RESUMO
Composting operation systems are valuable sources of microorganisms and enzymes. This work reports the assessment of proteolytic enzymes from cultivable bacteria isolated from a composting facility of the São Paulo Zoo Park (SPZPF), São Paulo, Brazil. Three hundred bacterial isolates were obtained and identified based on 16S rRNA gene as belonging to 13 different genera. The most common genus among the isolates was Bacillus (67%); some of which show high proteolytic activity in their culture media. Biochemical assays of hydrolytic activities using FRET peptides as substrates allowed the characterization of a repertoire of serine proteases and metalloproteases with different molecular weights secreted by Bacillus strains isolated from composting. Furthermore, thermostable serine and metalloproteases were detected in the composting leachate, which might be of interest for industrial applications.
Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/biossíntese , Compostagem , Peptídeo Hidrolases/biossíntese , Bacillus/classificação , Bacillus/genética , Bacillus/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Brasil , Peptídeo Hidrolases/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismoRESUMO
Tripeptidyl peptidase I (TPP-I), also named ceroid lipofuscinosis 2 protease (CLN2p), is a serine carboxyl lysosomal protease involved in neurodegenerative diseases, and has both tripeptidyl amino- and endo- peptidase activities under different pH conditions. We developed fluorescence resonance energy transfer (FRET) peptides using tryptophan (W) as the fluorophore to study TPP-I hydrolytic properties based on previous detailed substrate specificity study (Tian Y. et al., J. Biol. Chem. 2006, 281:6559-72). Tripeptidyl amino peptidase activity is enhanced by the presence of amino acids in the prime side and the peptide NH2-RWFFIQ-EDDnp is so far the best substrate described for TPP-I. The hydrolytic parameters of this peptide and its analogues indicated that the S4 subsite of TPP-I is occluded and there is an electrostatic interaction of the positively charged substrate N-terminus amino group and a negative locus in the region of the enzyme active site. KCl activated TPP-I in contrast to the inhibition by Ca(2+) and NaCl. Solvent kinetic isotope effects (SKIEs) show the importance of the free N-terminus amino group of the substrates, whose absence results in a more complex solvent-dependent enzyme: substrate interaction and catalytic process. Like pure TPP-I, rat spleen and kidney homogenates cleaved NH2-RWFFIQ-EDDnp only at F-F bond and is not inhibited by pepstatin, E-64, EDTA or PMSF. The selectivity of NH2-RWFFIQ-EDDnp to TPP-I was also demonstrated by the 400 times higher k(cat)/K(M) compared to generally used substrate, NH2-AAF-MCA and by its resistance to hydrolysis by cathepsin D that is present in high levels in kidneys.
Assuntos
Aminopeptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Serina Proteases/química , Sequência de Aminoácidos , Animais , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Masculino , Proteólise , Ratos , Extratos de Tecidos/química , Tripeptidil-Peptidase 1RESUMO
Snake venom metalloproteinases (SVMPs) belonging to P-I class are able to hydrolyze extracellular matrix proteins and coagulation factors triggering local and systemic reactions by multiple molecular mechanisms that are not fully understood. BmooMPα-I, a P-I class SMVP from Bothrops moojeni venom, was active upon neuro- and vaso-active peptides including angiotensin I, bradykinin, neurotensin, oxytocin and substance P. Interestingly, BmooMPα-I showed a strong bias towards hydrolysis after proline residues, which is unusual for most of characterized peptidases. Moreover, the enzyme showed kininogenase activity similar to that observed in plasma and cells by kallikrein. FRET peptide assays indicated a relative promiscuity at its S2-S'2 subsites, with proline determining the scissile bond. This unusual post-proline cleaving activity was confirmed by the efficient hydrolysis of the synthetic combinatorial library MCA-GXXPXXQ-EDDnp, described as resistant for canonical peptidases, only after Pro residues. Structural analysis of the tripeptide LPL complexed with BmooMPα-I, generated by molecular dynamics simulations, assisted in defining the subsites and provided the structural basis for subsite preferences such as the restriction of basic residues at the S2 subsite due to repulsive electrostatic effects and the steric impediment for large aliphatic or aromatic side chains at the S1 subsite. These new functional and structural findings provided a further understanding of the molecular mechanisms governing the physiological effects of this important class of enzymes in envenomation process.
Assuntos
Venenos de Crotalídeos/enzimologia , Calicreínas/metabolismo , Metaloproteases/metabolismo , Serina Endopeptidases/metabolismo , Sequência de Aminoácidos , Animais , Bothrops , Hidrólise , Cinética , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , Prolil Oligopeptidases , Radioimunoensaio , Especificidade por SubstratoRESUMO
Members of the high temperature requirement A (HtrA) family of chaperone proteases have been shown to play a role in bacterial pathogenesis. In a recent report, we demonstrated that the gene ML0176, which codes for a predicted HtrA-like protease, a gene conserved in other species of mycobacteria, is transcribed by Mycobacterium leprae in human leprosy lesions. In the present study, the recombinant ML0176 protein was produced and its enzymatic properties investigated. M. lepraerecombinant ML0176 was able to hydrolyse a variety of synthetic and natural peptides. Similar to other HtrA proteins, this enzyme displayed maximum proteolytic activity at temperatures above 40°C and was completely inactivated by aprotinin, a protease inhibitor with high selectivity for serine proteases. Finally, analysis of M. leprae ML0176 specificity suggested a broader cleavage preference than that of previously described HtrAs homologues. In summary, we have identified an HtrA-like protease in M. lepraethat may constitute a potential new target for the development of novel prophylactic and/or therapeutic strategies against mycobacterial infections.