Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Foods ; 13(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38790841

RESUMO

Research regarding meat analogues is mostly based on formulation and process development. Information concerning their safety, shelf life, and long-term nutritional and health effects is limited. This article reviews the existing literature and analyzes potential hazards introduced or modified throughout the processing chain of plant-based meat analogues via extrusion processing, encompassing nutritional, microbiological, chemical, and allergen aspects. It was found that the nutritional value of plant-based raw materials and proteins extracted thereof increases along the processing chain. However, the nutritional value of plant-based meat analogues is lower than that of e.g., animal-based products. Consequently, higher quantities of these products might be needed to achieve a nutritional profile similar to e.g., meat. This could lead to an increased ingestion of undigestible proteins and dietary fiber. Although dietary fibers are known to have many positive health benefits, they present a hazard since their consumption at high concentrations might lead to gastrointestinal reactions. Even though there is plenty of ongoing research on this topic, it is still not clear how the sole absorption of metabolites derived from plant-based products compared with animal-based products ultimately affects human health. Allergens were identified as a hazard since plant-based proteins can induce an allergic reaction, are known to have cross-reactivities with other allergens and cannot be eliminated during the processing of meat analogues. Microbiological hazards, especially the occurrence of spore- and non-spore-forming bacteria, do not represent a particular case if requirements and regulations are met. Lastly, it was concluded that there are still many unknown variables and open questions regarding potential hazards possibly present in meat analogues, including processing-related compounds such as n-nitrosamines, acrylamide, and heterocyclic aromatic amino acids.

2.
Int J Biol Macromol ; 267(Pt 2): 131200, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574910

RESUMO

Bioactive compounds into extruded foods enhance their nutritional value but they are heat and shear labile and prone to oxidation. This study was aimed to examine the impacts of distinct encapsulation methods on the stability of carotenoids under typical extrusion conditions. The study presents innovative encapsulation methods and investigates the protection efficacy of carotenoids degradation, as well as the effects on the physicochemical characteristics of carotenoid-rich products. Thus, spray drying, spray chilling, and their combination were compared based on their ability to protect carotenoids. Processing temperatures were 110 °C and 140 °C, and shear rates 500 and 2000 1/s. Carotenoid retention was determined, ß- and α-carotene retention ranged from 17 to 44 % and 18 to 48 %, respectively. Upon storage at room temperature, the carotenoid content was stable for 15 days, followed by a marked reduction after 30 days. Extrudates enriched microparticles produced by spray chilling and the combined methods exhibited higher carotenoid protection during storage. They also showed better quality attributes, notably bulk density, high water absorption index, color properties, and carotenoid retention. These findings suggest that encapsulation can protect carotenoids during extrusion, and the protection can be tailored to optimize the attributes of the final products.


Assuntos
Carotenoides , Goma Arábica , Carotenoides/química , Goma Arábica/química , Verduras/química , Portadores de Fármacos/química
3.
Food Res Int ; 180: 114070, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395559

RESUMO

This study aimed to modify the sensory properties of rapeseed protein concentrate using a combination of fermentation and high-moisture extrusion processing for producing meat analogues. The fermentation was carried out with Lactiplantibacillus plantarum and Weissella confusa strains, known for their flavour and structure-enhancing properties. Contrary to expectations, the sensory evaluation revealed that the fermentation induced bitterness and disrupted the fibrous structure formation ability due to the generation of short peptides. On the other hand, fermentation removed the intensive off-odour and flavour notes present in the native raw material. Several control treatments were produced to understand the reasons behind the hindered fibrous structure formation and induced bitterness. The results obtained from peptidomics, free amino ends, and solubility analyses strongly indicated that the proteins were hydrolysed by endoproteases activated during the fermentation process. Furthermore, it was suspected that the proteins and/or peptides formed complexes with other components, such as hydrolysis products of glucosinolates and polysaccharides.


Assuntos
Brassica napus , Brassica rapa , Fermentação , Substitutos da Carne , Polissacarídeos , Concentração de Íons de Hidrogênio
4.
Foods ; 12(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36900440

RESUMO

The development of plant-based meat analogs is currently hindered by the beany flavor generated by raw soybean protein and extrusion processing. Wide concern has led to extensive research on the generation and control of this unwanted flavor, as an understanding of its formation in raw protein and extrusion processing and methods through which to control its retention and release are of great significance for obtaining ideal flavor and maximizing food quality. This study examines the formation of beany flavor during extrusion processing as well as the influence of interaction between soybean protein and beany flavor compounds on the retention and release of the undesirable flavor. This paper discusses ways to maximize control over the formation of beany flavor during the drying and storage of raw materials and methods to reduce beany flavor in products by adjusting extrusion parameters. The degree of interaction between soybean protein and beany compounds was found to be dependent on conditions such as heat treatment and ultrasonic treatment. Finally, future research directions are proposed and prospected. This paper thus provides a reference for the control of beany flavor during the processing, storage, and extrusion of soybean raw materials used in the fast-growing plant-based meat analog industry.

5.
Polymers (Basel) ; 15(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36771971

RESUMO

This present study optimized the cellulose nanofiber (CNF) loading and melt processing conditions of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) P(HB-co-11% HHx) bionanocomposite fabrication in twin screw extruder by using the response surface methodology (RSM). A face-centered central composite design (CCD) was applied to statistically specify the important parameters, namely CNF loading (1-9 wt.%), rotational speed (20-60 rpm), and temperature (135-175 °C), on the mechanical properties of the P(HB-co-11% HHx) bionanocomposites. The developed model reveals that CNF loading and temperature were the dominating parameters that enhanced the mechanical properties of the P(HB-co-11% HHx)/CNF bionanocomposites. The optimal CNF loading, rotational speed, and temperature for P(HB-co-11% HHx) bionanocomposite fabrication were 1.5 wt.%, 20 rpm, and 160 °C, respectively. The predicted tensile strength, flexural strength, and flexural modulus for these optimum conditions were 22.96 MPa, 33.91 MPa, and 1.02 GPa, respectively, with maximum desirability of 0.929. P(HB-co-11% HHx)/CNF bionanocomposites exhibited improved tensile strength, flexural strength, and modulus by 17, 6, and 20%, respectively, as compared to the neat P(HB-co-11% HHx). While the crystallinity of P(HB-co-11% HHx)/CNF bionanocomposites increased by 17% under the optimal fabrication conditions, the thermal stability of the P(HB-co-11% HHx)/CNF bionanocomposites was not significantly different from neat P(HB-co-11% HHx).

6.
J Food Sci ; 88(2): 784-794, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36647678

RESUMO

The inclusion of cellulose nanocrystals (CNC) and microcrystalline cellulose (MCC) during extrusion processing of corn starch (CS) is presented in this study. Blends were prepared by incorporating CNC and MCC at different concentrations, 1%, 3%, 5%, and 10% w/w in CS. The crystallinity index (CrI) of CNC and MCC was determined using X-ray diffraction, and the chemical functionality of CNC, MCC, and CS was studied using Fourier transform infrared spectroscopy. The pasting properties of the blends were studied using Micro Visco-Amylo-Graph before extrusion. The blends were preconditioned to 18 ± 0.5% (w.b.) moisture and extruded using a twin-screw extruder at 200 and 250 rpm at 140°C. CS-CNC's expansion ratio (ER) values were 2.95 to 3.35 and 2.72 to 3.22 for MCC. CNC's CrI and particle size were significantly lower than MCC, allowing CNC-based extrudates to have ER values similar to the control even at high CNC concentration (≤10% w/w). This study demonstrated that fiber with particle size <100 µm can be added in direct-expanded product formulations at high concentrations without negatively influencing the extrudate texture while offering increased nutritional value. PRACTICAL APPLICATION: This study gives insight into the potential application of cellulose nanocrystals and microcrystalline cellulose in manufacturing direct-expanded extruded products, providing high fiber content without compromising the product quality. This knowledge could also be translated into manufacturing other food products such as breakfast cereals, pasta, and bread.


Assuntos
Amido , Zea mays , Amido/química , Tamanho da Partícula , Celulose/química , Difração de Raios X
7.
Food Res Int ; 163: 112286, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596192

RESUMO

Oil addition is challenging during high-moisture extrusion due to the negative fiber formation effects. A previous study found that oil-in-water (O/W) emulsions could significantly increase the oil content in high-moisture extrudates, but the molecular mechanism remained unclear. This study aimed to determine O/W emulsion influence on protein physicochemical properties in SPI extrudates during high-moisture extrusion. O/W emulsions were mixed with soy protein isolates (SPI) to prepare extrudates with oil/water ratios of 0/65, 4/61, and 8/57 (w/w). SDS-PAGE and ATR-FTIR analysis showed that higher oil/water ratios enhanced protein aggregation and promoted alteration from ß-sheet to random coil in SPI extrudates, which could be correlated to the reduction of protein solubility. The color was altered to lighter and yellow, and hardness, chewiness, and fiber degree decreased with increased oil/water ratios in SPI extrudates. In addition, in vitro digestion analyses showed that higher oil content contributed to improved protein digestibility.


Assuntos
Carboidratos , Proteínas de Soja , Emulsões , Proteínas de Soja/química , Solubilidade
8.
J Food Sci ; 87(11): 4967-4976, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36200561

RESUMO

Extrusion has become one of the most popular techniques in food processing, and the process parameters are closely related to product quality. Purslane (Portulaca oleracea L.) can be used in medical and food products as a vegetable and herb. It has limited application in extrusion. The effects of extrusion process variables (screw speed, barrel temperature, and feed moisture) on system variables (specific mechanical energy [SME], die head pressure, and torque) and target variables (water absorption index, water solubility index, iodine blue value, color, pasting properties, and textural properties) of purslane powder compound rice were studied. The results showed that SME was moderately positively correlated with screw speed (r = 0.608, p < 0.05). However, torque was moderately negatively correlated with feed moisture (r = -0.574, p < 0.05), and die head pressure was moderately negatively correlated with barrel temperature (r = -0.635, p < 0.01). The target variables of extrudates were also correlated with the system parameters to varying degrees. These results are helpful to control and predict the texture, pasting properties, and other quality characteristics of extruded products containing purslane powder. PRACTICAL APPLICATION: The results showed that torque and die head pressure were moderately negatively related to barrel temperature, specific mechanical energy was moderately positively related to screw speed, peak viscosity and breakdown viscosity were moderately negatively related to specific mechanical energy, and water absorption index was moderately negatively related to torque and die head pressure. It provides a reference for the research of influencing system parameters and changing product quality by controlling extrusion process parameters. In this study, some possibilities for the application of broken rice and purslane in extrusion processing were proposed.


Assuntos
Oryza , Portulaca , Pós , Água , Folhas de Planta
9.
Food Chem ; 390: 133187, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35569400

RESUMO

Distiller's grains (DGs) possessed great potential utilization value due to their rich active ingredients. However, its utilization efficiency was limited by the large amount of lignocellulose components and water-insoluble proteins. In this work, single screw extrusion was applied to modify physicochemical properties of DGs. Results indicated that extruded distiller's grains (EDGs) exhibited the lower crude fiber content (26.01%), the higher soluble fiber (9.07%) and the smaller particle size when compared with those of Control, and subsequently achieving the increased bulk density, swelling capacity and water/oil holding capacity. The crude protein in EDGs decreased slightly, while the total amount of acid hydrolyzed amino acids showed a significant increase. Additionally, the looser, coarser and fragmentary microstructure of EDGs were observed. The main macromolecules in EDGs had been modified distinctly based on thermal analysis, crystallinity and functional groups analyses, while the possible schematic diagram was conducted to better understand the modification mechanism.


Assuntos
Aminoácidos , Grão Comestível , Aminoácidos/análise , Ração Animal/análise , Grão Comestível/química , Estruturas Vegetais/química , Proteínas/análise , Água/química
10.
Braz. J. Pharm. Sci. (Online) ; 58: e18665, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1374559

RESUMO

Abstract Suitability of developing Spirulina incorporated cereal based low cost nutritious extrudates was analysed against extrusion processing parameters. Most significant extrusion processing parameters considered for present study were feed moisture (20-25%), die temperature (100-120 °C) and screw speed (50-100 rpm). Different extrusion conditions were used to obtain most acceptable rice: Spirulina blend extrudates. In present study before extrusion processing different additives (citric acid and sodium bicarbonate) were added in rice: Spirulina blend and checked its effect on colour degradation kinetics at varied packaging and storage conditions. Higher screw speed (100 rpm) indicating less residence time of feed material inside the barrel resulted in higher colour retention of rice: Spirulina (97:03) blend extrudates. Kinetics for rice: Spirulina (97:03) blend extrudates indicates faster rate of colour degradation in terms of lightness (half-life of 4 days) when packed in metalized polyethylene at 50°C with 65% relative humidity. Increased concentration of Spirulina (1-3%) in raw formulations resulted in increase in concentration of all amino acids. Impact of extrusion processing has shown non-significant (p ≤ 0.05) effect on amino acid concentrations of rice: Spirulina blend extrudates. Also, all the spirulina added samples showed good consumer acceptability with the score of 6.7


Assuntos
Grão Comestível/classificação , Biomassa , Microalgas/classificação , Aminoácidos/efeitos adversos , Oryza/classificação , Tecnologia de Baixo Custo , Embalagem de Produtos/instrumentação , Tempo de Permanência , Spirulina/metabolismo , Meia-Vida , Umidade/efeitos adversos
11.
Polymers (Basel) ; 13(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34503031

RESUMO

Poly(l-lactide-co-d,l-lactide) PDLA/45S5 Bioglass® (BG) composites for medical devices were developed using an original approach based on a thermal treatment of BG prior to processing. The aim of the present work is to gain a fundamental understanding of the relationships between the morphology, processing conditions and final properties of these biomaterials. A rheological study was performed to evaluate and model the PDLA/BG degradation during processing. The filler contents, as well as their thermal treatments, were investigated. The degradation of PDLA was also investigated by Fourier transform infrared (FTIR) spectroscopy, size-exclusion chromatography (SEC) and mechanical characterization. The results highlight the value of thermally treating the BG in order to control the degradation of the polymer during the process. The present work provides a guideline for obtaining composites with a well-controlled particle dispersion, optimized mechanical properties and limited degradation of the PDLA matrix.

12.
Polymers (Basel) ; 12(9)2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32962302

RESUMO

In this study, the influence of defined extrusion-like treatment conditions on the denaturation behavior and kinetics of single- and multi-component protein model systems at a protein concentration of 70% (w/w) was investigated. α-Lactalbumin (αLA) and ß-Lactoglobulin (ßLG), and whey protein isolate (WPI) were selected as single- and multi-component protein model systems, respectively. To apply defined extrusion-like conditions, treatment temperatures in the range of 60 and 100 °C, shear rates from 0.06 to 50 s⁻1, and treatment times up to 90 s were chosen. While an aggregation onset temperature was determined at approximately 73 °C for WPI systems at a shear rate of 0.06 s⁻1, two significantly different onset temperatures were determined when the shear rate was increased to 25 and 50 s⁻1. These two different onset temperatures could be related to the main fractions present in whey protein (ßLG and αLA), suggesting shear-induced phase separation. Application of additional mechanical treatment resulted in an increase in reaction rates for all the investigated systems. Denaturation was found to follow 2.262 and 1.865 order kinetics for αLA and WPI, respectively. The reaction order of WPI might have resulted from a combination of a lower reaction order in the unsheared system (i.e., fractional first order) and higher reaction order for sheared systems, probably due to phase separation, leading to isolated behavior of each fraction at the local level (i.e., fractional second order).

13.
Waste Manag Res ; 38(11): 1222-1230, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32500826

RESUMO

This work presents a study on the use of wood and plastic wastes generated in abundance in Merida, Mexico, to help to reduce them in order to mitigate environmental deterioration. The use of these wastes is proposed to obtain a low-cost building material. So, the escalation process (i.e., extrusion) at the pilot level to obtain a prototype of a wood-plastic composite (WPC) corrugated sheet to evaluate the technical feasibility to make a low-cost product is reported. A corrugated sheet with recycled high-density polyethylene (R-HDPE) was produced. The R-HDPE was collected from Merida's Separation Plant. The wood came from the trimmings of different varieties of trees and shrubs that are periodically pruned. WPC sheets with virgin HDPE were prepared to assess its effect on the materials' mechanical performance. The wood/HDPE weight ratio was 40/60. The performance of the WPC sheets was compared with that of commercial products with similar characteristics, namely acrylic and polyester sheets reinforced with fibreglass, and black asphalt-saturated cardboard sheets. Thus, the effect of natural weathering on the maximum tensile tearing force and on the maximum flexural load of the different types of sheets was evaluated. Although the mechanical performance of the WPC sheets was lower than that of the acrylic and polyacrylic sheets, their performance was much better than that of the cheap black asphalt-saturated cardboard sheets. So, they are a good option to be used as low-cost temporary roofing.


Assuntos
Plásticos , Árvores , México , Reciclagem , Madeira
14.
J Food Sci ; 82(7): 1647-1656, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28613441

RESUMO

Objective of this study was to understand the impacts of cellulose fiber with different particle size distributions, and starches with different molecular weights, on the expansion of direct expanded products. Fiber with 3 different particle size distributions (<125, 150 to 250, 300 to 425 µm) and 4 types of starches representing different amylose contents (0%, 23%, 50%, and 70%) were investigated. Feed moisture content (18 ± 0.5 % w.b) and extruder temperature (140 °C) were kept constant and only the extruder screw speed was varied (100, 175, and 250 rpm) to achieve different specific mechanical energy inputs. Fiber particle size and starch type significantly influenced the various product parameters. In general, the smaller fiber particle size resulted in extrudate with higher expansion ratio. Starch with an amylose: amylopectin ratio of 23:77 resulted in highest expansion compared to the other starches, when no fiber was added. Interestingly, starch with 50:50, amylose: amylopectin ratio in combination with smaller fiber particles resulted in product with significantly greater expansion than the control starch extrudates. Aggregation of fiber and shrinkage of surface was observed in the Scanning Electron Microscope images at 10% fiber level. The results suggest the presence of active interactions between the cellulose fiber particles and corn starch molecules during the expansion process. A better understanding of these interactions can help in the development of high fiber extruded products with better expansion.


Assuntos
Celulose/química , Fibras na Dieta/análise , Tamanho da Partícula , Amido/química , Amilopectina/análise , Amilose/análise , Manipulação de Alimentos , Temperatura Alta , Microscopia Eletrônica de Varredura , Peso Molecular
15.
J Food Sci ; 81(12): E2939-E2949, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27780310

RESUMO

Extrusion of 2 quinoa varieties, Cherry Vanilla and Black (scarified and unscarified) and a mixed quinoa variety, Bolivian Royal (scarified and degermed) were studied for their extrusion characteristics. A corotating twin-screw extruder with a 3 mm round die was used. Feed moisture contents of 15%, 20%, and 25% (wet basis) were studied. The extruder barrel temperature was kept constant at 140 °C and screw speeds were varied from 100, 150, and 200 revolutions per minutes. Process responses (specific mechanical energy, back pressure, and torque) and product responses (expansion ratio, unit density, and water absorption index/water solubility index) were evaluated. The degermed Bolivian Royal showed the highest expansion in comparison to all other varieties, attributed to its significantly low levels of fat, fiber, and protein. The scarified Cherry Vanilla resulted in the lowest expansion ratio. This was attributed to the increase in the protein content from the removal of the outer layer. The results indicate that all the varieties performed differently in the extrusion process due to their modification processes as well as the individual variety characteristics.


Assuntos
Chenopodium quinoa/química , Manipulação de Alimentos , Germinação , Fenômenos Químicos , Chenopodium quinoa/classificação , Solubilidade , Temperatura , Água/química
16.
Food Chem ; 213: 784-790, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27451248

RESUMO

This study represents the first report about possibility of reduction of Alternaria toxins in wheat using the extrusion process. Effects of extrusion processing parameters - moisture content (w=16, 20, 24g/100g), feeding rate (q=15, 20, 25kg/h), and screw speed (v=300, 390, 480rpm), on reduction rate of tenuazonic acid (TeA), alternariol (AOH) and alternariol monomethyl ether (AME), in whole wheat flour were investigated. Temperature ranged between 111.1 and 160.8°C, while the absolute pressure was from 0.17 to 0.23MPa. The simultaneous influence of w and v was the most important for TeA reduction (p<0.05), while v and q were the most influential for AOH reduction (p<0.01). Level of AME reduction was mostly influenced by w and v (p<0.10). Optimal parameters for reduction of all three Alternaria toxins were as follows: w=24g/100g, q=25kg/h, v=390rpm, with a reduction of 65.6% for TeA, 87.9% for AOH and 94.5% for AME.


Assuntos
Alternaria/química , Farinha/microbiologia , Manipulação de Alimentos , Micotoxinas/análise , Triticum/microbiologia , Grãos Integrais/microbiologia , Farinha/análise , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Lactonas/análise , Projetos Piloto , Análise de Componente Principal , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Temperatura , Ácido Tenuazônico/análise , Triticum/química , Grãos Integrais/química
17.
Int J Food Sci Nutr ; 67(6): 660-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27251648

RESUMO

Although food processing can alter food allergenicity, the impact of extrusion processing on in vivo hazelnut allergenicity is unknown. Here, we tested the hypothesis that extrusion processing will alter the immune activation properties of hazelnut protein (HNP) in mice. Soluble extrusion-processed HNP (EHNP) was prepared and evaluated for immune response using an established transdermal sensitization mouse model. Mice were sensitized with identical amounts of EHNP versus raw HNP. After confirming systemic IgE, IgG1 and IgG2a antibody responses, oral hypersensitivity reaction was quantified by hypothermia shock response (HSR). Mechanism was studied by measuring mucosal mast cell (MMC) degranulation. Compared to raw HNP, the EHNP elicited slower but similar IgE antibody (Ab) response, lower IgG1 but higher IgG2a Ab response. The EHNP exhibited significantly lower oral HSR as well as MMC degranulation capacity. These results demonstrate that the extrusion technology can be used to produce soluble HNP with altered immune activation properties.


Assuntos
Corylus/química , Manipulação de Alimentos , Hipersensibilidade a Noz/imunologia , Nozes/química , Proteínas de Plantas/imunologia , Animais , Formação de Anticorpos , Corylus/imunologia , Modelos Animais de Doenças , Feminino , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Hipersensibilidade a Noz/prevenção & controle , Nozes/imunologia , Proteínas de Plantas/isolamento & purificação
18.
Food Chem ; 180: 106-115, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25766807

RESUMO

In this study, soluble dietary fiber (SDF) content of wheat bran was significantly increased from 9.82 ± 0.16 (w/w, %) to 16.72 ± 0.28 (w/w, %) by a novel blasting extrusion processing with enhanced water retention capacity and the swelling capacity. In addition, a water-soluble polysaccharide (WBP) was isolated and extracted from extruded SDF. WBP was successfully purified from SDF by column chromatography systems with the average molecular weight (Mw) of 4.7 × 10(4)Da, containing arabinose, xylose, glucose, and galactose. With the molar ratio of 0.76:0.99:1.00:0.12. Our results suggest that WBP owned 1 → 2, 1 → 3, 1 → 2, 6 and 1 → 4, 1 → 4, 6 glycosidic bonds in the absence of 1 →, 1 → 6 glycosidic bonds. In vitro antioxidant assays (DPPH, ABTS+ radical scavenging capacities, and ferric ion reducing capacity) demonstrated that WBP possesses good antioxidant capacity, and it could be potentially used as a natural antioxidant for use in functional food, cosmetic and pharmaceutical industries.


Assuntos
Antioxidantes/química , Fibras na Dieta/análise , Polissacarídeos/química , Carboidratos da Dieta/análise , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...