Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artif Organs ; 48(7): 713-722, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38400618

RESUMO

BACKGROUND: A nonvolitional diagnostic method based on FES-Cycling technology has recently been demonstrated for mechanically ventilated patients. This method presents good sensitivity and specificity for detecting muscle dysfunction and survival prognosis, even in unconscious patients. As the clinical relevance of this method has already been reported, we aimed to evaluate its safety and feasibility. METHODS: An observational prospective study was carried out with 20 critically ill, mechanically ventilated patients. The FES-cycling equipment was set in a specific diagnostic mode. For safety determination, hemodynamic parameters and peripheral oxygen saturation were measured before and immediately after the diagnostic protocol, as well as venous oxygen saturation and blood lactate. The creatine phosphokinase level (CPK) was measured before and 24, 48, and 72 h after the test. The time taken to carry out the entire diagnostic protocol and the number of patients with visible muscle contraction (capacity of perceptive muscular recruitment) were recorded to assess feasibility. RESULTS: Heart rate [91 ± 23 vs. 94 ± 23 bpm (p = 0.0837)], systolic [122 ± 19 vs. 124 ± 19 mm Hg (p = 0.4261)] and diastolic blood pressure [68 ± 13 vs. 70 ± 15 mm Hg (p = 0.3462)], and peripheral [98 (96-99) vs. 98 (95-99) % (p = 0.6353)] and venous oxygen saturation [71 ± 14 vs. 69 ± 14% (p = 0.1317)] did not change after the diagnostic protocol. Moreover, blood lactate [1.48 ± 0.65 vs. 1.53 ± 0.71 mmol/L (p = 0.2320)] did not change. CPK did not change up to 72 h after the test [99 (59-422) vs. 125 (66-674) (p = 0.2799) vs. 161 (66-352) (p > 0.999) vs. 100 (33-409) (p = 0.5901)]. The time taken to perform the diagnostic assessment was 11.3 ± 1.1 min. In addition, 75% of the patients presented very visible muscle contractions, and 25% of them presented barely visible muscle contractions. CONCLUSIONS: The FES cycling-based muscular dysfunction diagnostic method is safe and feasible. Hemodynamic parameters, peripheral oxygen saturation, venous oxygen saturation, and blood lactate did not change after the diagnostic protocol. The muscle damage marker (CPK) did not increase up to 72 h after the diagnostic protocol.


Assuntos
Estudos de Viabilidade , Respiração Artificial , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Estudos Prospectivos , Idoso , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Estado Terminal , Hemodinâmica , Estimulação Elétrica/métodos , Ácido Láctico/sangue , Músculo Esquelético/fisiopatologia , Adulto , Saturação de Oxigênio , Contração Muscular , Creatina Quinase/sangue
2.
Artif Organs ; 48(3): 254-262, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37930042

RESUMO

BACKGROUND: Intensive care acquired muscle weakness is a common feature in critically ill patients. Beyond the therapeutic uses, FES-cycling could represent a promising nonvolitional evaluation method for detecting acquired muscle weakness. OBJECTIVES: To assess whether FES-cycling is able to identify muscle dysfunctions, and to evaluate the survival rate in patients with detected muscle dysfunction. METHODS: A prospective observational study was carried out, with 29 critically ill patients and 20 healthy subjects. Maximum torque and power achieved were recorded, in addition to the stimulation cost, and patients were followed up for six months. RESULTS: Torque (2.64 [1.53 to 4.81] vs 6.03 [4.56 to 6.73] Nm) and power (3.31 [2.33 to 6.37] vs 6.35 [5.22 to 10.70] watts) were lower and stimulation cost (22 915 [5069 to 37 750] vs 3411 [2080 to 4024] µC/W) was higher in patients compared to healthy people (p < 0.05). Surviving patients showed a nonsignificant difference in power and torque in relation to nonsurvivors (p > 0.05), but they had a lower stimulation cost (4462 [3598 to 11 788] vs 23 538 [10 164 to 39 836] µC/W) (p < 0.05). In total, 34% of all patients survived during the six months of follow-up. Furthermore, 62% of patients with a stimulation cost below 15 371 µC/W and 7% of patients with a stimulation cost above 15 371 µC/W survived. CONCLUSIONS: FES-cycling has good sensitivity and specificity for detecting muscle disorders. Critical patients have low torque and power and a high stimulation cost. Stimulation cost is related to survival. A low stimulation cost was related to a 3 times greater chance of survival.


Assuntos
Terapia por Estimulação Elétrica , Respiração Artificial , Humanos , Ciclismo/fisiologia , Estado Terminal/terapia , Estimulação Elétrica , Terapia por Estimulação Elétrica/métodos , Debilidade Muscular/terapia , Estudos Prospectivos
3.
Sensors (Basel) ; 22(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501826

RESUMO

This study introduces a novel controller based on a Reinforcement Learning (RL) algorithm for real-time adaptation of the stimulation pattern during FES-cycling. Core to our approach is the introduction of an RL agent that interacts with the cycling environment and learns through trial and error how to modulate the electrical charge applied to the stimulated muscle groups according to a predefined policy and while tracking a reference cadence. Instead of a static stimulation pattern to be modified by a control law, we hypothesized that a non-stationary baseline set of parameters would better adjust the amount of injected electrical charge to the time-varying characteristics of the musculature. Overground FES-assisted cycling sessions were performed by a subject with spinal cord injury (SCI AIS-A, T8). For tracking a predefined pedaling cadence, two closed-loop control laws were simultaneously used to modulate the pulse intensity of the stimulation channels responsible for evoking the muscle contractions. First, a Proportional-Integral (PI) controller was used to control the current amplitude of the stimulation channels over an initial parameter setting with predefined pulse amplitude, width and fixed frequency parameters. In parallel, an RL algorithm with a decayed-epsilon-greedy strategy was implemented to randomly explore nine different variations of pulse amplitude and width parameters over the same stimulation setting, aiming to adjust the injected electrical charge according to a predefined policy. The performance of this global control strategy was evaluated in two different RL settings and explored in two different cycling scenarios. The participant was able to pedal overground for distances over 3.5 km, and the results evidenced the RL agent learned to modify the stimulation pattern according to the predefined policy and was simultaneously able to track a predefined pedaling cadence. Despite the simplicity of our approach and the existence of more sophisticated RL algorithms, our method can be used to reduce the time needed to define stimulation patterns. Our results suggest interesting research possibilities to be explored in the future to improve cycling performance since more efficient stimulation cost dynamics can be explored and implemented for the agent to learn.


Assuntos
Terapia por Estimulação Elétrica , Traumatismos da Medula Espinal , Humanos , Terapia por Estimulação Elétrica/métodos , Ciclismo/fisiologia , Estimulação Elétrica , Contração Muscular , Músculo Esquelético/fisiologia
4.
J Neuroeng Rehabil ; 19(1): 45, 2022 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-35527249

RESUMO

BACKGROUND: In this work, we share the enhancements made in our system to take part in the CYBATHLON 2020 Global Edition Functional Electrical Stimulation (FES) Bike Race. Among the main improvements, firstly an overhaul, an overhaul of the system and user interface developed with User-centered design principles with remote access to enable telerehabilitation. Secondly, the implementation and experimental comparison between the traditional single electrode stimulation (SES) and spatially distributed sequential stimulation (SDSS) applied for FES Cycling. METHODS: We report on the main aspects of the developed system. To evaluate the user perception of the system, we applied a System Usability Scale (SUS) questionnaire. In comparing SDSS and SES, we collected data from one subject in four sessions, each simulating one race in the CYBATHLON format. RESULTS: User perception measured with SUS indicates a positive outcome in the developed system. The SDSS trials were superior in absolute and average values to SES regarding total distance covered and velocity. We successfully competed in the CYBATHLON 2020 Global Edition, finishing in 6th position in the FES Bike Race category. CONCLUSIONS: The CYBATHLON format induced us to put the end-user in the center of our system design principle, which was well perceived. However, further improvements are required if the intention is to progress to a commercial product. FES Cycling performance in SDSS trials was superior when compared to SES trials, indicating that this technique may enable faster and possibly longer FES cycling sessions for individuals with paraplegia. More extensive studies are required to assess these aspects.


Assuntos
Terapia por Estimulação Elétrica , Traumatismos da Medula Espinal , Ciclismo , Estimulação Elétrica , Terapia por Estimulação Elétrica/métodos , Humanos , Paraplegia , Traumatismos da Medula Espinal/reabilitação , Design Centrado no Usuário
5.
Sensors (Basel) ; 22(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35062492

RESUMO

Since the first Cybathlon 2016, when twelve teams competed in the FES bike race, we have witnessed a global effort towards the development of stimulation and control strategies to improve FES-assisted devices, particularly for cycling, as a means to practice a recreational physical activity. As a result, a set of technical notes and research paved the way for many other studies and the potential behind FES-assisted cycling has been consolidated. However, engineering research needs instrumented devices to support novel developments and enable precise assessment. Therefore, some researchers struggle to develop their own FES-assisted devices or find it challenging to implement their instrumentation using commercial devices, which often limits the implementation of advanced control strategies and the possibility to connect different types of sensor. In this regard, we hypothesize that it would be advantageous for some researchers in our community to enjoy access to an entire open-source FES platform that allows different control strategies to be implemented, offers greater adaptability and power capacity than commercial devices, and can be used to assist different functional activities in addition to cycling. Hence, it appears to be of interest to make our proprietary electrical stimulation system an open-source device and to prove its capabilities by addressing all the aspects necessary to implement a FES cycling system. The high-power capacity stimulation device is based on a constant current topology that allows the creation of biphasic electrical pulses with amplitude, width, and frequency up to 150 mA, 1000 µs, and 100 Hz, respectively. A mobile application (Android) was developed to set and modify the stimulation parameters of up to eight stimulation channels. A proportional-integral controller was implemented for cadence tracking with the aim to improve the overall cycling performance. A volunteer with complete paraplegia participated in the functional testing of the system. He was able to cycle indoors for 45 min, accomplish distances of more than 5 km using a passive cycling trainer, and pedal 2400 m overground in 32 min. The results evidenced the capacity of our FES cycling system to be employed as a cycling tool for individuals with spinal cord injury. The methodological strategies used to improve FES efficiency suggest the possibility of maximizing pedaling duration through more advanced control techniques.


Assuntos
Terapia por Estimulação Elétrica , Traumatismos da Medula Espinal , Ciclismo , Estimulação Elétrica , Humanos , Masculino , Paraplegia
6.
Technol Health Care ; 30(4): 909-918, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34744034

RESUMO

BACKGROUND: Cyclergometry with functional electrical stimulation (FES-cycling) is a feasible method for rehabilitation. The concept is to promote exercise induced by depolarization of the motoneuron and muscular contraction. OBJECTIVE: To measure acute physiological responses to FES-cycling. METHODS: Retrospective study of data from ten healthy volunteers who performed FES-cycling, passive cycling and neuromuscular electrical stimulation (NMES) alone. Metabolic, ventilatory and cardiovascular parameters were analyzed. RESULTS: Oxygen uptake enhanced 97 ± 15% during FES-cycling, with medium effect size compared to NMES and large effect size compared to passive cycling. Energy expenditure enhanced 102 ± 15% during FES-cycling, with medium effect size compared to NMES and large effect size compared to passive cycling. Minute ventilation enhanced 115 ± 26% during FES-cycling, with small effect size compared to NMES and medium effect size compared to passive cycling. Cardiac output enhanced 21 ± 4% during FES-cycling, with medium effect size compared to NMES and passive cycling. Arterial - mixed venous oxygen content difference enhanced 60 ± 8% during FES-cycling, with a medium effect size compared to NMES and large effect size compared to passive cycling. CONCLUSIONS: FES-cycling enhances metabolic, ventilatory and cardiovascular demands and the physiological responses are higher than NMES and passive cycling.


Assuntos
Terapia por Estimulação Elétrica , Ciclismo , Terapia por Estimulação Elétrica/métodos , Terapia por Exercício/métodos , Humanos , Oxigênio , Estudos Retrospectivos
7.
Eur J Transl Myol ; 27(4): 7169, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29299225

RESUMO

FES-assisted cycling has been recommended to people struggling to emerge from a disability to more functioning life after spinal cord injury. Recommendations issued by a gowing number of scientific papershas promised toimprove body composition and physical activity levels, as well as to controlinvoluntary muscle response; favoring activity and participation which break new grounds in expanding locomotion, leisure and occupational options for people with paraplegia and tetraplegia. In this report we described our experience to select and prepare a pilot to compete in the FES Bike Race modality at Cybathlon 2016 in Kloten (Zurick). He was a man, 38 years old, with a complete spinal cord injury, level T9, three years of injury. He took part in a two preparation phases lasting respectively 18 and 12 weeks each: (1st) pre-FES-cycling and a (2nd) FES-cycling. The 1st phase aimed to explore electrical stimulation response in the quadricps, hamstrings and gluteus muscles; searching for a standard muscular recruitment enable to propel the pedals of a trike. Following, in the 2nd phase, stationary to mobile FES-cycling was performed at the same time the development of the automation and control systems were being incorporated in the trike. We adapted a commercial tadpole trycicle anda pilot controlled system. Although we had planned a three session by week protocol, for reasons of term and time to finish the trike development and be prepared to compete, in the last two weeks before the Cybatlhon an intense level of exercise was maintained. After the race, we noticedinflammatory signs on the left knee which later revealed a patella fracture. The video footage analysis confirmed ithappened during the race's first lap.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA