Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1339569, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455070

RESUMO

Background: Respiratory Syncytial Virus (RSV) presents a significant health threat, especially to young children. In-depth understanding of RSV entry mechanisms is essential for effective antiviral development. This study introduces an innovative RSV variant, featuring the fusion of the beta-lactamase (BlaM) enzyme with the RSV-P phosphoprotein, providing a versatile tool for dissecting viral entry dynamics. Methods: Using the AlphaFold2 algorithm, we modeled the tertiary structure of the P-BlaM chimera, revealing structural similarities with both RSV-P and BlaM. Functional assessments, utilizing flow cytometry, quantified beta-lactamase activity and GFP expression in infected bronchial epithelial cells. Western blot analysis confirmed the integrity of P-BlaM within virions. Results: The modeled P-BlaM chimera exhibited structural parallels with RSV-P and BlaM. Functional assays demonstrated robust beta-lactamase activity in recombinant virions, confirming successful P-BlaM incorporation as a structural protein. Quercetin, known for its antiviral properties, impeded viral entry by affecting virion fusion. Additionally, Ulixertinib, an ERK-1/2 inhibitor, significantly curtailed viral entry, implicating ERK-1/2 pathway signaling. Conclusions: Our engineered RSV-P-BlaM chimera emerges as a valuable tool, illuminating RSV entry mechanisms. Structural and functional analyses unveil potential therapeutic targets. Quercetin and Ulixertinib, identified as distinct stage inhibitors, show promise for targeted antiviral strategies. Time-of-addition assays pinpoint quercetin's specific interference stage, advancing our comprehension of RSV entry and guiding future antiviral developments.

2.
Biochem Biophys Rep ; 27: 101049, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34195388

RESUMO

Oxidative stress is a key factor contributing to the development of diabetes complications. Glutathione S-transferases (GSTs) protect against products of oxidative stress by conjugating glutathione to electrophilic substrates, producing compounds that are generally less reactive and more soluble. The expression and activity of GSTs during diabetes have been extensively studied, but little is known about regulation mechanisms of Pi-class GST (GSTP). The aim of the present study was to evaluate how GSTP is regulated in a Streptozotocin (STZ)-induced murine diabetes model. GST activity and GSTP expression were determined in adult male mice diabetized with STZ. Specificity protein 1 (Sp1) expression and O-glycosylation, as well as the role of AP-1 members Jun and Fos in the regulation of GSTP expression, were also assessed. The results showed that GST total activity and GSTP mRNA and protein levels were decreased in the diabetic liver, and returned to normal values after insulin administration. The insulin-mimetic drug vanadate was also able to restore GST activity, but failed to recover GSTP mRNA/protein levels. In diabetic animals, O-glycosylated Sp1 levels were increased, whereas, in insulin-treated animals, glycosylation values were similar to those of controls. After vanadate administration, Sp1 expression levels and glycosylation were lower than those of controls. Our results suggest that hyperglycemia could lead to the observed increase in Sp1 O-glycosylation, which would, in turn, lead to a decrease in the expression of Sp1-dependent GSTP in the liver of diabetic mice.

3.
Neurobiol Stress ; 12: 100218, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32435667

RESUMO

Allopregnanolone (3α,5α-tetrahydroprogesterone; pharmaceutical formulation: brexanolone) is a neurosteroid that has recently been approved for the treatment of postpartum depression, promising to fill part of a long-lasting gap in the effectiveness of pharmacotherapies for depressive disorders. In this review, we explore the experimental research that characterized the antidepressant-like effects of allopregnanolone, with a particular focus on the neurotrophic adaptations induced by this neurosteroid in preclinical studies. We demonstrate that there is a consistent decrease in allopregnanolone levels in limbic brain areas in rodents submitted to stress-induced models of depression, such as social isolation and chronic unpredictable stress. Further, both the drug-induced upregulation of allopregnanolone or its direct administration reduce depressive-like behaviors in models such as the forced swim test. The main drugs of interest that upregulate allopregnanolone levels are selective serotonin reuptake inhibitors (SSRIs), which present the neurosteroidogenic property even in lower, non-SSRI doses. Finally, we explore how these antidepressant-like behaviors are related to neurogenesis, particularly in the hippocampus. The protagonist in this mechanism is likely the brain-derived neurotrophic factor (BFNF), which is decreased in animal models of depression and may be restored by the normalization of allopregnanolone levels. The role of an interaction between GABA and the neurotrophic mechanisms needs to be further investigated.

4.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;53(1): e9085, Jan. 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1055483

RESUMO

Total Panax notoginseng saponin (TPNS) is the main bioactivity compound derived from the roots and rhizomes of Panax notoginseng (Burk.) F.H. Chen. The aim of this study was to investigate the effectiveness of TPNS in treating vascular neointimal hyperplasia in rats and its mechanisms. Male Sprague-Dawley rats were randomly divided into five groups, sham (control), injury, and low, medium, and high dose TPNS (5, 10, and 20 mg/kg). An in vivo 2F Fogarty balloon-induced carotid artery injury model was established in rats. TPNS significantly and dose-dependently reduced balloon injury-induced neointimal area (NIA) (P<0.001, for all doses) and NIA/media area (MA) (P<0.030, for all doses) in the carotid artery of rats, and PCNA expression (P<0.001, all). The mRNA expression of smooth muscle (SM) α-actin was significantly increased in all TPNS groups (P<0.005, for all doses) and the protein expression was significantly increased in the medium (P=0.006) and high dose TPNS (P=0.002) groups compared to the injury group. All the TPNS doses significantly decreased the mRNA expression of c-fos (P<0.001). The medium and high dose TPNS groups significantly suppressed the upregulation of pERK1/2 protein in the NIA (P<0.025) and MA (P<0.004). TPNS dose-dependently inhibited balloon injury-induced activation of pERK/p38MAPK signaling in the carotid artery. TPNS could be a promising agent in inhibiting cell proliferation following vascular injuries.


Assuntos
Animais , Masculino , Ratos , Saponinas/farmacologia , Lesões das Artérias Carótidas/prevenção & controle , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Panax notoginseng/efeitos dos fármacos , Neointima/patologia , Imuno-Histoquímica , Transdução de Sinais , Regulação para Cima , Ratos Sprague-Dawley , Lesões das Artérias Carótidas/etiologia , Reação em Cadeia da Polimerase em Tempo Real , Hiperplasia
5.
J Allergy Clin Immunol ; 144(5): 1228-1241.e9, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31301373

RESUMO

BACKGROUND: 15-Lipoxygenase 1 (15LO1) is expressed in airway epithelial cells in patients with type 2-high asthma in association with eosinophilia. Chronic rhinosinusitis with nasal polyps (CRSwNP) is also associated with type 2 inflammation and eosinophilia. CCL26/eotaxin 3 has been reported to be regulated by 15LO1 in lower airway epithelial cells. However, its relation to 15LO1 in patients with CRSwNP or mechanisms for its activation are unclear. OBJECTIVE: We sought to evaluate 15LO1 and CCL26 expression in nasal epithelial cells (NECs) from patients with CRSwNP and healthy control subjects (HCs) and determine whether 15LO1 regulates CCL26 in NECs through extracellular signal-regulated kinase (ERK) activation. METHODS: 15LO1, CCL26, and phosphorylated ERK were evaluated in NECs from patients with CRSwNP and HCs. 15LO1/CCL26 and CCL26/cytokeratin 5 were colocalized by means of immunofluorescence. IL-13-stimulated NECs were cultured at an air-liquid interface with or without 15-lipoxygenase 1 gene (ALOX15) Dicer-substrate short interfering RNAs (DsiRNA) transfection, a specific 15LO1 enzymatic inhibitor, and 2 ERK inhibitors. Expression of 15LO1 and CCL26 mRNA and protein was analyzed by using quantitative RT-PCR, Western blotting, and ELISA. RESULTS: 15LO1 expression was increased in nasal polyp (NP) epithelial cells compared with middle turbinate epithelial cells from patients with CRSwNP and HCs. 15LO1 expression correlated with CCL26 expression and colocalized with CCL26 expression in basal cells of the middle turbinate and NPs from patients with CRSwNP. In primary NECs in vitro, IL-13 induced 15LO1 and CCL26 expression. 15LO1 knockdown and inhibition decreased IL-13-induced ERK phosphorylation and CCL26 expression. ERK inhibition (alone) similarly decreased IL-13-induced CCL26. Phosphorylated ERK expression was increased in NECs from CRSwNP subjects and positively correlated with both 15LO1 and CCL26 expression. CONCLUSIONS: 15LO1 expression is increased in NP epithelial cells and contributes to CCL26 expression through ERK activation. 15LO1 could be considered a novel therapeutic target for CRSwNP.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Pólipos Nasais/metabolismo , Mucosa Respiratória/metabolismo , Rinite/metabolismo , Sinusite/metabolismo , Conchas Nasais/metabolismo , Adulto , Araquidonato 15-Lipoxigenase/genética , Células Cultivadas , Quimiocina CCL26/metabolismo , Doença Crônica , Ativação Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pólipos Nasais/complicações , RNA Interferente Pequeno/genética , Mucosa Respiratória/patologia , Rinite/complicações , Sinusite/complicações , Regulação para Cima
6.
Biochim Biophys Acta Mol Cell Res ; 1866(10): 1509-1519, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31325464

RESUMO

Phosphorylation of the human α1B-adrenergic receptor (fused with the green fluorescent protein) was studied employing the inducible Flp-ln HEK293 T-Rex system for expression. Serine/alanine substitutions were performed in five sites corresponding to those previously identified as phosphorylation targets in the hamster ortholog. Desensitization was decreased in these mutants but receptor phosphorylation was still clearly detected. The protein phosphorylation of the wild-type receptor (fused to the green fluorescent protein) was studied, using mass spectrometry, under baseline and stimulated conditions (noradrenaline or phorbol myristate acetate). Basal phosphorylation was detected at sites located at the intracellular loop 3 and carboxyl terminus, and the number of sites detected increased under agonist activation and stimulation of protein kinase C. The phosphorylation patterns differed under the distinct conditions. Three of the phosphorylation sites detected in this work corresponded to those observed in the hamster receptor. The phosphorylation sites detected included the following: a) at the intracellular loop 3: serines 246, 248, 257, 267, and 277; and threonines 252, 264, and 268, and b) at the carboxyl terminus: serines 396, 400, 402, 406, 423, 425, 427, 455, and 470, and threonines 387, 392, 420, and 475. Our data indicate that complex phosphorylation patterns exist and suggest the possibility that such differences could be relevant in receptor function and subcellular localization.


Assuntos
Norepinefrina/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Acetato de Tetradecanoilforbol/metabolismo , Substituição de Aminoácidos , Animais , Cricetinae , MAP Quinases Reguladas por Sinal Extracelular , Proteínas de Fluorescência Verde , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases , Fosforilação , Proteína Quinase C/metabolismo
7.
Int J Mol Sci ; 20(12)2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31200510

RESUMO

Epithelial-mesenchymal transition (EMT) is a reversible cellular process, characterized by changes in gene expression and activation of proteins, favoring the trans-differentiation of the epithelial phenotype to a mesenchymal phenotype. This process increases cell migration and invasion of tumor cells, progression of the cell cycle, and resistance to apoptosis and chemotherapy, all of which support tumor progression. One of the signaling pathways involved in tumor progression is the MAPK pathway. Within this family, the ERK subfamily of proteins is known for its contributions to EMT. The ERK subfamily is divided into typical (ERK 1/2/5), and atypical (ERK 3/4/7/8) members. These kinases are overexpressed and hyperactive in various types of cancer. They regulate diverse cellular processes such as proliferation, migration, metastasis, resistance to chemotherapy, and EMT. In this context, in vitro and in vivo assays, as well as studies in human patients, have shown that ERK favors the expression, function, and subcellular relocalization of various proteins that regulate EMT, thus promoting tumor progression. In this review, we discuss the mechanistic roles of the ERK subfamily members in EMT and tumor progression in diverse biological systems.


Assuntos
Transição Epitelial-Mesenquimal , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias/metabolismo , Animais , MAP Quinases Reguladas por Sinal Extracelular/química , MAP Quinases Reguladas por Sinal Extracelular/genética , Humanos , Sistema de Sinalização das MAP Quinases , Neoplasias/genética , Neoplasias/patologia
8.
J Cell Biochem ; 120(1): 697-704, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30206970

RESUMO

The obesity is a result of energy imbalance and the increase in thermogenesis seems an interesting alternative for the treatment of this disease. The mechanism of energy expenditure through thermogenesis is tightly articulated in the hypothalamus by leptin. The hypothalamic extracellular signal-regulated kinase-1/2 (ERK1/2) is a key mediator of the thermoregulatory effect of leptin and mediates the sympathetic signal to the brown adipose tissue (BAT). In this context, physical exercise is one of the main interventions for the treatment of obesity. Thus, this study aimed to verify the effects of acute physical exercise on leptin-induced hypothalamic ERK1/2 phosphorylation and thermogenesis in obese mice. Here we showed that acute physical exercise reduced the fasting glucose of obese mice and increased leptin-induced hypothalamic p-ERK1/2 and uncoupling protein 1 (UCP1) content in BAT ( P < 0.05). These molecular changes are accompanied by an increased oxygen uptake (VO 2 ) and heat production in obese exercised mice ( P < 0.05). The increased energy expenditure in the obese exercised animals occurred independently of changes in spontaneous activity. Thus, this is the first study demonstrating that acute physical exercise can increase leptin-induced hypothalamic ERK1/2 phosphorylation and energy expenditure of obese mice.


Assuntos
Hipotálamo/metabolismo , Leptina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Obesidade/metabolismo , Condicionamento Físico Animal , Termogênese/fisiologia , Tecido Adiposo Marrom/metabolismo , Animais , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/fisiologia , Injeções Intraperitoneais , Leptina/administração & dosagem , Camundongos , Camundongos Obesos , Consumo de Oxigênio/fisiologia , Fosforilação/efeitos dos fármacos , Proteína Desacopladora 1/metabolismo
9.
Biochim Biophys Acta Mol Cell Res ; 1865(6): 842-854, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29551601

RESUMO

Human α1D-adrenoceptors (α1D-ARs) are a group of the seven transmembrane-spanning proteins that mediate many of the physiological and pathophysiological actions of adrenaline and noradrenaline. Although it is known that α1D-ARs are phosphoproteins, their specific phosphorylation sites and the kinases involved in their phosphorylation remain largely unknown. Using a combination of in silico analysis, mass spectrometry and site directed mutagenesis, we identified distinct α1D-AR phosphorylation patterns during noradrenaline- or phorbol ester-mediated desensitizations. We found that the G protein coupled receptor kinase, GRK2, and conventional protein kinases C isoforms α/ß, phosphorylate α1D-AR during these processes. Furthermore, we showed that the phosphorylated residues are located in the receptor's third intracellular loop (S300, S323, T328, S331, S332, S334) and carboxyl region (S441, T442, T477, S486, S492, T507, S515, S516, S518, S543) and are conserved among orthologues but are not conserved among the other human α1-adrenoceptor subtypes. Additionally, we found that phosphorylation in either the third intracellular loop or carboxyl tail was sufficient to regulate calcium signaling desensitization. By contrast, mutations in either of these two domains significantly altered mitogen activated protein kinase (ERK) pathway and receptor internalization, suggesting that they have differential regulatory mechanisms. Our data provide new insights into the functional repercussions of these posttranslational modifications in signaling outcomes and desensitization.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Receptores Adrenérgicos alfa 1/metabolismo , Células HEK293 , Humanos , Fosforilação/fisiologia , Domínios Proteicos , Estrutura Secundária de Proteína , Receptores Adrenérgicos alfa 1/genética
10.
Oncology ; 94(6): 383-393, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29539615

RESUMO

OBJECTIVE: Ewing sarcoma (ES) is a type of childhood cancer probably arising from stem mesenchymal or neural crest cells. The epidermal growth factor receptor (EGFR) acts as a driver oncogene in many types of solid tumors. However, its involvement in ES remains poorly understood. METHODS: Human SK-ES-1 and RD-ES ES cells were treated with EGF, the EGFR inhibitor tyrphostin (AG1478), or phosphoinositide 3-kinase (PI3K) or extracellular-regulated kinase (ERK)/mitogen-activated kinase (MAPK) inhibitors. Cell proliferation survival, cycle, and senescence were analyzed. The protein content of possible targets of EGFR manipulation was measured by Western blot. RESULTS: Cell proliferation and survival were increased by EGF and inhibited by AG1478. The EGFR inhibitor also altered the cell cycle, inducing arrest in G1 and increasing the sub-G1 population, reduced polyploidy and increased the population of senescent cells. In addition, AG1478 reduced the levels of phosphorylated AKT (p-AKT), ERK, p-ERK, cyclin D1, and brain-derived neurotrophic factor (BDNF), while enhancing p53 levels. Cell proliferation was also impaired by inhibitors of PI3K or ERK, alone or combined with AG1478. CONCLUSIONS: Our findings reveal novel aspects of EGFR regulation of ES cells and provide early evidence for antitumor activities of EGFR inhibitors in ES.


Assuntos
Neoplasias Ósseas/patologia , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Receptores ErbB/metabolismo , Quinazolinas/farmacologia , Sarcoma de Ewing/patologia , Tirfostinas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
11.
Neurol Res ; 39(7): 649-659, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28398193

RESUMO

OBJECTIVE: Scopolamine (SCO) administration to rats induces molecular features of AD and other dementias, including impaired cognition, increased oxidative stress, and imbalanced cholinergic transmission. Although mitochondrial dysfunction is involved in different types of dementias, its role in cognitive impairment induced by SCO has not been well elucidated. The aim of this work was to evaluate the in vivo effect of SCO on different brain mitochondrial parameters in rats to explore its neurotoxic mechanisms of action. METHODS: Saline (Control) or SCO (1 mg/kg) was administered intraperitoneally 30 min prior to neurobehavioral and biochemical evaluations. Novel object recognition and Y-maze paradigms were used to evaluate the impact on memory, while redox profiles in different brain regions and the acetylcholinesterase (AChE) activity of the whole brain were assessed to elucidate the amnesic mechanism of SCO. Finally, the effects of SCO on brain mitochondria were evaluated both ex vivo and in vitro, the latter to determine whether SCO could directly interfere with mitochondrial function. RESULTS: SCO administration induced memory deficit, increased oxidative stress, and increased AChE activities in the hippocampus and prefrontal cortex. Isolated brain mitochondria from rats administered with SCO were more vulnerable to mitochondrial swelling, membrane potential dissipation, H2O2 generation and calcium efflux, all likely resulting from oxidative damage. The in vitro mitochondrial assays suggest that SCO did not affect the organelle function directly. CONCLUSION: In conclusion, the present results indicate that SCO induced cognitive dysfunction and oxidative stress may involve brain mitochondrial impairment, an important target for new neuroprotective compounds against AD and other dementias.


Assuntos
Transtornos da Memória/metabolismo , Mitocôndrias/metabolismo , Acetilcolinesterase/metabolismo , Animais , Encéfalo/metabolismo , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Modelos Animais de Doenças , Peróxido de Hidrogênio/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Potencial da Membrana Mitocondrial/fisiologia , Dilatação Mitocondrial/fisiologia , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Ratos Wistar , Reconhecimento Psicológico/fisiologia , Escopolamina
12.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;50(8): e5891, 2017. graf
Artigo em Inglês | LILACS | ID: biblio-888985

RESUMO

This study aimed to investigate the function and mechanism of microRNA-143 (miR-143) in the occurrence and development of breast cancer (BC). A total of 30 BC tissues, 30 corresponding noncancerous tissues, and 10 normal control (NC) breast tissues were obtained to detect the levels of miR-143, extracellular signal-regulated kinase 5 (ERK5) and mitogen-activated protein 3 kinase 7 (MAP3K7) using RT-qPCR, western blotting or immunohistochemistry. The correlation of miR-143 with ERK5 or MAP3K7 was evaluated using Pearson correlation analysis. MCF-7 cells were transiently transfected with miR-143 mimic, miR-143 inhibitor, miR-143 mimic/inhibitor + si-ERK5, si-MAP3K7 or si-cyclin D1. Then, cell growth was evaluated by MTT assay and the expressions of phospho-ERK5 (p-ERK5), ERK5, p-MAP3K7, MAP3K7 and cyclin D1 were detected by western blotting. Results showed that, compared with noncancerous tissues or NC breast tissues, miR-143 level was decreased, while p-ERK5, ERK5, p-MAP3K7 and MAP3K7 expressions were increased in BC tissues (all P<0.01). The miR-143 level was negatively correlated with the mRNA level of ERK5 or MAP3K7 (r=-4.231 or r=-4.280, P<0.01). In addition, up-regulated miR-143 significantly decreased the expressions of p-ERK5, ERK5, p-MAP3K7, MAP3K7 and cyclin D1 (all P<0.01), as well as cell viability in MCF-7 cells (all P<0.05) while the effect of down-regulated miR-143 was the opposite. In conclusion, both ERK5 and MAP3K7 may be the target genes of miR-143. Increased expression of miR-143 can inhibit cell growth, which may be associated with ERK5 and MAP3K7 expressions in BC.


Assuntos
Humanos , Feminino , Neoplasias da Mama/metabolismo , MicroRNAs/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Biomarcadores Tumorais/metabolismo , Western Blotting , Estudos de Casos e Controles , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Imuno-Histoquímica , Proteína Quinase 7 Ativada por Mitógeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Data Brief ; 7: 423-7, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27006973

RESUMO

This article presents additional data regarding the study "The phospholipase D pathway mediates the inflammatory response of the retinal pigment epithelium" [1]. The new data presented here show that short exposure of RPE cells to lipopolysaccharide (LPS) induces an early and transient activation of the extracellular signal-regulated kinase (ERK1/2). This early ERK1/2 activation is dependent on phosphatidylinositol bisphosphate-phospholipase C (PIP2-PLC). On the contrary, neither the phospholipase D 1 (PLD1) nor the PLD2 inhibition is able to modulate the early ERK1/2 activation induced by LPS in RPE cells.

14.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;48(6): 502-508, 06/2015. graf
Artigo em Inglês | LILACS | ID: lil-748225

RESUMO

Hormesis is an adaptive response to a variety of oxidative stresses that renders cells resistant to harmful doses of stressing agents. Caffeic acid (CaA) is an important antioxidant that has protective effects against DNA damage caused by reactive oxygen species (ROS). However, whether CaA-induced protection is a hormetic effect remains unknown, as is the molecular mechanism that is involved. We found that a low concentration (10 μM) of CaA increased human liver L-02 cell viability, attenuated hydrogen peroxide (H2O2)-mediated decreases in cell viability, and decreased the extent of H2O2-induced DNA double-strand breaks (DSBs). In L-02 cells exposed to H2O2, CaA treatment reduced ROS levels, which might have played a protective role. CaA also activated the extracellular signal-regulated kinase (ERK) signal pathway in a time-dependent manner. Inhibition of ERK by its inhibitor U0126 or by its specific small interfering RNA (siRNA) blocked the CaA-induced improvement in cell viability and the protective effects against H2O2-mediated DNA damage. This study adds to the understanding of the antioxidant effects of CaA by identifying a novel molecular mechanism of enhanced cell viability and protection against DNA damage.


Assuntos
Humanos , Antioxidantes/farmacologia , Ácidos Cafeicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , Espécies Reativas de Oxigênio/análise , Análise de Variância , Western Blotting , Células Cultivadas , Linhagem Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Fígado , Estresse Oxidativo/efeitos dos fármacos , Reprodutibilidade dos Testes , Fatores de Tempo
15.
Clinics ; Clinics;70(4): 250-256, 04/2015. graf
Artigo em Inglês | LILACS | ID: lil-747121

RESUMO

OBJECTIVE: Salvia miltiorrhiza has long been used to treat systemic sclerosis. Tanshinone IIA, one of the phytochemicals derived from the roots of Salvia miltiorrhiza, exhibits multiple biological activities. The present study aimed to investigate whether tanshinone IIA has an effect on the interleukin-17A-induced functional activation of systemic sclerosis patient-derived dermal vascular smooth muscle cells. METHODS: Systemic sclerosis patient-derived dermal vascular smooth muscle cells were incubated with various dosages of tanshinone IIA in the presence of interleukin-17A or the serum of systemic sclerosis patients. Cell proliferation was assessed using Cell Counting Kit-8. The expression of collagen 1 and 3 in cells was evaluated by immunofluorescence. Cell migration was measured using a transwell assay. The expression of phospho-extracellular signal-regulated kinase was detected by Western blotting. RESULTS: Our data demonstrate that tanshinone IIA exerts an inhibitory effect on interleukin-17A-induced systemic sclerosis patient-derived dermal vascular smooth muscle cell proliferation, collagen synthesis and migration. CONCLUSION: These findings suggest that tanshinone IIA might serve as a promising therapeutic agent for the treatment of systemic sclerosis. .


Assuntos
Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Comunicação , Síndrome de Down/psicologia , Autoimagem , Avaliação da Deficiência , Síndrome de Down/reabilitação , Seleção de Pacientes , Poder Psicológico , Ajustamento Social , Estatística como Assunto
16.
Immunology ; 144(2): 271-81, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25155483

RESUMO

CD38 is a 45,000 molecular weight transmembrane protein that is expressed in immature and mature lymphocytes. However, the expression and function of CD38 during B-cell differentiation in mice is poorly understood. Here, we report that CD38 is expressed from the earliest stages of B-cell development. Pre-pro-B, pro-B, pre-B and immature B cells from murine bone marrow all stained positive for CD38. Interestingly, CD38 expression increases with B-cell maturation. To assess the role of CD38 during B-cell maturation, CD38-deficient mice were analysed. CD38(-/-) mice showed a significant increase in both the frequency of B-lineage cells and the absolute numbers of pre-pro-B cells in bone marrow; however, no other differences were observed at later stages. CD38 cross-linking in Ba/F3 cells promoted apoptosis and marked extracellular signal-regulated kinase (ERK) phosphorylation, and these effects were reduced by treatment with the mitogen-activated protein kinase/ERK kinase inhibitor PD98059, and similar effects were observed in B-cell precursors from bone marrow. These data demonstrate that B-cell precursors in mouse bone marrow express functional CD38 and implicate the early ligation of CD38 in the ERK-associated regulation of the B-lineage differentiation pathway.


Assuntos
ADP-Ribosil Ciclase 1/genética , Células da Medula Óssea/citologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Células Precursoras de Linfócitos B/citologia , ADP-Ribosil Ciclase 1/biossíntese , Animais , Apoptose/imunologia , Células da Medula Óssea/imunologia , Diferenciação Celular/imunologia , Linhagem Celular , Linhagem da Célula/imunologia , MAP Quinases Reguladas por Sinal Extracelular/imunologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Flavonoides/farmacologia , Ativação Linfocitária/imunologia , Glicoproteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/imunologia
17.
Biol. Res ; 48: 1-9, 2015. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-950808

RESUMO

BACKGROUND: The fetus is surrounded by the amniotic fluid (AF) contained by the amniotic sac of the pregnant female. The AF is directly conveyed to the fetus during pregnancy. Although AF has recently been reported as an untapped resource containing various substances, it remains unclear whether the AF could influence fetal neurodevelopment. RESULTS: We used AF that was extracted from embryos at 16 days in pregnant SD rat and exposed the AF to the neural cells derived from the embryos of same rat. We found that the treatment of AF to cortical neurons increased the phosphorylation in ERK1/2 that is necessary for fetal neurodevelopment, which was inhibited by the treatment of MEK inhibitors. Moreover, we found the subsequent inhibition of glycogen synthase kinase-3 (GSK-3), which is an important determinant of cell fate in neural cells. Indeed, AF increased the neural clustering of cortical neurons, which revealed that the clustered cells were proliferating neural progenitor cells. Accordingly, we confirmed the ability of AF to increase the neural progenitor cells through neurosphere formation. Furthermore, we showed that the ERK/GSK-3 pathway was involved in AF-mediated neurosphere enlargement. CONCLUSIONS: Although the placenta mainly supplies oxygenated blood, nutrient substances for fetal development, these findings further suggest that circulating-AF into the fetus could affect fetal neurodevelopment via MAP kinases-derived GSK-3 pathway during pregnancy. Moreover, we suggest that AF could be utilized as a valuable resource in the field of regenerative medicine.


Assuntos
Animais , Feminino , Gravidez , Ratos , Sistema de Sinalização das MAP Quinases/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Células-Tronco Neurais/fisiologia , Líquido Amniótico/fisiologia , Fosforilação/efeitos dos fármacos , Transdução de Sinais/fisiologia , Diferenciação Celular , Ratos Sprague-Dawley , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Células-Tronco Neurais/citologia
18.
Thromb Res ; 133(2): 235-43, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24331207

RESUMO

INTRODUCTION: Platelets express Toll-like receptors (TLRs) that recognise molecular components of pathogens and, in nucleated cells, elicit immune responses through nuclear factor-kappaB (NF-κB) activation. We have shown that NF-κB mediates platelet activation in response to classical agonists, suggesting that this transcription factor exerts non-genomic functions in platelets. The aim of this study was to determine whether NF-κB activation is a downstream signal involved in TLR2 and 4-mediated platelet responses. MATERIAL AND METHODS: Aggregation and ATP release were measured with a Lumi-aggregometer. Fibrinogen binding, P-selectin and CD40 ligand (CD40L) levels and platelet-neutrophil aggregates were measured by cytometry. I kappa B alpha (IκBα) degradation and p65 phosphorylation were determined by Western blot and von Willebrand factor (vWF) by ELISA. RESULTS: Platelet stimulation with Pam3CSK4 or LPS resulted in IκBα degradation and p65 phosphorylation. These responses were suppressed by TLR2 and 4 blocking and synergised by thrombin. Aggregation, fibrinogen binding and ATP and vWF release were triggered by Pam3CSK4. LPS did not induce platelet responses per se, except for vWF release, but it did potentiate thrombin-induced aggregation, fibrinogen binding and ATP secretion. Pam3CSK4, but not LPS, induced P-selectin and CD40L expression and mixed aggregate formation. All of these responses, except for CD40L expression, were inhibited in platelets treated with the NF-κB inhibitors BAY 11-7082 or Ro 106-9920. CONCLUSION: TLR2 and 4 agonists trigger platelet activation responses through NF-κB. These data show another non-genomic function of NF-κB in platelets and highlight this molecule as a potential target to prevent platelet activation in inflammatory or infectious diseases.


Assuntos
Plaquetas/efeitos dos fármacos , Lipopeptídeos/farmacologia , Lipopolissacarídeos/farmacologia , NF-kappa B/imunologia , Ativação Plaquetária/efeitos dos fármacos , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Plaquetas/citologia , Plaquetas/imunologia , Humanos , Receptor 2 Toll-Like/agonistas , Receptor 4 Toll-Like/agonistas
19.
J Cell Biochem ; 115(4): 712-20, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24243530

RESUMO

In the heart, insulin-like growth factor-1 (IGF-1) is a peptide with pro-hypertrophic and anti-apoptotic actions. The pro-hypertrophic properties of IGF-1 have been attributed to the extracellular regulated kinase (ERK) pathway. Recently, we reported that IGF-1 also increases intracellular Ca(2+) levels through a pertussis toxin (PTX)-sensitive G protein. Here we investigate whether this Ca(2+) signal is involved in IGF-1-induced cardiomyocyte hypertrophy. Our results show that the IGF-1-induced increase in Ca(2+) level is abolished by the IGF-1 receptor tyrosine kinase inhibitor AG538, PTX and the peptide inhibitor of Gßγ signaling, ßARKct. Increases in the activities of Ca(2+) -dependent enzymes calcineurin, calmodulin kinase II (CaMKII), and protein kinase Cα (PKCα) were observed at 5 min after IGF-1 exposure. AG538, PTX, ßARKct, and the dominant negative PKCα prevented the IGF-1-dependent phosphorylation of ERK1/2. Participation of calcineurin and CaMKII in ERK phosphorylation was discounted. IGF-1-induced cardiomyocyte hypertrophy, determined by cell size and ß-myosin heavy chain (ß-MHC), was prevented by AG538, PTX, ßARKct, dominant negative PKCα, and the MEK1/2 inhibitor PD98059. Inhibition of calcineurin with CAIN did not abolish IGF-1-induced cardiac hypertrophy. We conclude that IGF-1 induces hypertrophy in cultured cardiomyocytes by activation of the receptor tyrosine kinase activity/ßγ-subunits of a PTX-sensitive G protein/Ca(2+) /PKCα/ERK pathway without the participation of calcineurin.


Assuntos
Cálcio/metabolismo , Cardiomegalia/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Miócitos Cardíacos/patologia , Animais , Calcineurina/genética , Calcineurina/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Catecóis/farmacologia , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Peptídeos/genética , Fosforilação/efeitos dos fármacos , Proteína Quinase C-alfa/metabolismo , Subunidades Proteicas , Ratos Sprague-Dawley , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo , Proteínas Recombinantes/genética , Tirfostinas/farmacologia
20.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;46(12): 1047-1055, dez. 2013. graf
Artigo em Inglês | LILACS | ID: lil-695976

RESUMO

To understand the pathophysiological mechanisms of pulmonary arterial smooth muscle cell (PASMC) proliferation and extracellular-matrix accumulation in the development of pulmonary hypertension and remodeling, this study determined the effects of different doses of adrenomedullin (ADM) and adrenotensin (ADT) on PASMC proliferation and collagen synthesis. The objective was to investigate whether extracellular signal-regulated kinase (ERK1/2) signaling was involved in ADM- and ADT-stimulated proliferation of PASMCs in 4-week-old male Wistar rats (body weight: 100-150 g, n=10). The proliferation of PASMCs was examined by 5-bromo-2-deoxyuridine incorporation. A cell growth curve was generated by the Cell Counting Kit-8 method. Expression of collagen I, collagen III, and phosphorylated ERK1/2 (p-ERK1/2) was evaluated by immunofluorescence. The effects of different concentrations of ADM and ADT on collagen I, collagen III, and p-ERK1/2 protein expression were determined by immunoblotting. We also investigated the effect of PD98059 inhibition on the expression of p-ERK1/2 protein by immunoblotting. ADM dose-dependently decreased cell proliferation, whereas ADT dose-dependently increased it; and ADM and ADT inhibited each other with respect to their effects on the proliferation of PASMCs. Consistent with these results, the expression of collagen I, collagen III, and p-ERK1/2 in rat PASMCs decreased after exposure to ADM but was upregulated after exposure to ADT. PD98059 significantly inhibited the downregulation by ADM and the upregulation by ADT of p-ERK1/2 expression. We conclude that ADM inhibited, and ADT stimulated, ERK1/2 signaling in rat PASMCs to regulate cell proliferation and collagen expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA