88 patients enrolled (mean age 60.8 ± 11.1 years, 63 males), 21 (23.9%) achieved pCR. Univariate analysis indicated ECV's significant role in differentiating between pCR and non-pCR groups (average p value = 0.021). In the logistic regression model, ECV independently predicted pCR with an average odds ratio of 0.911 (95% confidence interval, 0.798-0.994). The model, incorporating ECV, tumor area, and IDAV (the relative change rate of iodine density from venous phase to arterial phase), showed an average area under curves (AUCs) of 0.780 (0.770-0.791) and 0.766 (0.731-0.800) for the training and validation sets, respectively, in predicting pCR. CONCLUSION: DECT-derived ECV fraction is a valuable predictor of TRG in FAGC patients undergoing preoperative immuno-chemotherapy. CLINICAL RELEVANCE STATEMENT: This study demonstrates that DECT-derived extracellular volume fraction is a reliable predictor for pathological complete response in far-advanced gastric cancer patients receiving preoperative immuno-chemotherapy, offering a noninvasive tool for identifying potential treatment beneficiaries.

6.
Int J Cardiovasc Imaging ; 40(7): 1423-1434, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38796803

RESUMO

PURPOSE: This study examines the hepatic extracellular volume fraction (ECV) disparity between the left and right lobes (ECV_left and ECV_right) in patients with chronic thromboembolic pulmonary hypertension (CTEPH), its association with right heart catheterization (RHC) metrics, and with intolerance to increased pulmonary hypertension (PH)-targeted medication dosages. METHODS: We retrospectively analyzed 72 CTEPH-diagnosed patients who underwent equilibrium-phase abdominal dual-energy CT (DECT) and RHC. Hepatic ECVs, derived from DECT's iodine maps using circular regions of interest in the liver and aorta, were correlated with RHC parameters via Spearman's rank correlation and lobe differences through the Wilcoxon signed-rank test. Logistic regression assessed cases with ECV_left exceeding ECV_right by > 0.05, while receiver operating characteristic curve analysis gauged ECVs' predictive power for medication intolerance. RESULTS: Of the 72 patients (57 females; median age 69), ECV_total (0.24, IQR 0.20-0.27) moderately correlated with RHC parameters (rs = 0.28, -0.24, 0.3 for mean pulmonary arterial pressure, cardiac index [CI], and pulmonary vascular resistance index, respectively). ECV_left significantly surpassed ECV_right (0.25 vs. 0.22, p < 0.001), with a greater ECV_left by > 0.05 indicating notably lower CI (p < 0.001). In 27 patients on PH medication, ECV_left effectively predicted medication intolerance (AUC = 0.84). CONCLUSION: In CTEPH patients, hepatic ECV correlated with RHC metrics, where elevated left lobe ECV suggested reduced CI and potential medication intolerance.


Assuntos
Cateterismo Cardíaco , Hipertensão Pulmonar , Fígado , Valor Preditivo dos Testes , Embolia Pulmonar , Humanos , Feminino , Masculino , Estudos Retrospectivos , Idoso , Pessoa de Meia-Idade , Embolia Pulmonar/diagnóstico por imagem , Embolia Pulmonar/fisiopatologia , Embolia Pulmonar/complicações , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/diagnóstico por imagem , Hipertensão Pulmonar/etiologia , Doença Crônica , Fígado/diagnóstico por imagem , Fígado/patologia , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/fisiopatologia , Anti-Hipertensivos/uso terapêutico , Pressão Arterial , Angiografia por Tomografia Computadorizada
7.
Int J Med Sci ; 21(7): 1274-1279, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818467

RESUMO

Objective: Citicoline can be used to reduce acute ischemic stroke injury via venous infusion, however, its protective effects in the brain extracellular space remain largely unknown. Herein, we investigated the brain protective effects of citicoline administered via the brain extracellular space and sought precise effective dosage range that can protect against ischemic injury after experimental ischemic stroke in rats. Methods: Fifty-six Sprague-Dawley rats were randomly divided into control, intraperitoneal (IP), caudate-putamen (CPu)-25, CPu-40, CPu-50, CPu-60 and CPu-75 groups based on the infusion site and concentration of citicoline. Two hours after the administration of citicoline, the rats were subjected to a permanent middle cerebral artery occlusion to mimic acute ischemic stroke. Then, the brain infarct volume in rats after stroke was measured and their neurological deficiency was evaluated to explain the protective effects and effective dosage range of citicoline. Results: Compared to the control and IP groups, brain infarct volume of rats in CPu-40, CPu-50, and CPu-60 groups is significant smaller. Furthermore, the brain infarct volume of rats in CPu-50 is the least. Conclusions: Here, we showed that citicoline can decrease the brain infarct volume, thus protecting the brain from acute ischemic stroke injury. We also found that the appropriate effective citicoline dose delivered via the brain extracellular space is 50 mM. Our study provides novel insights into the precise treatment of acute ischemic stroke by citicoline via the brain extracellular space, further guiding the treatment of brain disease.


Assuntos
Encéfalo , Citidina Difosfato Colina , Modelos Animais de Doenças , Espaço Extracelular , AVC Isquêmico , Ratos Sprague-Dawley , Animais , Citidina Difosfato Colina/administração & dosagem , Citidina Difosfato Colina/farmacologia , Citidina Difosfato Colina/uso terapêutico , Ratos , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/patologia , Espaço Extracelular/efeitos dos fármacos , Masculino , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Humanos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia
8.
Epilepsy Res ; 201: 107337, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461594

RESUMO

Post traumatic epilepsy (PTE) is a treatment-resistant consequence of traumatic brain injury (TBI). Recently, it has been revealed that epileptiform activity in acute chemoconvulsant seizure models is accompanied by transient shrinkages of extracellular space (ECS) called rapid volume pulsations (RVPs). Shrinkage of the ECS surrounding neurons and glia may contribute to ictogenic hyperexcitability and hypersynchrony during the chronic phase of TBI. Here, we identify the phenomenon of RVPs occurring spontaneously in rat neocortex at ≥ 3 weeks after injury in the controlled cortical impact (CCI) model for PTE. We further report that blocking the electrogenic action of the astrocytic cotransporter NBCe1 with 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) eliminates both RVPs and epileptiform activity in ex-vivo CCI neocortical brain slices. We conclude that NBCe1-mediated extracellular volume shrinkage may represent a new target for therapeutic intervention in PTE.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Neocórtex , Ratos , Animais , Simportadores de Sódio-Bicarbonato/metabolismo , Espaço Extracelular/metabolismo , Neocórtex/metabolismo
9.
Front Cell Neurosci ; 18: 1330100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425431

RESUMO

Fluorescence microscopy remains one of the single most widely applied experimental approaches in neuroscience and beyond and is continuously evolving to make it easier and more versatile. The success of the approach is based on synergistic developments in imaging technologies and fluorophore labeling strategies that have allowed it to greatly diversify and be used across preparations for addressing structure as well as function. Yet, while targeted labeling strategies are a key strength of fluorescence microscopy, they reciprocally impose general limitations on the possible types of experiments and analyses. One recent development that overcomes some of these limitations is fluorescence microscopy shadow imaging, where membrane-bound cellular structures remain unlabeled while the surrounding extracellular space is made to fluoresce to provide a negative contrast shadow image. When based on super-resolution STED microscopy, the technique in effect provides a positive image of the extracellular space geometry and entire neuropil in the field of view. Other noteworthy advantages include the near elimination of the adverse effects of photobleaching and toxicity in live imaging, exhaustive and homogeneous labeling across the preparation, and the ability to apply and adjust the label intensity on the fly. Shadow imaging is gaining popularity and has been applied on its own or combined with conventional positive labeling to visualize cells and synaptic proteins in their parenchymal context. Here, we highlight the inherent limitations of fluorescence microscopy and conventional labeling and contrast these against the pros and cons of recent shadow imaging approaches. Our aim is to describe the brief history and current trajectory of the shadow imaging technique in the neuroscience field, and to draw attention to its ease of application and versatility.

10.
J Magn Reson Imaging ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553860

RESUMO

BACKGROUND: Extracellular volume (ECV) correlates with the degree of liver fibrosis. PURPOSE: To analyze the performance of liver MRI-based ECV evaluations with different blood pool measurements at different time points. STUDY TYPE: Prospective. SAMPLE: 73 consecutive patients (n = 31 females, mean age 56 years) with histopathology-proven liver fibrosis. FIELD STRENGTH/SEQUENCE: 3T acquisition within 90 days of biopsy, including shortened modified look-locker inversion recovery T1 mapping. ASSESSMENT: Polygonal regions of interest were manually drawn in the liver, aorta, vena cava, and in the main, left and right portal vein on four slices before and after Gd-DOTA administration at 5/10/15 minutes. ECV was calculated 1) on one single slice on portal bifurcation level, and 2) averaged over all four slices. STATISTICAL TESTS: Parameters were compared between patients with fibrosis grades F0-2 and F3-F4 with the Mann-Whitney U and fishers exact test. ROC analysis was used to assess the performance of the parameters to predict F3-4 fibrosis. A P-value <0.05 was considered statistically significant. RESULTS: ECV was significantly higher in F3-4 fibrosis (35.4% [33.1%-37.6%], 36.1% [34.2%-37.5%], and 37.0% [34.8%-39.2%] at 5/10/15 minutes) than in patients with F0-2 fibrosis (33.3% [30.8%-34.8%], 33.7% [31.6%-34.7%] and 34.9% [32.2%-36.0%]; AUC = 0.72-0.75). Blood pool T1 relaxation times in the aorta and vena cava were longer on the upper vs. lower slices at 5 minutes, but not at 10/15 minutes. AUC values were similar when measured on a single slice (AUC = 0.69-0.72) or based on blood pool measurements in the cava or portal vein (AUC = 0.63-0.67 and AUC = 0.65-0.70). DATA CONCLUSION: Liver ECV is significantly higher in F3-4 fibrosis compared to F0-2 fibrosis with blood pool measurements performed in the aorta, inferior vena cava, and portal vein at 5, 10, and 15 minutes. However, a smaller variability was observed for blood pool measurements between slices at 15 minutes. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 3.

11.
Comput Biol Med ; 171: 108133, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364661

RESUMO

The brain extracellular space (ECS), an irregular, extremely tortuous nanoscale space located between cells or between cells and blood vessels, is crucial for nerve cell survival. It plays a pivotal role in high-level brain functions such as memory, emotion, and sensation. However, the specific form of molecular transport within the ECS remain elusive. To address this challenge, this paper proposes a novel approach to quantitatively analyze the molecular transport within the ECS by solving an inverse problem derived from the advection-diffusion equation (ADE) using a physics-informed neural network (PINN). PINN provides a streamlined solution to the ADE without the need for intricate mathematical formulations or grid settings. Additionally, the optimization of PINN facilitates the automatic computation of the diffusion coefficient governing long-term molecule transport and the velocity of molecules driven by advection. Consequently, the proposed method allows for the quantitative analysis and identification of the specific pattern of molecular transport within the ECS through the calculation of the Péclet number. Experimental validation on two datasets of magnetic resonance images (MRIs) captured at different time points showcases the effectiveness of the proposed method. Notably, our simulations reveal identical molecular transport patterns between datasets representing rats with tracer injected into the same brain region. These findings highlight the potential of PINN as a promising tool for comprehensively exploring molecular transport within the ECS.


Assuntos
Encéfalo , Espaço Extracelular , Ratos , Animais , Espaço Extracelular/metabolismo , Transporte Biológico , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Difusão , Redes Neurais de Computação
12.
Nano Lett ; 24(5): 1570-1578, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38287297

RESUMO

Glioblastoma (GBM) is the most complex and lethal primary brain cancer. Adequate drug diffusion and penetration are essential for treating GBM, but how the spatial heterogeneity in GBM impacts drug diffusion and transport is poorly understood. Herein, we report a new method, photoactivation of plasmonic nanovesicles (PANO), to measure molecular diffusion in the extracellular space of GBM. By examining three genetically engineered GBM mouse models that recapitulate key clinical features including the angiogenic core and diffuse infiltration, we found that the tumor margin has the lowest diffusion coefficient (highest tortuosity) compared with the tumor core and surrounding brain tissue. Analysis of the cellular composition shows that tortuosity in the GBM is strongly correlated with neuronal loss and astrocyte activation. Our all-optical measurement reveals the heterogeneous GBM microenvironment and highlights the tumor margin as a diffusion barrier for drug transport in the brain, with implications for therapeutic delivery.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Camundongos , Animais , Glioblastoma/patologia , Neoplasias Encefálicas/tratamento farmacológico , Encéfalo/patologia , Linhagem Celular Tumoral , Espaço Extracelular , Microambiente Tumoral
13.
Acad Radiol ; 31(2): 514-522, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37775448

RESUMO

RATIONALE AND OBJECTIVES: This study aimed to assess the utility of cardiac magnetic resonance imaging (MRI) T1 and T2 mapping as quantitative imaging biomarkers in transthyretin amyloid cardiomyopathy (ATTR-CM). MATERIALS AND METHODS: This study retrospectively evaluated 74 patients with confirmed wild-type ATTR-CM who underwent cardiac MRI, 99mTc-labeled pyrophosphate (99mTc-PYP) scintigraphy, and echocardiography. We assessed the quantitative disease parameters, for example, left ventricular ejection fraction (LVEF), and global longitudinal strain (GLS) by echocardiography, native T1, extracellular volume fraction (ECV), and native T2 value by cardiac MRI, heart-to-contralateral ratio (H/CL) by 99mTc-PYP, and high-sensitive cardiac troponin T. Myocardial native T2 of ≥50 ms was defined as myocardial edema. Correlations between the disease's quantitative parameters were evaluated, and the ECV was compared to other parameters in ATTR-CM with/without myocardial edema. RESULTS: ECV in all patients with ATTR-CM revealed a strong correlation with native T1 (r = 0.62), a moderate correlation with hs-TnT (r = 0.59), LVEF (r = -0.48), GLS (r = 0.58), and H/CL (r = 0.48). Correlations between ECV and other quantitative parameters decreased in ATTR-CM with myocardial edema except for H/CL. Meanwhile, the correlations increased in ATTR-CM without myocardial edema. CONCLUSION: The presence of myocardial edema affected the interpretation of ECV assessment, although ECV can be a comprehensive imaging biomarker for ATTR-CM. ECV showed a significant correlation with various quantitative disease parameters and can be a reliable disease monitoring marker in patients with ATTR-CM when myocardial edema was excluded.


Assuntos
Amiloidose , Cardiomiopatias , Humanos , Pré-Albumina , Cardiomiopatias/diagnóstico por imagem , Pirofosfato de Tecnécio Tc 99m , Estudos Retrospectivos , Volume Sistólico , Função Ventricular Esquerda , Amiloidose/diagnóstico por imagem , Imageamento por Ressonância Magnética , Edema , Biomarcadores
14.
Small Methods ; 8(1): e2301117, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37922523

RESUMO

Live imaging of the brain extracellular matrix (ECM) provides vital insights into changes that occur in neurological disorders. Current techniques such as second or third-harmonic generation offer limited contrast for live imaging of the brain ECM. Here, a new method, pan-ECM via chemical labeling of extracellular proteins, is introduced for live brain ECM imaging. pan-ECM labels all major ECM components in live tissue including the interstitial matrix, basement membrane, and perineuronal nets. pan-ECM enables in vivo observation of the ECM heterogeneity between the glioma core and margin, as well as the assessment of ECM deterioration under stroke condition, without ECM shrinkage from tissue fixation. These findings indicate that the pan-ECM approach is a novel way to image the entire brain ECM in live brain tissue with optical resolution. pan-ECM has the potential to advance the understanding of ECM in brain function and neurological diseases.


Assuntos
Doenças do Sistema Nervoso , Acidente Vascular Cerebral , Humanos , Matriz Extracelular/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Acidente Vascular Cerebral/metabolismo , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/metabolismo , Membrana Basal
15.
Eur J Neurosci ; 59(3): 323-332, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123136

RESUMO

Neurovascular coupling (NVC) refers to a local increase in cerebral blood flow in response to increased neuronal activity. Mechanisms of communication between neurons and blood vessels remain unclear. Astrocyte endfeet almost completely cover cerebral capillaries, suggesting that astrocytes play a role in NVC by releasing vasoactive substances near capillaries. An alternative hypothesis is that direct diffusion through the extracellular space of potassium ions (K+ ) released by neurons contributes to NVC. Here, the goal is to determine whether astrocyte endfeet present a barrier to K+ diffusion from neurons to capillaries. Two simplified 2D geometries of extracellular space, clefts between endfeet, and perivascular space are used: (i) a source 1 µm from a capillary; (ii) a neuron 15 µm from a capillary. K+ release is modelled as a step increase in [K+ ] at the outer boundary of the extracellular space. The time-dependent diffusion equation is solved numerically. In the first geometry, perivascular [K+ ] approaches its final value within 0.05 s. Decreasing endfeet cleft width or increasing perivascular space width slows the rise in [K+ ]. In the second geometry, the increase in perivascular [K+ ] occurs within 0.5 s and is insensitive to changes in cleft width or perivascular space width. Predicted levels of perivascular [K+ ] are sufficient to cause vasodilation, and the rise time is within the time for flow increase in NVC. These results suggest that direct diffusion of K+ through the extracellular space is a possible NVC signalling mechanism.


Assuntos
Astrócitos , Capilares , Astrócitos/fisiologia , Potássio , Circulação Cerebrovascular , Neurônios
16.
Biol Cybern ; 117(6): 467-484, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38103053

RESUMO

Neurons store energy in the ionic concentration gradients they build across their cell membrane. The amount of energy stored, and hence the work the ions can do by mixing, can be enhanced by the presence of ion buffers in extra- and intracellular space. Buffers act as sources and sinks of ions, however, and unless the buffering capacities for different ion species obey certain relationships, a complete mixing of the ions may be impeded by the physical conditions of charge neutrality and isotonicity. From these conditions, buffering capacities were calculated that enabled each ion species to mix completely. In all valid buffer distributions, the [Formula: see text] ions were buffered most, with a capacity exceeding that of [Formula: see text] and [Formula: see text] buffering by at least an order of magnitude. The similar magnitude of the (oppositely directed) [Formula: see text] and [Formula: see text] gradients made extracellular space behave as a [Formula: see text]-[Formula: see text] exchanger. Anions such as [Formula: see text] were buffered least. The great capacity of the extra- and intracellular [Formula: see text] buffers caused a large influx of [Formula: see text] ions as is typically observed during energy deprivation. These results explain many characteristics of the physiological buffer distributions but raise the question how the brain controls the capacity of its ion buffers. It is suggested that neurons and glial cells, by their great sensitivity to gradients of charge and osmolarity, respectively, sense deviations from electro-neutral and isotonic mixing, and use these signals to tune the chemical composition, and buffering capacity, of the extra- and intracellular matrices.


Assuntos
Encéfalo , Fenômenos Físicos , Íons
17.
Artigo em Inglês | MEDLINE | ID: mdl-37981603

RESUMO

Freezing and thawing have the potential to alter the gross and histologic appearance of tissues, causing damage to individual cells and disrupting the overall architecture. In forensic investigations, freezing and thawing can play a crucial role in cases of unknown cause of death. Perpetrators may use freezing preservation to conceal the body or obscure the time of death. Freezing can also occur naturally when a body is exposed to the elements, sometimes even leading to death itself. We present a case report involving an autopsy performed on an infant, who died of natural causes, after undergoing freezing and thawing. The objective of this study was to identify and discuss the histological artifacts observed in different tissues as a result of the freeze-thaw process. Histologically, the infant's tissues exhibited the most common features described in the literature. Ice crystal artifacts, characterized by expansion of the extracellular space and tissue clefts, were found in the heart, brain, liver, lungs, and kidneys. On the contrary, adipose tissue was not affected, likely due to the scarcity of water. Freeze-thaw artifacts should be taken into account whether a body is known to have been frozen or to add further data if found already defrosted.

18.
PeerJ ; 11: e16324, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37876907

RESUMO

Background: Plant-pathogen interactions occur in the apoplast comprising the cell wall matrix and the fluid in the extracellular space outside the plasma membrane. However, little is known regarding the contribution of the apoplastic proteome to systemic acquired resistance (SAR). Methods: Specifically, SAR was induced by inoculating plants with Pst DC3000 avrRps4. The apoplast washing fluid (AWF) was collected from the systemic leaves of the SAR-induced or mock-treated plants. A label free quantitative proteomic analysis was performed to identified the proteins related to SAR in AWF. Results: A total of 117 proteins were designated as differentially accumulated proteins (DAPs), including numerous pathogenesis-related proteins, kinases, glycosyl hydrolases, and redox-related proteins. Functional enrichment analyses shown that these DAPs were mainly enriched in carbohydrate metabolic process, cell wall organization, hydrogen peroxide catabolic process, and positive regulation of catalytic activity. Comparative analysis of proteome data indicated that these DAPs were selectively enriched in the apoplast during the induction of SAR. Conclusions: The findings of this study indicate the apoplastic proteome is involved in SAR. The data presented herein may be useful for future investigations on the molecular mechanism mediating the establishment of SAR.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteoma/metabolismo , Proteômica , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo
19.
J Neurogastroenterol Motil ; 29(4): 436-445, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37814434

RESUMO

Background/Aims: Dilated intercellular spaces (DISs) facilitate the diffusion of noxious agents into the deep layers of the esophageal epithelium. The role of DIS in heartburn pathogenesis is still controversial. Therefore, we aim to reinvestigate DIS in an extensively evaluated group of patients and healthy controls (HCs). Methods: We classified 149 subjects into the following groups: 15 HC, 58 mild erosive reflux disease (ERD), 17 severe ERD, 25 nonerosive reflux disease (NERD), 15 reflux hypersensitivity (RH), and 19 functional heartburn (FH). A total of 100 length measurements were performed for each patient's biopsy. Results: The overall intercellular spaces (ISs) value of gastroesophageal reflux disease (GERD) patients was higher than that of HC (P = 0.020). In phenotypes, mild ERD (vs HC [P = 0.036], NERD [P = 0.004], RH [P = 0.014]) and severe ERD (vs HC [P = 0.002], NERD [P < 0.001], RH [P = 0.001], FH [P = 0.004]) showed significantly higher IS. There was no significant difference between the HC, NERD, RH, and FH groups. The 1.12 µm DIS cutoff value had 63.5% sensitivity and 66.7% specificity in the diagnosis of GERD. There was a weak correlation (r = 0.302) between the IS value and acid exposure time, and a weak correlation (r = -0.359) between the IS value and baseline impedance. A strong correlation was shown between acid exposure time and baseline impedance (r = -0.783). Conclusions: Since the IS length measurement had better discrimination power only in erosive groups, it is not feasible to use in daily routine to discriminate other nonerosive phenotypes and FH. The role of DIS in heartburn in nonerosive patients should be reconsidered.

20.
eNeuro ; 10(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37709524

RESUMO

Chemical fixation using paraformaldehyde (PFA) is a standard step for preserving cells and tissues for subsequent microscopic analyses such as immunofluorescence or electron microscopy (EM). However, chemical fixation may introduce physical alterations in the spatial arrangement of cellular proteins, organelles, and membranes. With the increasing use of super-resolution microscopy to visualize cellular structures with nanometric precision, assessing potential artifacts, and knowing how to avoid them, takes on special urgency. We addressed this issue by taking advantage of live-cell super-resolution microscopy that makes it possible to directly observe the acute effects of PFA on organotypic hippocampal brain slices, allowing us to compare tissue integrity in a "before-and-after" experiment. We applied super-resolution shadow imaging (SUSHI) to assess the structure of the extracellular space (ECS) and regular super-resolution microscopy of fluorescently labeled neurons and astrocytes to quantify key neuroanatomical parameters. While the ECS volume fraction (VF) and microanatomic organization of astrocytes remained largely unaffected by the PFA treatment, we detected subtle changes in dendritic spine morphology and observed substantial damage to cell membranes. Our experiments show that PFA application via immersion does not cause a noticeable shrinkage of the ECS in hippocampal brain slices maintained in culture, unlike the situation in transcardially perfused animals in vivo where the ECS typically becomes nearly depleted. Our study outlines an experimental strategy to evaluate the quality and pitfalls of various fixation protocols for the molecular and morphologic preservation of cells and tissues.


Assuntos
Artefatos , Microscopia , Animais , Camundongos , Astrócitos , Encéfalo , Hipocampo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...