Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
Endocr J ; 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39284711

RESUMO

The incidences of metabolic syndrome (MetS), denoting insulin resistance-associated various metabolic disorders, are increasing. This study aimed to identify new biomarkers for predicting MetS and provide a novel diagnostic approach. Herein, the expression profiles of c-Jun (JUN) and FBJ murine osteosarcoma viral oncogene homolog B (FOSB) in individuals with obesity and patients with MetS from the Gene Expression Omnibus database. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to evaluate the messenger RNA levels of JUN and FOSB in the peripheral blood of healthy volunteers (lean and obese) and patients with MetS (lean and obese), along with that in the adipose tissue and peripheral blood of obese mouse model. Furthermore, receiver operating characteristic (ROC) curve and logistic regression analyses were performed to determine the diagnostic value of JUN and FOSB in MetS. The expression profiles and RT-qPCR results showed that JUN and FOSB were highly expressed in individuals with obesity, obese mouse models, and patients with MetS. The ROC analysis results showed an area under the curve values of 0.872 and 0.879 for JUN, 0.802 and 0.962 for FOSB, and 0.946 and 0.979 for JUN-FOSB in the lean group and the group with obesity, respectively, in predicting MetS. Logistic regression analysis showed that the p-values of both JUN and FOSB as MetS-affecting factors were <0.05. Altogether, the findings of this study indicate that both JUN and FOSB, abnormally expressed in individuals with obesity, are good biomarkers of MetS.

2.
J Exp Clin Cancer Res ; 43(1): 237, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39164746

RESUMO

BACKGROUND: Activator protein-1 (AP-1) represents a transcription factor family that has garnered growing attention for its extensive involvement in tumor biology. However, the roles of the AP-1 family in the evolution of lung cancer remain poorly characterized. FBJ Murine Osteosarcoma Viral Oncogene Homolog B (FOSB), a classic AP-1 family member, was previously reported to play bewilderingly two-polarized roles in non-small cell lung cancer (NSCLC) as an enigmatic double-edged sword, for which the reasons and significance warrant further elucidation. METHODS AND RESULTS: Based on the bioinformatics analysis of a large NSCLC cohort from the TCGA database, our current work found the well-known tumor suppressor gene TP53 served as a key code to decipher the two sides of FOSB - its expression indicated a positive prognosis in NSCLC patients harboring wild-type TP53 while a negative one in those harboring mutant TP53. By constructing a panel of syngeneically derived NSCLC cells expressing p53 in different statuses, the radically opposite prognostic effects of FOSB expression in NSCLC population were validated, with the TP53-R248Q mutation site emerging as particularly meaningful. Transcriptome sequencing showed that FOSB overexpression elicited diversifying transcriptomic landscapes across NSCLC cells with varying genetic backgrounds of TP53 and, combined with the validation by RT-qPCR, PREX1 (TP53-Null), IGFBP5 (TP53-WT), AKR1C3, and ALDH3A1 (TP53-R248Q) were respectively identified as p53-dependent transcriptional targets of FOSB. Subsequently, the heterogenous impacts of FOSB on the tumor biology in NSCLC cells via the above selective transcriptional targets were confirmed in vitro and in vivo. Mechanistic investigations revealed that wild-type or mutant p53 might guide FOSB to recognize and bind to distinct promoter sequences via protein-protein interactions to transcriptionally activate specific target genes, thereby creating disparate influences on the progression and prognosis in NSCLC. CONCLUSIONS: FOSB expression holds promise as a novel prognostic biomarker for NSCLC in combination with a given genetic background of TP53, and the unique interactions between FOSB and p53 may serve as underlying intervention targets for NSCLC.


Assuntos
Progressão da Doença , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-fos , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Feminino , Masculino , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
3.
Biomaterials ; 311: 122680, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38959534

RESUMO

In the present study, we explored the development of a novel noninvasive liposomal drug delivery material for use in intranasal drug delivery applications in human diseases. We used drug entrapment into liposomal nanoparticle assembly to efficiently deliver the drugs to the nasal mucosa to be delivered to the brain. The naturally occurring flavonoid 7,8-dihydroxyflavone (7,8-DHF) has previously been shown to have beneficial effects in ameliorating Parkinson's disease (PD). We used both naturally occurring 7,8-DHF and the chemically modified form of DHF, the DHF-ME, to be used as a drug candidate for the treatment of PD and l-DOPA induced dyskinesia (LID), which is the debilitating side effect of l-DOPA therapy in PD. The ligand-protein interaction behavior for 7,8-DHF and 6,7-DHF-ME was found to be more effective with molecular docking and molecular stimulation studies of flavonoid compounds with TrkB receptor. Our study showed that 7,8-DHF delivered via intranasal route using a liposomal formulation ameliorated LID in hemiparkinsonian mice model when these mice were chronically administered with l-DOPA, which is the only current medication for relieving the clinical symptoms of PD. The present study also demonstrated that apart from reducing the LID, 7,8-DHF delivery directly to the brain via the intranasal route also corrected some long-term signaling adaptations involving ΔFosB and α Synuclein in the brain of dopamine (DA) depleted animals.


Assuntos
Administração Intranasal , Flavonoides , Levodopa , Lipossomos , Animais , Lipossomos/química , Levodopa/administração & dosagem , Flavonoides/administração & dosagem , Flavonoides/farmacologia , Camundongos , Masculino , Doença de Parkinson/tratamento farmacológico , Camundongos Endogâmicos C57BL , Discinesia Induzida por Medicamentos/tratamento farmacológico , Simulação de Acoplamento Molecular , Receptor trkB/metabolismo , Sistemas de Liberação de Medicamentos , Flavonas
4.
Biomed Pharmacother ; 175: 116739, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759288

RESUMO

BACKGROUND: Ketamine, as a non-competitive antagonist of N-methyl-D-aspartate (NMDA) receptors, was originally used in general anesthesia. Epidemiological data show that ketamine has become one of the most commonly abused drugs in China. Ketamine administration might cause cognitive impairment; however, its molecular mechanism remains unclear. The glymphatic system is a lymphoid system that plays a key role in metabolic waste removal and cognitive regulation in the central nervous system. METHODS: Focusing on the glymphatic system, this study evaluated the behavioral performance and circulatory function of the glymphatic system by building a short-term ketamine administration model in mice, and detected the expression levels of the 5-HT2c receptor, ΔFosb, Pten, Akt, and Aqp4 in the hippocampus. Primary astrocytes were cultured to verify the regulatory relationships among related indexes using a 5-HT2c receptor antagonist, a 5-HT2c receptor short interfering RNA (siRNA), and a ΔFosb siRNA. RESULTS: Ketamine administration induced ΔFosb accumulation by increasing 5-HT2c receptor expression in mouse hippocampal astrocytes and primary astrocytes. ΔFosb acted as a transcription factor to recognize the AATGATTAAT bases in the 5' regulatory region of the Aqp4 gene (-1096 bp to -1087 bp), which inhibited Aqp4 expression, thus causing the circulatory dysfunction of the glymphatic system, leading to cognitive impairment. CONCLUSIONS: Although this regulatory mechanism does not involve the Pten/Akt pathway, this study revealed a new mechanism of ketamine-induced cognitive impairment in non-neuronal systems, and provided a theoretical basis for the safety of clinical treatment and the effectiveness of withdrawal.


Assuntos
Astrócitos , Disfunção Cognitiva , Sistema Glinfático , Hipocampo , Ketamina , Animais , Ketamina/farmacologia , Ketamina/toxicidade , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Camundongos , Masculino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Sistema Glinfático/efeitos dos fármacos , Sistema Glinfático/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Aquaporina 4/metabolismo , Aquaporina 4/genética , Receptor 5-HT2C de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/genética , Camundongos Endogâmicos C57BL , Células Cultivadas , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética
5.
Prog Neurobiol ; 237: 102612, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642602

RESUMO

Recurrent seizures lead to accumulation of the activity-dependent transcription factor ∆FosB in hippocampal dentate granule cells in both mouse models of epilepsy and mouse models of Alzheimer's disease (AD), which is also associated with increased incidence of seizures. In patients with AD and related mouse models, the degree of ∆FosB accumulation corresponds with increasing severity of cognitive deficits. We previously found that ∆FosB impairs spatial memory in mice by epigenetically regulating expression of target genes such as calbindin that are involved in synaptic plasticity. However, the suppression of calbindin in conditions of neuronal hyperexcitability has been demonstrated to provide neuroprotection to dentate granule cells, indicating that ∆FosB may act over long timescales to coordinate neuroprotective pathways. To test this hypothesis, we used viral-mediated expression of ∆JunD to interfere with ∆FosB signaling over the course of several months in transgenic mice expressing mutant human amyloid precursor protein (APP), which exhibit spontaneous seizures and develop AD-related neuropathology and cognitive deficits. Our results demonstrate that persistent ∆FosB activity acts through discrete modes of hippocampal target gene regulation to modulate neuronal excitability, limit recurrent seizure activity, and provide neuroprotection to hippocampal dentate granule cells in APP mice.


Assuntos
Precursor de Proteína beta-Amiloide , Giro Denteado , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-fos , Convulsões , Animais , Humanos , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Giro Denteado/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Neuroproteção/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Convulsões/genética , Convulsões/metabolismo
6.
Cell Signal ; 118: 111125, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38432574

RESUMO

BACKGROUND: Parkinson's disease patients on chronic levodopa often suffer from motor complications, which tend to reduce their quality of life. Levodopa-induced dyskinesia (LID) is one of the most prevalent motor complications, often characterized by abnormal involuntary movements, and the pathogenesis of LID is still unclear but recent studies have suggested the involvement of autophagy. METHODS: The onset of LID was mimicked by chronic levodopa treatment in a unilateral 6-hydroxydopamine (6-OHDA) -lesion rat model. Overexpression of ΔFosB in HEK293 cells to mimic the state of ΔFosB accumulation. The modulation of the AMP-activated protein kinase (AMPK)-mediated autophagy pathway using by metformin, AICAR (an AMPK activator), Compound C (an AMPK inhibitor) and chloroquine (an autophagy pathway inhibitor). The severity of LID was assessed by axial, limb, and orofacial (ALO) abnormal involuntary movements (AIMs) score and in vivo electrophysiology. The activity of AMPK pathway as well as autophagy markers and FosB-ΔFosB levels were detected by western blotting. RT-qPCR was performed to detect the transcription level of FosB-ΔFosB. The mechanism of autophagy dysfunction was further explored by immunofluorescence and transmission electron microscopy. RESULTS: In vivo experiments demonstrated that chronic levodopa treatment reduced AMPK phosphorylation, impaired autophagosome-lysosomal fusion and caused FosB-ΔFosB accumulation in the striatum of PD rats. Long-term metformin intervention improved ALO AIMs scores as well as reduced the mean power of high gamma (hγ) oscillations and the proportion of striatal projection neurons unstable in response to dopamine for LID rats. Moreover, the intervention of metformin promoted AMPK phosphorylation, ameliorated the impairment of autophagosome-lysosomal fusion, thus, promoting FosB-ΔFosB degradation to attenuate its accumulation in the striatum of LID rats. However, the aforementioned roles of metformin were reversed by Compound C and chloroquine. The results of in vitro studies demonstrated the ability of metformin and AICAR to attenuate ΔFosB levels by promoting its degradation, while Compound C and chloroquine could block this effect. CONCLUSIONS: In conclusion, our results suggest that long-term metformin treatment could promote ΔFosB degradation and thus attenuate the development of LID through activating the AMPK-mediated autophagy pathway. Overall, our results support the AMPK-mediated autophagy pathway as a novel therapeutic target for LID and also indicate that metformin is a promising therapeutic candidate for LID.


Assuntos
Discinesia Induzida por Medicamentos , Metformina , Humanos , Ratos , Animais , Levodopa/farmacologia , Levodopa/uso terapêutico , Antiparkinsonianos/farmacologia , Proteínas Quinases Ativadas por AMP , Células HEK293 , Qualidade de Vida , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Oxidopamina/uso terapêutico , Autofagia , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Metformina/farmacologia , Modelos Animais de Doenças
7.
Diagnostics (Basel) ; 14(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38337858

RESUMO

Pseudomyogenic hemangioendothelioma (PMHE), a rare vascular neoplasm, was first described in 1992 asa fibroma-like variant of epithelioid sarcoma, and would be termed as epithelioid sarcoma-like hemangioendothelioma a decade later due to its significant histologic overlap with epithelioid sarcoma and diffuse cytokeratin expression. PHME is currently defined as a distinct, potentially intermediate malignant, rarely metastasizing neoplasm with vascular/endothelial differentiation. It is characterized by young age (typically less than 40 years old), extremity location (approximately ~80%), and t(7:19) SERPINE1::FOSB fusion as the most common molecular alteration. Herein, we report a case of a 59-year-old male presenting with multifocal lesions, including in the right temporalis muscle, right frontoparietal calvarium, right pterygoid muscles, and right mandibular condyle. Histologic examination of the right temporal lesion revealed a multinodular biphasic lesion composed of sheets and fascicles of elongated spindle and epithelioid cells infiltrating into the adjacent skeletal muscle. Admixed abundant neutrophilic infiltration is noted; however, areas of necrosis, increased mitosis, nuclear atypia, or rhabdomyoblast-like cells are absent. Immunohistochemical (IHC) staining showed that the tumor cells were diffusely and strongly positive for FOSB, pan-cytokeratin (AE1/AE3), CD31, and ERG. Molecular testing demonstrated a t(9:19) EGFL7::FOSB fusion mRNA. This constellation of morphological, IHC and molecular findings was consistent with a diagnosis of PMHE. This is the first reported case of multifocal PMHE with EGFL7::FOSB fusion in the head and neck area of a patient aged more than 50 years old. Since the differential diagnoses for PMHE includes high-grade malignancies with aggressive clinical behavior, coupled with the rare reports of PMHE in the head and neck region, awareness of this tumor in the head and neck region will avoid the misdiagnosis and overtreatment of this entity.

8.
Heliyon ; 10(2): e24575, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38304844

RESUMO

Background: Preeclampsia (PE) is a common and severe hypertensive disorder in pregnancy. Mesenchymal stem cell-derived exosomes (Exos-MSC) have been reported to mitigate the progression of inflammatory diseases. The study aimed to explore the effects of human umbilical cord-derived Exos-MSC (huc-Exos-MSC) on PE-like models. Methods: Lipopolysaccharide (LPS) was used to construct in vitro and in vivo PE-like models. Exosomes were treated with LPS-induced PE-like cells and rats. Results: PE-like inflammatory models of pregnant rats and cells were successfully constructed in vivo and in vitro. miR-144 was screened by bioinformatics analysis. Exosomes were successfully extracted. Silencing FosB, overexpressing miR-144 or treating with exosomes extracted from huc-MSC overexpressing miR-144 in (Exos-MSCmiR-144) reversed the LPS-induced decline in HTR-8/SVneo cell viability and migration. In addition, the above groups decreased LPS-induced increases in interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), phosphorylated nuclear factor-kappaB (p-NF-κB)/NF-κB, soluble FMS-like tyrosine kinase 1 (sFlt-1), and Flt-1 levels. Simultaneously, transfection of miR-144 mimics and overexpressing FosB reversed those changes in the miR-144 mimics group. miR-144 might alleviate LPS-induced HTR-8/SVneo cell inflammation by targeting FosB. Injection of Exos-MSCmiR-144 in PE-like pregnant rats reversed LPS-induced increases in FosB expression, systolic and diastolic blood pressure (SBP and DBP), as well as mean arterial pressure (MAP), heart rate, urine albumin/creatine ratio, inflammatory factors, p-NF-κB/NF-κB, and sFlt-1 levels. Furthermore, compared with the model group, the proportion of live births was significantly higher in the model + Exos-MSCmiR-144 group, while the apoptosis rate of fetal rat brain tissue was significantly lower. Conclusions: We found that huc-Exos-MSC-derived miR-144 alleviated gestational hypertension and inflammation in PE-like pregnant rats by regulating the FosB/Flt-1 pathway. In addition, huc-Exos-MSC-derived miR-144 could partially reverse the LPS-induced adverse pregnancy outcome and brain injury in fetal rats, laying the foundation for developing new treatments for PE.

9.
CNS Neurosci Ther ; 30(2): e14632, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38366763

RESUMO

BACKGROUND: Olfactory dysfunction is known to be an early manifestation of Alzheimer's disease (AD). However, the underlying mechanism, particularly the specific molecular events that occur during the early stages of olfactory disorders, remains unclear. METHODS: In this study, we utilized transcriptomic sequencing, bioinformatics analysis, and biochemical detection to investigate the specific pathological and molecular characteristics of the olfactory bulb (OB) in 4-month-old male triple transgenic 3xTg-AD mice (PS1M146V/APPSwe/TauP301L). RESULTS: Initially, during the early stages of olfactory impairment, no significant learning and memory deficits were observed. Correspondingly, we observed significant accumulation of amyloid-beta (Aß) and Tau pathology specifically in the OB, but not in the hippocampus. In addition, significant axonal morphological defects were detected in the olfactory bulb, cortex, and hippocampal brain regions of 3xTg-AD mice. Transcriptomic analysis revealed a significant increase in the expression of neuroinflammation-related genes, accompanied by a significant decrease in neuronal activity-related genes in the OB. Moreover, immunofluorescence and immunoblotting demonstrated an activation of glial cell biomarkers Iba1 and GFAP, along with a reduction in the expression levels of neuronal activity-related molecules Nr4a2 and FosB, as well as olfaction-related marker OMP. CONCLUSION: In sum, the early accumulation of Aß and Tau pathology induces neuroinflammation, which subsequently leads to a decrease in neuronal activity within the OB, causing axonal transport deficits that contribute to olfactory disorders. Nr4a2 and FosB appear to be promising targets for intervention aimed at improving early olfactory impairment in AD.


Assuntos
Doença de Alzheimer , Transtornos do Olfato , Camundongos , Animais , Masculino , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Olfato , Doenças Neuroinflamatórias , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Transtornos do Olfato/genética , Modelos Animais de Doenças , Proteínas tau/genética , Proteínas tau/metabolismo
10.
Psychopharmacology (Berl) ; 241(6): 1161-1176, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38347153

RESUMO

RATIONALE: Chronic stress exposure disrupts the medial prefrontal cortex's (mPFC) ability to regulate impulses, leading to the loss of control over alcohol drinking in rodents, emphasizing the critical role of this forebrain area in regulating alcohol consumption. Moreover, chronic stress exposure causes lateralization of mPFC functions with volumetric and functional changes, resulting in hyperactivity in the right hemisphere and functional decrease in the left. OBJECTIVES: This study investigated the inhibitory role of the left prelimbic cortex (LPrL) on ethanol consumption induced by chronic social defeat stress (SDS) in male mice and to examine if inactivation of the LPrL causes disinhibition of the right mPFC, leading to an increase in ethanol consumption. We also investigated the role of lateralization and neurochemical alterations in the mPFC related to ethanol consumption induced by chronic SDS. To this end, we examined the activation patterns of ΔFosB, VGLUT2, and GAD67 in the left and right mPFC. RESULTS: Temporarily blocking the LPrL or right PrL (RPrL) cortices during acute SDS did not affect male mice's voluntary ethanol consumption in male mice. When each cortex was blocked in mice previously exposed to chronic SDS, ethanol consumption also remained unaffected. However, male mice with LPrL lesions during chronic SDS showed an increase in voluntary ethanol consumption, which was associated with enhanced ΔFosB/VGLUT2-positive neurons within the RPrL cortex. CONCLUSIONS: The results suggest that the LPrL may play a role in inhibiting ethanol consumption induced by chronic SDS, while the RPrL may be involved in the disinhibition of ethanol consumption.


Assuntos
Consumo de Bebidas Alcoólicas , Córtex Pré-Frontal , Derrota Social , Estresse Psicológico , Animais , Masculino , Estresse Psicológico/metabolismo , Consumo de Bebidas Alcoólicas/psicologia , Camundongos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Etanol/administração & dosagem , Etanol/farmacologia , Lateralidade Funcional/efeitos dos fármacos , Doença Crônica
11.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38164567

RESUMO

Brain-derived neurotrophic factor (BDNF) is important in the development and maintenance of neurons and their plasticity. Hippocampal BDNF has been implicated in Alzheimer's disease (AD) because hippocampal levels in AD patients and AD animal models are often downregulated, suggesting that reduced BDNF contributes to AD. However, the location where hippocampal BDNF protein is most highly expressed, the mossy fiber (MF) axons of dentate gyrus granule cells (GCs), has been understudied, and not in controlled conditions. Therefore, we evaluated MF BDNF protein in the Tg2576 mouse model of AD. Tg2576 and wild-type (WT) mice of both sexes were examined at 2-3 months of age, when amyloid-ß (Aß) is present in neurons but plaques are absent, and 11-20 months of age, after plaque accumulation. As shown previously, WT mice exhibited high levels of MF BDNF protein. Interestingly, there was no significant decline with age in either the genotype or sex. Notably, MF BDNF protein was correlated with GC ΔFosB, a transcription factor that increases after 1-2 weeks of elevated neuronal activity. We also report the novel finding that Aß in GCs or the GC layer was minimal even at old ages. The results indicate that MF BDNF is stable in the Tg2576 mouse, and MF BDNF may remain unchanged due to increased GC neuronal activity, since BDNF expression is well known to be activity dependent. The resistance of GCs to long-term Aß accumulation provides an opportunity to understand how to protect vulnerable neurons from increased Aß levels and therefore has translational implications.


Assuntos
Doença de Alzheimer , Humanos , Masculino , Feminino , Camundongos , Animais , Lactente , Doença de Alzheimer/patologia , Fibras Musgosas Hipocampais/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Giro Denteado/fisiologia
13.
Biol Psychiatry ; 95(3): 266-274, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517704

RESUMO

BACKGROUND: The transcription factor ΔFOSB, acting in the nucleus accumbens, has been shown to control transcriptional and behavioral responses to opioids and other drugs of abuse. However, circuit-level consequences of ΔFOSB induction on the rest of the brain, which are required for its regulation of complex behavior, remain unknown. METHODS: We used an epigenetic approach in mice to suppress or activate the endogenous Fosb gene and thereby decrease or increase, respectively, levels of ΔFOSB selectively in D1-type medium spiny neurons of the nucleus accumbens and tested whether these modifications affect the organization of functional connectivity (FC) in the brain. We acquired functional magnetic resonance imaging data at rest and in response to a morphine challenge and analyzed both stationary and dynamic FC patterns. RESULTS: The 2 manipulations modified brainwide communication markedly and differently. ΔFOSB down- and upregulation had overlapping effects on prefrontal- and retrosplenial cortex-centered networks, but also generated specific FC signatures for epithalamus (habenula) and dopaminergic/serotonergic centers, respectively. Analysis of dynamic FC patterns showed that increasing ΔFOSB essentially altered responsivity to morphine and uncovered striking modifications of the roles of the epithalamus and amygdala in brain communication, particularly upon ΔFOSB downregulation. CONCLUSIONS: These novel findings illustrate how it is possible to link activity of a transcription factor within a single cell type of an identified brain region to consequent changes in circuit function brainwide by use of functional magnetic resonance imaging, and they pave the way for fundamental advances in bridging the gap between transcriptional and brain connectivity mechanisms underlying opioid addiction.


Assuntos
Neurônios Espinhosos Médios , Núcleo Accumbens , Animais , Camundongos , Encéfalo/metabolismo , Morfina/farmacologia , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Transcrição/metabolismo
14.
J Hepatol ; 80(3): 443-453, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38086446

RESUMO

BACKGROUND & AIMS: The liver is a common site of cancer metastasis, most commonly from colorectal cancer, and primary liver cancers that have metastasized are associated with poor outcomes. The underlying mechanisms by which the liver defends against these processes are largely unknown. Prohibitin 1 (PHB1) and methionine adenosyltransferase 1A (MAT1A) are highly expressed in the liver. They positively regulate each other and their deletion results in primary liver cancer. Here we investigated their roles in primary and secondary liver cancer metastasis. METHODS: We identified common target genes of PHB1 and MAT1A using a metastasis array, and measured promoter activity and transcription factor binding using luciferase reporter assays and chromatin immunoprecipitation, respectively. We examined how PHB1 or MAT1A loss promotes liver cancer metastasis and whether their loss sensitizes to colorectal liver metastasis (CRLM). RESULTS: Matrix metalloproteinase-7 (MMP-7) is a common target of MAT1A and PHB1 and its induction is responsible for increased migration and invasion when MAT1A or PHB1 is silenced. Mechanistically, PHB1 and MAT1A negatively regulate MMP7 promoter activity via an AP-1 site by repressing the MAFG-FOSB complex. Loss of MAT1A or PHB1 also increased MMP-7 in extracellular vesicles, which were internalized by colon and pancreatic cancer cells to enhance their oncogenicity. Low hepatic MAT1A or PHB1 expression sensitized to CRLM, but not if endogenous hepatic MMP-7 was knocked down first, which lowered CD4+ T cells while increasing CD8+ T cells in the tumor microenvironment. Hepatocytes co-cultured with colorectal cancer cells express less MAT1A/PHB1 but more MMP-7. Consistently, CRLM raised distant hepatocytes' MMP-7 expression in mice and humans. CONCLUSION: We have identified a PHB1/MAT1A-MAFG/FOSB-MMP-7 axis that controls primary liver cancer metastasis and sensitization to CRLM. IMPACT AND IMPLICATIONS: Primary and secondary liver cancer metastasis is associated with poor outcomes but whether the liver has underlying defense mechanism(s) against metastasis is unknown. Here we examined the hypothesis that hepatic prohibitin 1 (PHB1) and methionine adenosyltransferase 1A (MAT1A) cooperate to defend the liver against metastasis. Our studies found PHB1 and MAT1A form a complex that suppresses matrix metalloproteinase-7 (MMP-7) at the transcriptional level and loss of either PHB1 or MAT1A sensitizes the liver to metastasis via MMP-7 induction. Strategies that target the PHB1/MAT1A-MMP-7 axis may be a promising approach for the treatment of primary and secondary liver cancer metastasis.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Colorretais/genética , Neoplasias Hepáticas/patologia , Metaloproteinase 7 da Matriz/genética , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Proibitinas , Microambiente Tumoral
15.
Ann Dermatol ; 35(Suppl 2): S252-S255, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38061715

RESUMO

Epithelioid hemangioma is a rare benign vascular neoplasm. Recently, the term "multiple eruptive epithelioid hemangioma" has been proposed for epithelioid hemangioma with distinct features. It is different from usual epithelioid hemangioma because of the multifocal distributions in various body regions with an eruptive onset. In addition, the histopathology of multiple eruptive epithelioid hemangioma shows increased cellular proliferation, mitosis, and nuclear pleomorphism and positive findings for FOS-B compared to classic epithelioid hemangioma. Herein, we report the case of a 59-year-old man with unusual manifestations suitable for multiple eruptive epithelioid hemangioma. He had multiple erythematous to purple-red dome-shaped nodules on the right hand, arm, and shoulder. The initial lesion was a solitary erythematous nodule on the right hand that abruptly extended to the right arm and shoulder. Microscopically, the tumor was a well-demarcated dermal nodule and showed capillary sized vascular structures. Vascular structures had epithelioid endothelial cells with abundant eosinophilic cytoplasm and vesicular nuclei. The tumor cells showed mild nuclear pleomorphism and a few mitosis and feature of resembling cobble stone was observed. In immunohistochemistry, CD31 and CD34 were positive in the endothelial cells. The endothelial cells showed nuclear positivity in FOS-B. Based on the clinical and histopathological findings, the final diagnosis was multiple eruptive epithelioid hemangiomas. This is the first report of multiple eruptive epithelioid hemangiomas in an Asian man after the term had been introduced.

16.
Horm Behav ; 155: 105411, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37659358

RESUMO

Premenopausal hysterectomy is associated with a greater relative risk of dementia. We previously demonstrated cognitive impairments in adult rats six weeks after hysterectomy with ovarian conservation compared with intact sham-controls and other gynecological surgery variations. Here, we investigated whether hysterectomy-induced cognitive impairments are transient or persistent. Adult rats received sham-control, ovariectomy (Ovx), hysterectomy, or Ovx-hysterectomy surgery. Spatial working memory, reference memory, and anxiety-like behavior were tested either six-weeks post-surgery, in adulthood; seven-months post-surgery, in early middle-age; or twelve-months post-surgery, in late middle-age. Hysterectomy in adulthood yielded spatial working memory deficits at short-, moderate-, and long-term post-surgery intervals. Serum hormone levels did not differ between ovary-intact, but differed from Ovx, groups. Hysterectomy had no significant impact on healthy ovarian follicle or corpora lutea counts for any post-surgery timepoint compared with intact sham-controls. Frontal cortex, dorsal hippocampus, and entorhinal cortex were assessed for activity-dependent markers. In entorhinal cortex, there were alterations in FOSB and ΔFOSB expression during the early middle-age timepoint, and phosphorylated ERK1/2 levels at the adult timepoint. Collectively, results suggest a primary role for the uterus in regulating cognition, and that memory-related neural pathways may be modified following gynecological surgery. This is the first preclinical report of long-term effects of hysterectomy with and without ovarian conservation on cognition, endocrine, ovarian, and brain assessments, initiating a comprehensive framework of gynecological surgery effects. Translationally, findings underscore critical needs to decipher how gynecological surgeries, especially those involving the uterus, impact the brain and its functions, the ovaries, and overall aging from a systems perspective.


Assuntos
Histerectomia , Ovário , Feminino , Humanos , Ratos , Animais , Ovariectomia/efeitos adversos , Encéfalo , Cognição , Aprendizagem em Labirinto
17.
Pharmacol Biochem Behav ; 231: 173637, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37714223

RESUMO

Group II metabotropic glutamate receptors (mGlu2/3 receptors) have been regarded as promising candidates for the treatment of L-DOPA-induced dyskinesia (LID); however, confirmation is still lacking. As the hub of the basal ganglia circuit, the striatum plays a critical role in action control. Supersensitive responsiveness of glutamatergic corticostriatal input may be the key mechanism for the development of LID. In this study, we first examined the potency of LY354740 (12 mg/kg, i.p.) in modulating glutamate and dopamine release in lesioned striatum of stable LID rats. Then, we injected LY354740 (20nmoL or 40nmoL in 4 µL of sterile 0.9 % saline) directly into the lesioned striatum to verify its ability to reduce or attenuate L-DOPA-induced abnormal involuntary movements. In experiment conducted in established LID rats, after continuous injection for 4 days, we found that LY354740 significantly reduced the expression of dyskinesia. In another experiment conducted in parkinsonism rat models, we found that LY354740 attenuated the development of LID with an inverted-U dose-response curve. The role of LY354740 in modulating striatal expressions of LID-related molecular changes was also assessed after these behavioral experiments. We found that LY354740 significantly inhibited abnormal expressions of p-Fyn/p-NMDA/p-ERK1/2/p-HistoneH3/ΔFosB, which is in line with its ability to alleviate abnormal involuntary movements in both LID expression and induction phase. Our study indicates that activation of striatal mGlu2/3 receptors can attenuate the development of dyskinesia in parkinsonism rats and provide some functional improvements in LID rats by inhibiting LID-related molecular changes.


Assuntos
Discinesia Induzida por Medicamentos , Transtornos Parkinsonianos , Ratos , Animais , Levodopa/efeitos adversos , Ratos Sprague-Dawley , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Corpo Estriado/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Oxidopamina , Antiparkinsonianos/efeitos adversos , Modelos Animais de Doenças
18.
Histopathology ; 83(5): 743-755, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37519041

RESUMO

AIMS: Epithelioid haemangioma (EH) of bone remains a highly controversial entity. Indeed, the WHO classifies EHs of soft tissues as benign tumours, whereas bone EHs are considered intermediate-locally aggressive tumours due to common multifocal presentation and local destructive growth. To gain insights into the clinical behaviour and biology of EH of bone we retrospectively analysed 42 patients treated in a single institution from 1978 to 2021. METHODS AND RESULTS: Multifocal presentation was detected in 17 of 42 patients (40%) primarily as synchronous lesions. Patients were treated with curettage (57%), resection (29%) or biopsy, followed by radiotherapy or embolisation (14%). Follow-up (minimum 24 months) was available for 38 patients, with only five local recurrences (13%) and no death of disease. To clarify whether the synchronous bone lesions in multifocal EH represent multicentric disease or clonal dissemination, four cases were profiled by RNA-sequencing. Separate lesions from the same patient, which showed a similar transcriptional profile, expressed the same fusion transcript (involving FOS or FOSB) with identical gene breakpoints. CONCLUSIONS: These results indicate that, in EH of bone, multifocal lesions are clonally related and therefore represent the spread of a same neoplastic clone rather than simultaneous independent tumours. This finding is in apparent contradiction with the benign clinical course of the disease, and suggests that tumour dissemination in bone EH probably reflects a phenomenon of passive spreading, with tumour cells colonising distal sites while maintaining their benign biological nature.


Assuntos
Neoplasias Ósseas , Hemangioma , Humanos , Estudos Retrospectivos , Osso e Ossos/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Biópsia
19.
Behav Brain Res ; 452: 114588, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37474023

RESUMO

Chronic neuropathic pain (CNP) is a vast world health problem often associated with the somatosensory domain. This conceptualization is problematic because, unlike most other sensations that are usually affectively neutral and may present emotional, affective, and cognitive impairments. Neuronal circuits that modulate pain can increase or decrease painful sensitivity based on several factors, including context and expectation. The objective of this study was to evaluate whether subchronic treatment with Cannabidiol (CBD; 0.3, 3, and 10 mg/kg intraperitoneal route - i.p., once a day for 3 days) could promote pain-conditioned reversal, in the conditioned place preference (CPP) test, in male Wistar rats submitted to chronic constriction injury (CCI) of the sciatic nerve. Then, we evaluated the expression of astrocytes and microglia in animals treated with CBD through the immunofluorescence technique. Our results demonstrated that CBD promoted the reversal of CPP at 3 and 10 mg/kg. In CCI animals, CBD was able to attenuate the increase in neuronal hyperactivity, measured by FosB protein expression, in the regions of the corticolimbic circuit: anterior cingulate cortex (ACC), complex basolateral amygdala (BLA), granular layer of the dentate gyrus (GrDG), and dorsal hippocampus (DH) - adjacent to subiculum (CA1). CBD also prevented the increased expression of GFAP and IBA-1 in CCI animals. We concluded that CBD effects on CNP are linked to the modulation of the aversive component of pain. These effects decrease chronic neuronal activation and inflammatory markers in regions of the corticolimbic circuit.


Assuntos
Canabidiol , Neuralgia , Ratos , Animais , Masculino , Ratos Wistar , Canabidiol/farmacologia , Aprendizagem da Esquiva , Doenças Neuroinflamatórias , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo
20.
Int J Surg Pathol ; : 10668969231188893, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37461273

RESUMO

Ischemic fasciitis is a pseudosarcomatous fibroblastic/myofibroblastic proliferation that shares several overlapping morphological features with proliferative fasciitis and proliferative myositis. Prompted by a recent study that demonstrated FOS gene rearrangements in proliferative fasciitis and proliferative myositis, suggesting that these lesions likely represent examples of "transient neoplasia," we examined a cohort of ischemic fasciitis for similar events. Nine cases of ischemic fasciitis were retrieved from our institutional archives for diagnosis verification, immunostaining for FOSB, and fluorescence in situ hybridization using validated FOS and FOSB break-apart probes. Additionally, RNAseq was performed on a subset of cases. In our cohort, eight out of nine cases of ischemic fasciitis were positive for FOSB IHC, but FISH studies were consistently negative for FOSB and FOS gene rearrangements in all cases. Additionally, RNA sequencing did not detect any gene fusions. These findings suggest that the pathogenesis of ischemic fasciitis is distinct from that of proliferative fasciitis and proliferative myositis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA